1
|
Shwiff SA, Auweloa CLW, Caires K, Friel G, Katayama L, Munoz Z, Price MR, Risch D, Shartaj M, Steensma K, Thorne M, Zifko R. Economic estimates of invasive wild ungulate damage to livestock producers in Hawai'i. PEST MANAGEMENT SCIENCE 2025; 81:438-449. [PMID: 39360528 PMCID: PMC11632203 DOI: 10.1002/ps.8446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 03/19/2024] [Revised: 08/23/2024] [Accepted: 09/12/2024] [Indexed: 10/04/2024]
Abstract
BACKGROUND Invasive ungulates (hoofed mammals), including deer, feral pigs, feral goats, and feral sheep, are known to cause damage to agriculture, property, natural resources, and many other commodities. Most of the information regarding the economic impacts of wild ungulates is from North America, where some of these species are native. To evaluate invasive ungulate damage to livestock producers in the Hawaiian Islands, which have no native ungulates, a survey was distributed to livestock producers across the state. RESULTS Survey results described how total annual costs are distributed among damage, control, and repairs for survey respondents, who represented a significant percentage of total ranchland acreage across the islands. The estimates, excluding fixed fence installation, revealed an annual cost to livestock producers who responded to the survey of US$1.42 million, which ranged from $3.6 million to $7.5 million when extrapolated to the entire state. The large cost contributors included damage to property, pastureland repair, control costs (excluding fencing), supplemental feed, and predation of calves by wild pigs. Additionally, producers reported spending more than $2 million in upfront fence installation costs. Most of these costs were reported by respondents on the islands of Hawai'i and Moloka'i. CONCLUSION Study results revealed substantial damage to state livestock producers due to wild ungulates and are useful in determining an invasive ungulate management strategy that can appropriately aid the most impacted sectors of Hawai'i. © 2024 The Author(s). Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Stephanie A Shwiff
- USDA APHIS Wildlife ServicesNational Wildlife Research CenterFort CollinsCOUSA
| | | | - Kyle Caires
- College of Tropical Agriculture & Human Resources, Department of Human Nutrition, Food & Animal SciencesUniversity of Hawai'i at MānoaHonoluluHIUSA
| | | | - Lauren Katayama
- College of Tropical Agriculture & Human Resources, Department of Natural Resources & Environmental ManagementUniversity of Hawai'i at MānoaHonoluluHIUSA
| | - Zachary Munoz
- USDA APHIS Wildlife ServicesNational Wildlife Research CenterFort CollinsCOUSA
- Department of EconomicsColorado State UniversityFort CollinsCOUSA
| | - Melissa R Price
- College of Tropical Agriculture & Human Resources, Department of Natural Resources & Environmental ManagementUniversity of Hawai'i at MānoaHonoluluHIUSA
| | - Derek Risch
- College of Tropical Agriculture & Human Resources, Department of Natural Resources & Environmental ManagementUniversity of Hawai'i at MānoaHonoluluHIUSA
| | - Mostafa Shartaj
- USDA APHIS Wildlife ServicesNational Wildlife Research CenterFort CollinsCOUSA
- Department of EconomicsColorado State UniversityFort CollinsCOUSA
| | - Karen Steensma
- Department of Geography & EnvironmentTrinity Western UniversityLangleyCanada
| | - Mark Thorne
- College of Tropical Agriculture & Human Resources, Department of Human Nutrition, Food & Animal SciencesUniversity of Hawai'i at MānoaHonoluluHIUSA
| | - Ray Zifko
- USDA APHIS Wildlife ServicesNational Wildlife Research CenterFort CollinsCOUSA
| |
Collapse
|
2
|
Ferrara G, Pagnini U, Parisi A, Amoroso MG, Fusco G, Iovane G, Montagnaro S. A pseudorabies outbreak in hunting dogs in Campania region (Italy): a case presentation and epidemiological survey. BMC Vet Res 2024; 20:323. [PMID: 39026329 PMCID: PMC11256590 DOI: 10.1186/s12917-024-04189-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/08/2024] [Accepted: 07/11/2024] [Indexed: 07/20/2024] Open
Abstract
BACKGROUND Pseudorabies is an infection of domestic and wild pigs that has occasionally been reported in dogs with fatal encephalitis. Hunting dogs are predisposed to pseudorabies exposure due to incorrect practices (administration of raw infected meat) or close contact with infected wild boars. This study described an outbreak of pseudorabies in two hunting dogs in the Campania region, southern Italy. CASE PRESENTATION Two hunting dogs were hospitalized after a hunting trip, with fever, itching, and self-inflicted lesions. Laboratory tests showed mild anemia and marked leukocytosis. Despite conservative therapy, both animals died 48 h after the presentation of symptoms. One of the carcasses was sent to the Department of Veterinary Medicine and Animal Production in Naples to confirm the suspicion of pseudorabies. DNA was extracted from different matrices and used as a template for real-time PCR to detect PRV. Several samples (brain, cerebellum, brainstem, lung, and liver) tested positive. Subsequent sequence analyses of glycoprotein E from DNA extracted from the brain stem revealed a sequence similarity to those described in previous cases of pseudorabies in dogs in Italy, France and Belgium. One month after the outbreak, blood samples were collected from 42 dogs belonging to the same hunting team and from 245 dogs (cohort population) living in the Campania region. All samples were tested with two commercial ELISAs to detect seroconversion against glycoproteins B and E. A seroprevalence of 19% was observed in the hunting team affected by the outbreak, while only 0.8% was observed in the regional dog population. CONCLUSIONS The data reported in this study demonstrate potential exposure to PRV by dead-end hosts, particularly hunting dogs. The sequencing results indicated the homogeneity of PRV strains circulating in the different Italian regions.
Collapse
Affiliation(s)
- Gianmarco Ferrara
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Via Federico Delpino n.1, Naples, 80137, Italy.
| | - Ugo Pagnini
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Via Federico Delpino n.1, Naples, 80137, Italy
| | - Antonio Parisi
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Via Federico Delpino n.1, Naples, 80137, Italy
| | - Maria Grazia Amoroso
- Department of Animal Health-Istituto Zooprofilattico Sperimentale del Mezzogiorno, Via Salute n. 2, Naples, 80055, Italy
| | - Giovanna Fusco
- Department of Animal Health-Istituto Zooprofilattico Sperimentale del Mezzogiorno, Via Salute n. 2, Naples, 80055, Italy
| | - Giuseppe Iovane
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Via Federico Delpino n.1, Naples, 80137, Italy
| | - Serena Montagnaro
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Via Federico Delpino n.1, Naples, 80137, Italy
| |
Collapse
|
3
|
Kennedy SM, Passler T, Ditchkoff SS, Brown VR, Raithel GW, Chamorro MF, Walz PH, Kyriakis CS, Falkenberg SM. Seroprevalence of Bovine Viral Diarrhea Virus in Wild Pigs (Sus scrofa) in 17 States in the USA. J Wildl Dis 2024; 60:647-659. [PMID: 38752344 DOI: 10.7589/jwd-d-23-00066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/20/2023] [Accepted: 02/02/2024] [Indexed: 07/09/2024]
Abstract
Wild pigs (Sus scrofa) are among the most detrimental invasive species in the USA. They are damaging to crops and agriculture, pose a public health risk as reservoirs of zoonotic pathogens, and may also spread disease to livestock. One pathogen identified in wild pigs is bovine viral diarrhea virus (BVDV), a virus that causes an economically important disease of cattle (Bos taurus and Bos indicus). We sought to determine the BVDV seroprevalence in wild pigs in 17 states across the US and to determine whether age category, sex, or location were associated with a positive antibody titer. Serum samples from 945 wild pigs were collected from 17 US states. Virus neutralization assays were performed to determine antibody titers against BVDV-1b and BVDV-2a. Total BVDV seroprevalence for the study area was 5.8% (95% confidence interval [CI], 4.11-8.89). Seroprevalence across all evaluated states was determined to be 4.4% (95% CI, 2.48-6.82) for BVDV-1b and 3.6% (95% CI, 1.54-5.60) for BVDV-2a. The seroprevalence for individual states varied from 0% to 16.7%. There was no statistical difference in median antibody titer for BVDV-1b or BVDV-2a by sex or age category. State seroprevalences for both BVDV-1b and BVDV-2a were associated with wild pig population estimates for those states.
Collapse
Affiliation(s)
- Shari M Kennedy
- Department of Clinical Sciences, College of Veterinary Medicine, Auburn University, 1500 Wire Road, Auburn, Alabama 36849, USA
- Current address: Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Oklahoma State University, 2065 W. Farm Road, Stillwater, Oklahoma, USA
| | - Thomas Passler
- Department of Clinical Sciences, College of Veterinary Medicine, Auburn University, 1500 Wire Road, Auburn, Alabama 36849, USA
| | - Stephen S Ditchkoff
- College of Forestry, Wildlife and Environment, Auburn University, 3301 Forestry Wildlife, Auburn University, Alabama 36849, USA
| | - Vienna R Brown
- National Feral Swine Damage Management Program, 4101 Laporte Avenue, Fort Collins, Colorado 80521, USA
| | - Gage W Raithel
- Department of Pathobiology, College of Veterinary Medicine, Auburn University 1130 Wire Road, Auburn, Alabama 36849, USA
| | - Manuel F Chamorro
- Department of Clinical Sciences, College of Veterinary Medicine, Auburn University, 1500 Wire Road, Auburn, Alabama 36849, USA
| | - Paul H Walz
- Department of Pathobiology, College of Veterinary Medicine, Auburn University 1130 Wire Road, Auburn, Alabama 36849, USA
| | - Constantinos S Kyriakis
- Department of Pathobiology, College of Veterinary Medicine, Auburn University 1130 Wire Road, Auburn, Alabama 36849, USA
| | - Shollie M Falkenberg
- Department of Pathobiology, College of Veterinary Medicine, Auburn University 1130 Wire Road, Auburn, Alabama 36849, USA
| |
Collapse
|
4
|
Guo H, Liu Q, Yang D, Zhang H, Kuang Y, Li Y, Chen H, Wang X. Brincidofovir Effectively Inhibits Proliferation of Pseudorabies Virus by Disrupting Viral Replication. Viruses 2024; 16:464. [PMID: 38543829 PMCID: PMC10975951 DOI: 10.3390/v16030464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/05/2024] [Revised: 03/11/2024] [Accepted: 03/11/2024] [Indexed: 05/23/2024] Open
Abstract
Pseudorabies is an acute and febrile infectious disease caused by pseudorabies virus (PRV), a member of the family Herpesviridae. Currently, PRV is predominantly endemoepidemic and has caused significant economic losses among domestic pigs. Other animals have been proven to be susceptible to PRV, with a mortality rate of 100%. In addition, 30 human cases of PRV infection have been reported in China since 2017, and all patients have shown severe neurological symptoms and eventually died or developed various neurological sequelae. In these cases, broad-spectrum anti-herpesvirus drugs and integrated treatments were mostly applied. However, the inhibitory effect of the commonly used anti-herpesvirus drugs (e.g., acyclovir, etc.) against PRV were evaluated and found to be limited in this study. It is therefore urgent and important to develop drugs that are clinically effective against PRV infection. Here, we constructed a high-throughput method for screening antiviral drugs based on fluorescence-tagged PRV strains and multi-modal microplate readers that detect fluorescence intensity to account for virus proliferation. A total of 2104 small molecule drugs approved by the U.S. Food and Drug Administration (FDA) were studied and validated by applying this screening model, and 104 drugs providing more than 75% inhibition of fluorescence intensity were selected. Furthermore, 10 drugs that could significantly inhibit PRV proliferation in vitro were strictly identified based on their cytopathic effects, virus titer, and viral gene expression, etc. Based on the determined 50% cytotoxic concentration (CC50) and 50% inhibitory concentration (IC50), the selectivity index (SI) was calculated to be 26.3-3937.2 for these 10 drugs, indicating excellent drugability. The antiviral effects of the 10 drugs were then assessed in a mouse model. It was found that 10 mg/kg brincidofovir administered continuously for 5 days provided 100% protection in mice challenged with lethal doses of the human-origin PRV strain hSD-1/2019. Brincidofovir significantly attenuated symptoms and pathological changes in infected mice. Additionally, time-of-addition experiments confirmed that brincidofovir inhibited the proliferation of PRV mainly by interfering with the viral replication stage. Therefore, this study confirms that brincidofovir can significantly inhibit PRV both in vitro and in vivo and is expected to be an effective drug candidate for the clinical treatment of PRV infections.
Collapse
Affiliation(s)
- Huihui Guo
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (H.G.); (Q.L.); (D.Y.); (H.Z.); (Y.K.); (Y.L.); (H.C.)
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, China
| | - Qingyun Liu
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (H.G.); (Q.L.); (D.Y.); (H.Z.); (Y.K.); (Y.L.); (H.C.)
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, China
| | - Dan Yang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (H.G.); (Q.L.); (D.Y.); (H.Z.); (Y.K.); (Y.L.); (H.C.)
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, China
| | - Hao Zhang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (H.G.); (Q.L.); (D.Y.); (H.Z.); (Y.K.); (Y.L.); (H.C.)
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, China
| | - Yan Kuang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (H.G.); (Q.L.); (D.Y.); (H.Z.); (Y.K.); (Y.L.); (H.C.)
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, China
| | - Yafei Li
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (H.G.); (Q.L.); (D.Y.); (H.Z.); (Y.K.); (Y.L.); (H.C.)
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, China
| | - Huanchun Chen
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (H.G.); (Q.L.); (D.Y.); (H.Z.); (Y.K.); (Y.L.); (H.C.)
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Huazhong Agricultural University, Wuhan 430070, China
- International Research Center for Animal Disease, Ministry of Science and Technology of China, Wuhan 430070, China
| | - Xiangru Wang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (H.G.); (Q.L.); (D.Y.); (H.Z.); (Y.K.); (Y.L.); (H.C.)
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Huazhong Agricultural University, Wuhan 430070, China
- International Research Center for Animal Disease, Ministry of Science and Technology of China, Wuhan 430070, China
| |
Collapse
|
5
|
Li XM, Wang SP, Wang JY, Tang T, Wan B, Zeng L, Wang J, Chu BB, Yang GY, Pan JJ. RhoA suppresses pseudorabies virus replication in vitro. Virol J 2023; 20:264. [PMID: 37968757 PMCID: PMC10652432 DOI: 10.1186/s12985-023-02229-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/29/2023] [Accepted: 11/05/2023] [Indexed: 11/17/2023] Open
Abstract
The porcine pseudorabies virus (PRV) is one of the most devastating pathogens and brings great economic losses to the swine industry worldwide. Viruses are intracellular parasites that have evolved numerous strategies to subvert and utilize different host processes for their life cycle. Among the different systems of the host cell, the cytoskeleton is one of the most important which not only facilitate viral invasion and spread into neighboring cells, but also help viruses to evade the host immune system. RhoA is a key regulator of cytoskeleton system that may participate in virus infection. In this study, we characterized the function of RhoA in the PRV replication by chemical drugs treatment, gene knockdown and gene over-expression strategy. Inhibition of RhoA by specific inhibitor and gene knockdown promoted PRV proliferation. On the contrary, overexpression of RhoA or activation of RhoA by chemical drug inhibited PRV infection. Besides, our data demonstrated that PRV infection induced the disruption of actin stress fiber, which was consistent with previous report. In turn, the actin specific inhibitor cytochalasin D markedly disrupted the normal fibrous structure of intracellular actin cytoskeleton and decreased the PRV replication, suggesting that actin cytoskeleton polymerization contributed to PRV replication in vitro. In summary, our data displayed that RhoA was a host restriction factor that inhibited PRV replication, which may deepen our understanding the pathogenesis of PRV and provide further insight into the prevention of PRV infection and the development of anti-viral drugs.
Collapse
Affiliation(s)
- Xin-Man Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Zhengzhou, 450046, China
- Key Laboratory of Animal Growth and Development of Henan Province, Zhengzhou, 450046, China
| | - Shi-Ping Wang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Zhengzhou, 450046, China
- Key Laboratory of Animal Growth and Development of Henan Province, Zhengzhou, 450046, China
| | - Jin-Yuan Wang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Zhengzhou, 450046, China
- Key Laboratory of Animal Growth and Development of Henan Province, Zhengzhou, 450046, China
| | - Ting Tang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Zhengzhou, 450046, China
- Key Laboratory of Animal Growth and Development of Henan Province, Zhengzhou, 450046, China
| | - Bo Wan
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Zhengzhou, 450046, China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Henan Agricultural University, Zhengzhou, 450046, China
| | - Lei Zeng
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Zhengzhou, 450046, China
- Key Laboratory of Animal Growth and Development of Henan Province, Zhengzhou, 450046, China
| | - Jiang Wang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Zhengzhou, 450046, China
- Key Laboratory of Animal Growth and Development of Henan Province, Zhengzhou, 450046, China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Henan Agricultural University, Zhengzhou, 450046, China
| | - Bei-Bei Chu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Zhengzhou, 450046, China
- Key Laboratory of Animal Growth and Development of Henan Province, Zhengzhou, 450046, China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Henan Agricultural University, Zhengzhou, 450046, China
| | - Guo-Yu Yang
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Zhengzhou, 450046, China
- Key Laboratory of Animal Growth and Development of Henan Province, Zhengzhou, 450046, China
- College of Animal Science and Technology, Henan University of Animal Husbandry and Economy, Zhengzhou, 450047, China
| | - Jia-Jia Pan
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China.
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Zhengzhou, 450046, China.
- Key Laboratory of Animal Growth and Development of Henan Province, Zhengzhou, 450046, China.
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Henan Agricultural University, Zhengzhou, 450046, China.
| |
Collapse
|
6
|
Silva E, Medina-Ramirez E, Pavulraj S, Gladue DP, Borca M, Chowdhury SI. A Triple Gene-Deleted Pseudorabies Virus-Vectored Subunit PCV2b and CSFV Vaccine Protect Pigs against a Virulent CSFV Challenge. Viruses 2023; 15:2143. [PMID: 38005821 PMCID: PMC10674279 DOI: 10.3390/v15112143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/08/2023] [Revised: 10/21/2023] [Accepted: 10/23/2023] [Indexed: 11/26/2023] Open
Abstract
Classical swine fever (CSF) remains one of the most economically significant viral diseases affecting domestic pigs and wild boars worldwide. To develop a safe and effective vaccine against CSF, we have constructed a triple gene-deleted pseudorabies virus (PRVtmv)-vectored bivalent subunit vaccine against porcine circovirus type 2b (PCV2b) and CSFV (PRVtmv+). In this study, we determined the protective efficacy of the PRVtmv+ against virulent CSFV challenge in pigs. The results revealed that the sham-vaccinated control group pigs developed severe CSFV-specific clinical signs characterized by pyrexia and diarrhea, and became moribund on or before the seventh day post challenge (dpc). However, the PRVtmv+-vaccinated pigs survived until the day of euthanasia at 21 dpc. A few vaccinated pigs showed transient diarrhea but recovered within a day or two. One pig had a low-grade fever for a day but recovered. The sham-vaccinated control group pigs had a high level of viremia, severe lymphocytopenia, and thrombocytopenia. In contrast, the vaccinated pigs had a low-moderate degree of lymphocytopenia and thrombocytopenia on four dpc, but recovered by seven dpc. Based on the gross pathology, none of the vaccinated pigs had any CSFV-specific lesions. Therefore, our results demonstrated that the PRVtmv+ vaccinated pigs are protected against virulent CSFV challenge.
Collapse
Affiliation(s)
- Ediane Silva
- US Department of Agricultural, ARS, Plum Island Animal Disease Center, Orient, NY 11957, USA; (E.S.); (E.M.-R.); (D.P.G.); (M.B.)
| | - Elizabeth Medina-Ramirez
- US Department of Agricultural, ARS, Plum Island Animal Disease Center, Orient, NY 11957, USA; (E.S.); (E.M.-R.); (D.P.G.); (M.B.)
| | - Selvaraj Pavulraj
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA;
| | - Douglas P. Gladue
- US Department of Agricultural, ARS, Plum Island Animal Disease Center, Orient, NY 11957, USA; (E.S.); (E.M.-R.); (D.P.G.); (M.B.)
| | - Manuel Borca
- US Department of Agricultural, ARS, Plum Island Animal Disease Center, Orient, NY 11957, USA; (E.S.); (E.M.-R.); (D.P.G.); (M.B.)
| | - Shafiqul I. Chowdhury
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA;
| |
Collapse
|
7
|
Freuling CM, Hlinak A, Schulze C, Sehl-Ewert J, Wysocki P, Szentiks CA, Schmitt K, Wohlsein P, Kluth G, Reinhardt I, Mettenleiter TC, Müller T. Suid alphaherpesvirus 1 of wild boar origin as a recent source of Aujeszky's disease in carnivores in Germany. Virol J 2023; 20:110. [PMID: 37264455 DOI: 10.1186/s12985-023-02074-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/24/2023] [Accepted: 05/21/2023] [Indexed: 06/03/2023] Open
Abstract
BACKGROUND The high susceptibility of carnivores to Suid Alphaherpesvirus 1 [SuAHV1, synonymous pseudorabies virus (PrV)], renders them inadvertent sentinels for the possible occurrence of Aujeszky's disease (AD) in domestic and wild swine populations. The aim of this study was to epidemiologically analyse the occurrence of PrV infections in domestic and wild animals in Germany during the last three decades and to genetically characterise the causative PrV isolates. METHODS PrV in dogs was detected using standard virological techniques including conventional and real time PCR, virus isolation or by immunohistochemistry. Available PrV isolates were characterized by partial sequencing of the open gC reading frame and the genetic traits were compared with those of archived PrV isolates from carnivores and domestic pigs from Germany before the elimination of AD in the domestic pig population. RESULTS During 1995 and 2022, a total of 38 cases of AD in carnivores, e.g. dogs and red foxes, were laboratory confirmed. Sequencing and subsequent phylogenetic analysis of PrV isolates established a strong connection between AD cases in carnivores and the occurrence of PrV infections in European wild boars in the end phase of and after elimination of AD from the domestic pig population. While PrV infections occur at low numbers but regularly in hunting dogs, interestingly, PrV was not observed in grey wolves in Germany. In none of 682 dead-found grey wolves and wolf-dog hybrids tested from Germany during 2006-2022 could PrV infection be detected by molecular means. CONCLUSIONS Although PrV has been eliminated from domestic pigs, spillover infections in domestic and wild carnivores should always be expected given the endemic presence of PrV in wild pig populations. Since detection of PrV DNA and virus in carnivores is sporadic even in areas with high seroprevalence of PrV in wild pigs, it may not reflect the full diversity of PrV.
Collapse
Affiliation(s)
- Conrad M Freuling
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, 17493, Greifswald- Insel Riems, Germany
| | - Andreas Hlinak
- Berlin-Brandenburg State Laboratory, 15236, Frankfurt (Oder), Germany
| | - Christoph Schulze
- Berlin-Brandenburg State Laboratory, 15236, Frankfurt (Oder), Germany
| | - Julia Sehl-Ewert
- Department of Experimental Animal Facilities and Biorisk Management, Friedrich-Loeffler-Institut, 17493, Greifswald- Insel Riems, Germany
| | - Patrick Wysocki
- Friedrich-Loeffler-Institut, Institute of Epidemiology, 17493, Greifswald- Insel Riems, Germany
| | - Claudia A Szentiks
- IZW - Leibniz Institute for Zoo and Wildlife Research, 10315, Berlin, Germany
| | - Klaus Schmitt
- Landesamt für Verbraucherschutz Saarland, 66115, Saarbrücken, Germany
| | - Peter Wohlsein
- Department of Pathology, University of Veterinary Medicine Hannover, Foundation, 30559, Hannover, Germany
| | - Gesa Kluth
- LUPUS - German Institute for Wolf Monitoring and Research, 02826, Görlitz, Germany
| | - Ilka Reinhardt
- LUPUS - German Institute for Wolf Monitoring and Research, 02826, Görlitz, Germany
| | | | - Thomas Müller
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, 17493, Greifswald- Insel Riems, Germany.
| |
Collapse
|
8
|
Liu Q, Kuang Y, Li Y, Guo H, Zhou C, Guo S, Tan C, Wu B, Chen H, Wang X. The Epidemiology and Variation in Pseudorabies Virus: A Continuing Challenge to Pigs and Humans. Viruses 2022; 14:v14071463. [PMID: 35891443 PMCID: PMC9325097 DOI: 10.3390/v14071463] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/25/2022] [Revised: 06/28/2022] [Accepted: 06/29/2022] [Indexed: 12/20/2022] Open
Abstract
Pseudorabies virus (PRV) can infect most mammals and is well known for causing substantial economic losses in the pig industry. In addition to pigs, PRV infection usually leads to severe itching, central nervous system dysfunction, and 100% mortality in its non-natural hosts. It should be noted that increasing human cases of PRV infection have been reported in China since 2017, and these patients have generally suffered from nervous system damage and even death. Here, we reviewed the current prevalence and variation in PRV worldwide as well as the PRV-caused infections in animals and humans, and briefly summarized the vaccines and diagnostic methods used for pseudorabies control. Most countries, including China, have control programs in place for pseudorabies in domestic pigs, and thus, the disease is on the decline; however, PRV is still globally epizootic and an important pathogen for pigs. In countries where pseudorabies in domestic pigs have already been eliminated, the risk of PRV transmission by infected wild animals should be estimated and prevented. As a member of the alphaherpesviruses, PRV showed protein-coding variation that was relatively higher than that of herpes simplex virus-1 (HSV-1) and varicella-zoster virus (VZV), and its evolution was mainly contributed to by the frequent recombination observed between different genotypes or within the clade. Recombination events have promoted the generation of new variants, such as the variant strains resulting in the outbreak of pseudorabies in pigs in China, 2011. There have been 25 cases of PRV infections in humans reported in China since 2017, and they were considered to be infected by PRV variant strains. Although PRV infections have been sporadically reported in humans, their causal association remains to be determined. This review provided the latest epidemiological information on PRV for the better understanding, prevention, and treatment of pseudorabies.
Collapse
Affiliation(s)
- Qingyun Liu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Q.L.); (Y.K.); (Y.L.); (H.G.); (C.Z.); (S.G.); (C.T.); (B.W.)
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Yan Kuang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Q.L.); (Y.K.); (Y.L.); (H.G.); (C.Z.); (S.G.); (C.T.); (B.W.)
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Yafei Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Q.L.); (Y.K.); (Y.L.); (H.G.); (C.Z.); (S.G.); (C.T.); (B.W.)
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Huihui Guo
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Q.L.); (Y.K.); (Y.L.); (H.G.); (C.Z.); (S.G.); (C.T.); (B.W.)
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Chuyue Zhou
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Q.L.); (Y.K.); (Y.L.); (H.G.); (C.Z.); (S.G.); (C.T.); (B.W.)
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Shibang Guo
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Q.L.); (Y.K.); (Y.L.); (H.G.); (C.Z.); (S.G.); (C.T.); (B.W.)
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Chen Tan
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Q.L.); (Y.K.); (Y.L.); (H.G.); (C.Z.); (S.G.); (C.T.); (B.W.)
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People’s Republic of China, Wuhan 430070, China
- International Research Center for Animal Disease, Ministry of Science and Technology of the People’s Republic of China, Wuhan 430070, China
| | - Bin Wu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Q.L.); (Y.K.); (Y.L.); (H.G.); (C.Z.); (S.G.); (C.T.); (B.W.)
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People’s Republic of China, Wuhan 430070, China
- International Research Center for Animal Disease, Ministry of Science and Technology of the People’s Republic of China, Wuhan 430070, China
| | - Huanchun Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Q.L.); (Y.K.); (Y.L.); (H.G.); (C.Z.); (S.G.); (C.T.); (B.W.)
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People’s Republic of China, Wuhan 430070, China
- International Research Center for Animal Disease, Ministry of Science and Technology of the People’s Republic of China, Wuhan 430070, China
- Correspondence: (H.C.); (X.W.)
| | - Xiangru Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Q.L.); (Y.K.); (Y.L.); (H.G.); (C.Z.); (S.G.); (C.T.); (B.W.)
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People’s Republic of China, Wuhan 430070, China
- International Research Center for Animal Disease, Ministry of Science and Technology of the People’s Republic of China, Wuhan 430070, China
- Correspondence: (H.C.); (X.W.)
| |
Collapse
|
9
|
Hou Y, Wang Y, Zhang Y, Yu H, Zhao Y, Yi A. Human Encephalitis Caused by Pseudorabies Virus in China: A Case Report and Systematic Review. Vector Borne Zoonotic Dis 2022; 22:391-396. [PMID: 35736787 DOI: 10.1089/vbz.2022.0002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/12/2022] Open
Abstract
Background: Pseudorabies virus (PRV) is a common pathogen found in pigs. The pathogenicity of PRV in humans is under researched and there are few confirmed cases of PRV infections in humans, which has led to a lack of clinical consensus. Methods: We presented a case of viral encephalitis caused by PRV in China. We performed a systematic review of the literature to investigate the clinical features and prognosis of PRV encephalitis and included 12 patients with PRV encephalitis. Results: All the patients had a history of direct or indirect contact with living pigs or pork before the onset of the disease, accompanied by prodromal symptoms, such as fever and headache. They presented with a series of lesions involving the central nervous system (CNS) and respiratory system, such as acute encephalitis syndrome, respiratory failure, retinitis, or endophthalmitis. Conclusions: The differential diagnosis of an acute attack of CNS infection should include PRV encephalitis, which should be diagnosed by a head magnetic resonance imaging (MRI), fundus examination, and cerebrospinal fluid next-generation sequencing. Intravenous immunoglobulin, glucocorticoid, antiviral, and symptomatic support treatment should be administered as early as possible to improve the prognosis.
Collapse
Affiliation(s)
- Yue Hou
- Department of Neurology, Hebei University of Engineering Clinical Medical College, Handan, China
| | - YouMing Wang
- Department of Neurology, Affiliated Hospital of Hebei University of Engineering, Handan, China
| | - Yao Zhang
- Department of Neurology, Affiliated Hospital of Hebei University of Engineering, Handan, China
| | - HuiDan Yu
- Department of Neurology, Affiliated Hospital of Hebei University of Engineering, Handan, China
| | - Yan Zhao
- Department of Neurology, Hebei University of Engineering Clinical Medical College, Handan, China
| | - AiFen Yi
- The Fifth People's Hospital of Anyang, Anyang, China
| |
Collapse
|
10
|
Aytogu G, Toker EB, Yavas O, Kadiroglu B, Ates O, Ozyigit MO, Yesilbag K. First isolation and molecular characterization of pseudorabies virus detected in Turkey. Mol Biol Rep 2022; 49:1679-1686. [PMID: 35031924 DOI: 10.1007/s11033-021-06974-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/02/2021] [Accepted: 11/17/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND Pigs are the main host species for the pseudorabies virus. It causes fatal encephalitis in many species, including humans. This article aims to report the first clinical case of pseudorabies as well as isolation and molecular characterization of the virus from a hunting dog in Bursa province, Turkey. METHODS AND RESULTS The dog shows clinical signs including pruritus and neurological signs such as stumbling and inability to stand up compatible with pseudorabies. The virus isolates were obtained from the supernatant of fresh tissue samples from the cerebellum, cornu ammonis, spleen, salivary gland, conjunctival swab, serum, and PBMC samples. The glycoprotein C region is targeted for viral DNA amplification. Pseudorabies virus genome detected both in fresh tissues and supernatants of third passage on Vero cells. The number of PCR positive samples was dramatically increased after cell culture inoculations. Genome sequencing of strain Bursa-10303, which was isolated from a non-endemic area, identified it to belong to clade A. CONCLUSIONS This study confirms the possible presence of pseudorabies infection in the wildlife reservoirs in Turkey. Future studies may clarify the importance of the infection in Turkey region, where there is no prevalent pig production.
Collapse
Affiliation(s)
- Gizem Aytogu
- Department of Virology, Faculty of Veterinary Medicine, Bursa Uludag University, 16059, Bursa, Turkey
| | - Eda B Toker
- Department of Virology, Faculty of Veterinary Medicine, Bursa Uludag University, 16059, Bursa, Turkey
| | - Ozkan Yavas
- Department of Pathology, Faculty of Veterinary Medicine, Bursa Uludag University, 16059, Bursa, Turkey
| | - Berfin Kadiroglu
- Department of Virology, Faculty of Veterinary Medicine, Bursa Uludag University, 16059, Bursa, Turkey
| | - Ozer Ates
- Department of Virology, Faculty of Veterinary Medicine, Bursa Uludag University, 16059, Bursa, Turkey
| | - Musa Ozgur Ozyigit
- Department of Pathology, Faculty of Veterinary Medicine, Bursa Uludag University, 16059, Bursa, Turkey
| | - Kadir Yesilbag
- Department of Virology, Faculty of Veterinary Medicine, Bursa Uludag University, 16059, Bursa, Turkey.
| |
Collapse
|
11
|
Ciarello FP, Moreno A, Miragliotta N, Antonino A, Fiasconaro M, Purpari G, Amato B, Ippolito D, Di Marco Lo Presti V. Aujeszky's disease in hunting dogs after the ingestion of wild boar raw meat in Sicily (Italy): clinical, diagnostic and phylogenetic features. BMC Vet Res 2022; 18:27. [PMID: 34996475 PMCID: PMC8742332 DOI: 10.1186/s12917-022-03138-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/17/2021] [Accepted: 12/30/2021] [Indexed: 12/12/2022] Open
Abstract
Background Aujeszky's disease is caused by Suid Herpes Virus-1 and species belonging to the genus Sus scrofa are the main reservoir hosts. This virus, however, is capable of infecting and causing severe disease, with an almost constant fatal outcome in other species, both domestic and wild (carnivores, monogastric herbivores and ruminants). Moreover, the possibility of transmission to humans has been demonstrated. This study reports and describes the clinical, diagnostic, pathological and phylogenetic aspects of two cases of Aujeszky's disease in two hunting dogs following the ingestion of infected wild boar raw meat. These cases are contextualized in the province of Messina (Sicily), where a high prevalence of Aujeszky's disease has been recorded (average of 12,20% in the period 2010–2019) in farmed pig, and with evidence of spread to other species. A severe outbreak in cattle has recently been reported in these areas. Nevertheless, cases of Aujeszky's disease in dogs are rarely reported and this study represents the first well-documented report in this species in Sicily. Case presentation After a wild boar hunt, two dogs showed neurological symptoms and intense itching unresponsive to therapy. Diagnosis of Aujeszky's disease was made based on clinical suspicion, anamnestic information and confirmed by the isolation of the virus from the brain of both dogs. In addition, molecular typing, sequencing and phylogenetic analysis of the Real-Time PCR products were performed. The sequences studied were placed in the Italian Clade 1 along with the sequences obtained from wild boars and hunting dogs from Italy and France. Conclusions The finding of this disease in non-natural hosts in Sicilian multi-host epidemiological contexts suggests that the risk of inter-species transmission is concrete and that attention should be paid to developing disease control programs in these territories. The data obtained from genome sequencing of the two SuHV-1 isolates contribute to the enrichment of the GenBank with unknown sequences and the phylogenetic analysis implementation. Supplementary Information The online version contains supplementary material available at 10.1186/s12917-022-03138-2.
Collapse
Affiliation(s)
- Flavia Pruiti Ciarello
- Istituto Zooprofilattico Sperimentale della Sicilia "A. Mirri", Via Gino Marinuzzi, 3, 90129, Palermo, Italy
| | - Ana Moreno
- National Reference Center for Aujeszky's Disease, Istituto Zooprofilattico Sperimentale Della Lombardia E Dell'Emilia-Romagna " Bruno Ubertini", Via Bianchi, 9 - 25124, Brescia, Italy
| | - Nicola Miragliotta
- Istituto Zooprofilattico Sperimentale della Sicilia "A. Mirri", Via Gino Marinuzzi, 3, 90129, Palermo, Italy
| | - Aliberti Antonino
- Istituto Zooprofilattico Sperimentale della Sicilia "A. Mirri", Via Gino Marinuzzi, 3, 90129, Palermo, Italy
| | - Michele Fiasconaro
- Istituto Zooprofilattico Sperimentale della Sicilia "A. Mirri", Via Gino Marinuzzi, 3, 90129, Palermo, Italy
| | - Giuseppa Purpari
- Istituto Zooprofilattico Sperimentale della Sicilia "A. Mirri", Via Gino Marinuzzi, 3, 90129, Palermo, Italy
| | - Benedetta Amato
- Istituto Zooprofilattico Sperimentale della Sicilia "A. Mirri", Via Gino Marinuzzi, 3, 90129, Palermo, Italy
| | - Dorotea Ippolito
- Istituto Zooprofilattico Sperimentale della Sicilia "A. Mirri", Via Gino Marinuzzi, 3, 90129, Palermo, Italy.
| | - Vincenzo Di Marco Lo Presti
- Istituto Zooprofilattico Sperimentale della Sicilia "A. Mirri", Via Gino Marinuzzi, 3, 90129, Palermo, Italy
| |
Collapse
|
12
|
Abstract
Introduction The pseudorabies virus (PRV) gene encoding thymidine kinase (tk) is an important virulence-associated factor. Attenuation of PRV in susceptible animals is a frequent result of tk deletion. The aim of the study was to assess the pathogenicity of tk-deleted PRV in rats. Material and Methods Sprague Dawley rats were infected with the tk-deleted PRV strain SuHV-1 ΔTK:247via intranasal or intramuscular inoculation. PRV loads in ten tissues from dead and euthanised rats were determined using real-time PCR. Results Infection with SuHV-1 ΔTK:247 could cause death in rats. The 50% lethal dose (LD50) of SuHV-1 ΔTK:247 via intranasal inoculation was 103.16 TCID50 in rats. Intramuscular inoculation required a higher dose of SuHV-1 ΔTK:247 (105.0 TCID50). A high SuHV-1 ΔTK:247 titre was observed in the trigeminal ganglia or spinal cord of dead rats. Conclusion The results of this study show that rats are highly susceptible to PRV infection, and tk deletion did not completely diminish the pathogenicity of PRV in rats.
Collapse
|
13
|
Retrieving Historical Cases of Aujeszky's Disease in Sicily (Italy): Report of a Natural Outbreak Affecting Sheep, Goats, Dogs, Cats and Foxes and Considerations on Critical Issues and Perspectives in Light of the Recent EU Regulation 429/2016. Pathogens 2021; 10:pathogens10101301. [PMID: 34684250 PMCID: PMC8540801 DOI: 10.3390/pathogens10101301] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/02/2021] [Revised: 10/04/2021] [Accepted: 10/05/2021] [Indexed: 01/06/2023] Open
Abstract
Aujeszky’s disease is caused by Suid alphaherpesvirus 1, and its main reservoir host is the pig. However, other species are also susceptible. Infection with this virus causes a severe neurological clinical picture named Aujeszky’s disease, usually accompanied by itching and death a few days after the onset of symptoms. This study reports a multi-species outbreak of Aujeszky’s disease that occurred in Sicily, which led to the death of 2 goats, 15 sheep, 2 dogs, 2 cats and 2 foxes. The diagnosis was made by culture, indirect immunofluorescence on brain samples and confirmed by biological test on rabbits. This study reports the first cases of Aujeszky’s disease in Italy in cats, goat and sheep. The finding of Aujeszky’s disease in several species in Sicily suggests a potential epizootic risk. In such areas where a multi-host system is recognised, an analysis of the risk factors should be carried out in order to develop targeted strategies for the control and eradication of the disease. The critical issues that hinder the control of Aujeszky’s disease in the studied territory and perspectives for eradication in the light of EU regulation 429/2016 are also discussed.
Collapse
|
14
|
Ridgway M. Hunting Dogs. Vet Clin North Am Small Anim Pract 2021; 51:877-890. [PMID: 34059261 DOI: 10.1016/j.cvsm.2021.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 10/21/2022]
Abstract
Herding and hunting dogs are intense, high-drive dogs that work, and often live, outdoors and in constant or repeated close contact with domestic and wild animals. These dogs are at increased risk for injury and exposure to infectious diseases, toxic substances, and environmental threats. The common practice of feeding or allowing access to raw meat from farm or game animals enhances disease transmission risk. These dogs can be affected by infectious diseases and injurious agents that are rarely encountered in other groups of dogs. In addition, their extreme work ethic may lead to delays in diagnosis.
Collapse
Affiliation(s)
- Marcella Ridgway
- University of Illinois College of Veterinary Medicine, 1008 West Hazelwood Drive, Urbana, IL 61802, USA.
| |
Collapse
|
15
|
Kaneko C, Kaneko Y, Sudaryatma PE, Mekata H, Kirino Y, Yamaguchi R, Okabayashi T. Pseudorabies virus infection in hunting dogs in Oita, Japan: Report from a prefecture free from Aujeszky's disease in domestic pigs. J Vet Med Sci 2021; 83:680-684. [PMID: 33583864 PMCID: PMC8111351 DOI: 10.1292/jvms.20-0450] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/05/2023] Open
Abstract
We isolated two pseudorabies virus (PRV) isolates (designated OT-1 and OT-2) from two hunting dogs exhibiting neurological manifestations after eating the flesh of wild boar hunted in Oita prefecture, Kyushu Island, Japan. The isolates corresponded to a previously reported PRV (MY-1 strain) isolated from a hunting dog in neighboring Miyazaki prefecture, and it clustered into genotype II based on the glycoprotein C sequence. Our results suggest that this common PRV strain may have been maintained in wild boars on Kyushu Island even though domestic pigs in this area have attained an Aujeszky's disease-free status.
Collapse
Affiliation(s)
- Chiho Kaneko
- Centre for Animal Disease Control, University of Miyazaki, 1-1 Gakuen Kibanadai-nishi, Miyazaki 889-2192, Japan
| | - Yasuyuki Kaneko
- Department of Veterinary Science, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuen Kibanadai-nishi, Miyazaki 889-2192, Japan
| | - Putu Eka Sudaryatma
- Graduate School of Medicine and Veterinary Medicine, University of Miyazaki, 5200 Kiyotakecho Kihara, Miyazaki 889-1692, Japan
| | - Hirohisa Mekata
- Organization for Promotion of Tenure Track, University of Miyazaki, 1-1 Gakuen Kibanadai-nishi, Miyazaki 889-2192, Japan
| | - Yumi Kirino
- Centre for Animal Disease Control, University of Miyazaki, 1-1 Gakuen Kibanadai-nishi, Miyazaki 889-2192, Japan.,Department of Veterinary Science, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuen Kibanadai-nishi, Miyazaki 889-2192, Japan
| | - Ryoji Yamaguchi
- Department of Veterinary Science, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuen Kibanadai-nishi, Miyazaki 889-2192, Japan
| | - Tamaki Okabayashi
- Centre for Animal Disease Control, University of Miyazaki, 1-1 Gakuen Kibanadai-nishi, Miyazaki 889-2192, Japan.,Department of Veterinary Science, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuen Kibanadai-nishi, Miyazaki 889-2192, Japan
| |
Collapse
|
16
|
Huang Y, Li Z, Song C, Wu Z, Yang H. Resistance to pseudorabies virus by knockout of nectin1/2 in pig cells. Arch Virol 2020; 165:2837-2846. [PMID: 33025197 DOI: 10.1007/s00705-020-04833-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/27/2019] [Accepted: 09/01/2020] [Indexed: 10/23/2022]
Abstract
Pseudorabies virus (PRV) is a pig pathogen that causes substantial economic losses to the pig industry. Infection of host cells by PRV is mediated by the membrane proteins nectin1 and nectin2, which are presumed to be receptors for PRV infection. Here, we generated nectin1/2 knockout (KO) cells with the aim of establishing a PRV-resistant cell model. Nectin1 and 2 were ablated in PK15 cells by CRISPR/Cas9-mediated gene targeting. PRV infection in either nectin1 or nectin2 KO cells showed a significant reduction in viral growth compared with wild-type (WT) cells. We further simultaneously deleted nectin1 and nectin2 in PK15 cells and found that double KO cells showed no further increase in resistance to PRV compared with single gene-KO cells, despite being more resistant than WT. By investigating the cell entry steps of PRV infection, we found that nectin1 or/and nectin2 KO did not greatly affect virus attachment or internalization to cells but blocked cell-to-cell spread. Our results demonstrate that KO of either nectin1 or nectin2 confers PRV resistance to PK15 cells. This strategy could be applied to establish PRV-resistant pigs with nectin1/2 modifications to benefit the pig industry.
Collapse
Affiliation(s)
- Yaoqiang Huang
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Zicong Li
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Changxu Song
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Zhenfang Wu
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China.
| | - Huaqiang Yang
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China.
| |
Collapse
|
17
|
Comparative Pathology of Pseudorabies in Different Naturally and Experimentally Infected Species-A Review. Pathogens 2020; 9:pathogens9080633. [PMID: 32759704 PMCID: PMC7460128 DOI: 10.3390/pathogens9080633] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/26/2020] [Revised: 07/22/2020] [Accepted: 07/31/2020] [Indexed: 12/13/2022] Open
Abstract
The pseudorabies virus (PRV) is an alphaherpesvirus and the causative agent of Aujeszky’s disease (AD). PRV infects a wide range of animal species including swine as the natural host as well as ruminants, carnivores, rodents and lagomorphs. In these species, except for the pig, PRV infection causes acute, severe disease, characterized by insatiable itching, and is always lethal. Horses, chickens and non-human primates have been shown to be largely resistant to PRV infection, while disease in humans is still controversial. PRV is a pantropic virus, which preferably invades neural tissue, but also infects epithelia of various organs, whereupon multisystemic lesions may result. Although AD is mainly associated with severe pruritus, also known as “mad itch”, there are notable differences regarding infection route, clinical signs, viral distribution and lesion patterns in different animal species. In this comprehensive review, we will present clinico-pathologic findings from different species, which have been either shown to be susceptible to PRV infection or have been tested experimentally.
Collapse
|
18
|
Liu Q, Wang X, Xie C, Ding S, Yang H, Guo S, Li J, Qin L, Ban F, Wang D, Wang C, Feng L, Ma H, Wu B, Zhang L, Dong C, Xing L, Zhang J, Chen H, Yan R, Wang X, Li W. A novel human acute encephalitis caused by pseudorabies virus variant strain. Clin Infect Dis 2020; 73:e3690-e3700. [PMID: 32667972 DOI: 10.1093/cid/ciaa987] [Citation(s) in RCA: 169] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/24/2020] [Accepted: 07/10/2020] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Pseudorabies virus (PRV) is a common pathogen in multiple animal species particularly in pigs. However, PRV infection in humans is rare and to the best of knowledge, PRV has never been isolated from human cases before. METHODS Four acute encephalitis cases in humans were confirmed as PRV infection based on clinical symptoms, laboratory diagnosis, and metagenomic next-generation sequencing (mNGS). Cerebrospinal fluid (CSF) samples were collected and applied for virus isolation. Etiological and genetic characteristics of this PRV human isolate were further determined. RESULTS The patients manifested respiratory dysfunction and acute neurological symptoms. The mNGS revealed PRV specific nucleotide sequences in patients' CSF samples (7-6198 reads and 0.2446%-80.58% coverage). The PRV envelope glycoprotein B antibody, glycoprotein E antibody, and neutralizing antibody were positively detected. For the first time, a PRV strain, designated hSD-1/2019, was isolated and identified from one CSF sample, and transmission electron microscopy revealed hSD-1/2019 had typical morphology similar to swine PRV. Phylogenetic analysis illustrated that hSD-1/2019 was genetically closest to those PRV variant strains currently circulating in pigs in China, and this strain showed similar etiological characteristics to Chinese PRV variant strains, while different from Chinese classical strain. Moreover, hSD-1/2019 showed high pathogenicity and induced acute neurological symptoms in pigs. CONCLUSIONS A PRV strain was isolated from an acute human encephalitis case. This isolate showed close phylogenetic relationships and similar etiological characteristics to Chinese PRV variant strains, implying the great risk of PRV transmission from pigs to humans.
Collapse
Affiliation(s)
- Qingyun Liu
- State Key Laboratory of Agricultural Microbiology, The Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Xiaojuan Wang
- Department of Neurology, People's Hospital of Zhengzhou University, Henan People's Hospital, Zhengzhou, Henan, China
| | - Caihua Xie
- Henan Centre for Animal Diseases Control and Prevention, Zhengzhou, Henan, China; College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, China; College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
| | - Shifang Ding
- Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Hongna Yang
- Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Shibang Guo
- State Key Laboratory of Agricultural Microbiology, The Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Jixuan Li
- State Key Laboratory of Agricultural Microbiology, The Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Lingzhi Qin
- Department of Neurology, People's Hospital of Zhengzhou University, Henan People's Hospital, Zhengzhou, Henan, China
| | - Fuguo Ban
- Henan Centre for Animal Diseases Control and Prevention, Zhengzhou, Henan, China; College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, China; College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
| | - Dongfang Wang
- Henan Centre for Animal Diseases Control and Prevention, Zhengzhou, Henan, China; College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, China; College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
| | - Cui Wang
- Henan Centre for Animal Diseases Control and Prevention, Zhengzhou, Henan, China; College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, China; College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
| | - Lingxiao Feng
- People's Hospital of Zhengzhou University, Henan People's Hospital, Zhengzhou, Henan, China
| | - Haichang Ma
- Department of Neurology, People's Hospital of Zhengzhou University, Henan People's Hospital, Zhengzhou, Henan, China
| | - Bin Wu
- State Key Laboratory of Agricultural Microbiology, The Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Liping Zhang
- Henan Centre for Animal Diseases Control and Prevention, Zhengzhou, Henan, China; College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, China; College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
| | - Changxian Dong
- People's Hospital of Zhengzhou University, Henan People's Hospital, Zhengzhou, Henan, China
| | - Li Xing
- Binhai Genomics Institute, Tianjin Translational Genomics Center, BGI-Tianjin, BGI-Shenzhen, Tianjin, China
| | - Jiewen Zhang
- Department of Neurology, People's Hospital of Zhengzhou University, Henan People's Hospital, Zhengzhou, Henan, China
| | - Huanchun Chen
- State Key Laboratory of Agricultural Microbiology, The Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Ruoqian Yan
- Henan Centre for Animal Diseases Control and Prevention, Zhengzhou, Henan, China; College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, China; College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
| | - Xiangru Wang
- State Key Laboratory of Agricultural Microbiology, The Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Wei Li
- Department of Neurology, People's Hospital of Zhengzhou University, Henan People's Hospital, Zhengzhou, Henan, China
| |
Collapse
|
19
|
Kolb AW, Brandt CR. Genomic nucleotide-based distance analysis for delimiting old world monkey derived herpes simplex virus species. BMC Genomics 2020; 21:436. [PMID: 32590937 PMCID: PMC7318535 DOI: 10.1186/s12864-020-06847-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/19/2019] [Accepted: 06/17/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Herpes simplex viruses form a genus within the alphaherpesvirus subfamily, with three identified viral species isolated from Old World monkeys (OWM); Macacine alphaherpesvirus 1 (McHV-1; herpes B), Cercopithecine alphaherpesvirus 2 (SA8), and Papiine alphaherpesvirus 2 (PaHV-2; herpes papio). Herpes B is endemic to macaques, while PaHV-2 and SA8 appear endemic to baboons. All three viruses are genetically and antigenically similar, with SA8 and PaHV-2 thought to be avirulent in humans, while herpes B is a biosafety level 4 pathogen. Recently, next-generation sequencing (NGS) has resulted in an increased number of published OWM herpes simplex genomes, allowing an encompassing phylogenetic analysis. RESULTS In this study, phylogenetic networks, in conjunction with a genome-based genetic distance cutoff method were used to examine 27 OWM monkey herpes simplex isolates. Genome-based genetic distances were calculated, resulting in distances between lion and pig-tailed simplex viruses themselves, and versus herpes B core strains that were higher than those between PaHV-2 and SA8 (approximately 14 and 10% respectively). The species distance cutoff was determined to be 8.94%, with the method recovering separate species status for PaHV-2 and SA8 and showed that lion and pig-tailed simplex viruses (vs core herpes B strains) were well over the distance species cutoff. CONCLUSIONS We propose designating lion and pig-tailed simplex viruses as separate, individual viral species, and that this may be the first identification of viral cryptic species.
Collapse
Affiliation(s)
- Aaron W Kolb
- Department of Ophthalmology and Visual Sciences, School of Medicine and Public Health, University of Wisconsin-Madison, 550 Bardeen Laboratories, 1300 University Ave, Madison, WI, 53706, USA.
| | - Curtis R Brandt
- Department of Ophthalmology and Visual Sciences, School of Medicine and Public Health, University of Wisconsin-Madison, 550 Bardeen Laboratories, 1300 University Ave, Madison, WI, 53706, USA.,McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI, USA.,Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
20
|
Eco-Epidemiological Evidence of the Transmission of Avian and Human Influenza A Viruses in Wild Pigs in Campeche, Mexico. Viruses 2020; 12:v12050528. [PMID: 32403268 PMCID: PMC7291264 DOI: 10.3390/v12050528] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/23/2020] [Revised: 05/07/2020] [Accepted: 05/08/2020] [Indexed: 02/06/2023] Open
Abstract
Influenza, a zoonosis caused by various influenza A virus subtypes, affects a wide range of species, including humans. Pig cells express both sialyl-α-2,3-Gal and sialyl-α-2,6-Gal receptors, which make them susceptible to infection by avian and human viruses, respectively. To date, it is not known whether wild pigs in Mexico are affected by influenza virus subtypes, nor whether this would make them a potential risk of influenza transmission to humans. In this work, 61 hogs from two municipalities in Campeche, Mexico, were sampled. Hemagglutination inhibition assays were performed in 61 serum samples, and positive results were found for human H1N1 (11.47%), swine H1N1 (8.19%), and avian H5N2 (1.63%) virus variants. qRT-PCR assays were performed on the nasal swab, tracheal, and lung samples, and 19.67% of all hogs were positive to these assays. An avian H5N2 virus, first reported in 1994, was identified by sequencing. Our results demonstrate that wild pigs are participating in the exposure, transmission, maintenance, and possible diversification of influenza viruses in fragmented habitats, highlighting the synanthropic behavior of this species, which has been poorly studied in Mexico.
Collapse
|
21
|
The Neuropathic Itch Caused by Pseudorabies Virus. Pathogens 2020; 9:pathogens9040254. [PMID: 32244386 PMCID: PMC7238046 DOI: 10.3390/pathogens9040254] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/23/2020] [Revised: 03/24/2020] [Accepted: 03/25/2020] [Indexed: 12/13/2022] Open
Abstract
Pseudorabies virus (PRV) is an alphaherpesvirus related to varicella-zoster virus (VZV) and herpes simplex virus type 1 (HSV1). PRV is the causative agent of Aujeskzy’s disease in swine. PRV infects mucosal epithelium and the peripheral nervous system (PNS) of its host where it can establish a quiescent, latent infection. While the natural host of PRV is the swine, a broad spectrum of mammals, including rodents, cats, dogs, and cattle can be infected. Since the nineteenth century, PRV infection is known to cause a severe acute neuropathy, the so called “mad itch” in non-natural hosts, but surprisingly not in swine. In the past, most scientific efforts have been directed to eradicating PRV from pig farms by the use of effective marker vaccines, but little attention has been given to the processes leading to the mad itch. The main objective of this review is to provide state-of-the-art information on the mechanisms governing PRV-induced neuropathic itch in non-natural hosts. We highlight similarities and key differences in the pathogenesis of PRV infections between non-natural hosts and pigs that might explain their distinctive clinical outcomes. Current knowledge on the neurobiology and possible explanations for the unstoppable itch experienced by PRV-infected animals is also reviewed. We summarize recent findings concerning PRV-induced neuroinflammatory responses in mice and address the relevance of this animal model to study other alphaherpesvirus-induced neuropathies, such as those observed for VZV infection.
Collapse
|
22
|
Pepin KM, Pedersen K, Wan XF, Cunningham FL, Webb CT, Wilber MQ. Individual-Level Antibody Dynamics Reveal Potential Drivers of Influenza A Seasonality in Wild Pig Populations. Integr Comp Biol 2020; 59:1231-1242. [PMID: 31251341 DOI: 10.1093/icb/icz118] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/27/2022] Open
Abstract
Swine are important in the ecology of influenza A virus (IAV) globally. Understanding the ecological role of wild pigs in IAV ecology has been limited because surveillance in wild pigs is often for antibodies (serosurveillance) rather than IAVs, as in humans and domestic swine. As IAV antibodies can persist long after an infection, serosurveillance data are not necessarily indicative of current infection risk. However, antibody responses to IAV infections cause a predictable antibody response, thus time of infection can be inferred from antibody levels in serological samples, enabling identification of risk factors of infection at estimated times of infection. Recent work demonstrates that these quantitative antibody methods (QAMs) can accurately recover infection dates, even when individual-level variation in antibody curves is moderately high. Also, the methodology can be implemented in a survival analysis (SA) framework to reduce bias from opportunistic sampling. Here we integrated QAMs and SA and applied this novel QAM-SA framework to understand the dynamics of IAV infection risk in wild pigs seasonally and spatially, and identify risk factors. We used national-scale IAV serosurveillance data from 15 US states. We found that infection risk was highest during January-March (54% of 61 estimated peaks), with 24% of estimated peaks occurring from May to July, and some low-level of infection risk occurring year-round. Time-varying IAV infection risk in wild pigs was positively correlated with humidity and IAV infection trends in domestic swine and humans, and did not show wave-like spatial spread of infection among states, nor more similar levels of infection risk among states with more similar meteorological conditions. Effects of host sex on IAV infection risk in wild pigs were generally not significant. Because most of the variation in infection risk was explained by state-level factors or infection risk at long-distances, our results suggested that predicting IAV infection risk in wild pigs is complicated by local ecological factors and potentially long-distance translocation of infection. In addition to revealing factors of IAV infection risk in wild pigs, our framework is broadly applicable for quantifying risk factors of disease transmission using opportunistic serosurveillance sampling, a common methodology in wildlife disease surveillance. Future research on the factors that determine individual-level antibody kinetics will facilitate the design of serosurveillance systems that can extract more accurate estimates of time-varying disease risk from quantitative antibody data.
Collapse
Affiliation(s)
- Kim M Pepin
- National Wildlife Research Center, USDA-APHIS, Wildlife Services, Fort Collins, CO 80521-2154, USA
| | - Kerri Pedersen
- USDA-APHIS, Wildlife Services, 920 Main Campus Drive, Suite 200, Raleigh, NC 27606, USA
| | - Xiu-Feng Wan
- Missouri University Center for Research on Influenza Systems Biology (CRISB), University of Missouri, Columbia, MO 65211, USA.,Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO, USA.,Department of Electrical Engineering & Computer Science, College of Engineering, University of Missouri, Columbia, MO, USA.,Bond Life Sciences Center, University of Missouri, Columbia, MO, USA.,MU Informatics Institute, University of Missouri, Columbia, MO, USA.,Department of Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA
| | - Fred L Cunningham
- National Wildlife Research Center, USDA-APHIS, Wildlife Services, Mississippi Field Station, MS 39762, USA
| | - Colleen T Webb
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Mark Q Wilber
- National Wildlife Research Center, USDA-APHIS, Wildlife Services, Fort Collins, CO 80521-2154, USA.,Department of Biology, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|