1
|
Lebdah MA, Eid AAM, ElBakrey RM, El-Gohary AE, Mousa MR, Gouda HF, Gad AF, Helal SS, Seadawy MG. Novel goose parvovirus in naturally infected ducks suffering from locomotor disorders: Molecular Detection, Histopathological examination, Immunohistochemical signals, and Full genome sequencing. Avian Pathol 2024:1-35. [PMID: 39418082 DOI: 10.1080/03079457.2024.2419038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
AbstractIn this study, we investigated the pathological effect of novel goose parvovirus (NGPV) infection on the skeletal muscle, brain, and intestine of naturally affected ducks suffering from locomotor dysfunction as a new approach for deeper understanding of such clinical form. For this purpose, a total of 97 diseased ducks, representing 24 flocks of different duck breeds (14-75 days old), were clinically examined. 72 tissue pools of intestine, brain, and skeletal muscle samples were submitted for molecular identification. Typical clinical signs among the examined ducks suggested the parvovirus infection. Regarding postmortem examination, all examined ducks showed muscle emaciation (100%) either accompanied by congestion (34%) or paleness (66%). Slight congestion, either in the brain (82.5%) or intestine (75.25%), was predominantly detected. Based on molecular identification, the intestine had the highest percentage of positive detection (91.7%), followed by the skeletal muscle (70.8%), and the brain (20.8%). The main histopathological alterations were myofiber atrophy and degeneration, marked enteritis accompanied by lymphocytic infiltration in the lamina propria and submucosa, while the affected brains showed vasculitis, diffuse gliosis, and Purkinje cell degeneration in the cerebellum. Next generation sequencing further confirmed the presence of a variant strain of goose parvovirus (vGPV) that is globally known as NGPV and closely related to Chinese NGPV isolates. Using immunohistochemistry, the NGPV antigen was positively detected in the muscle fibres, enterocytes, and Purkinje cells in the cerebellum. These findings provided proof of the involvement of virus replication in the locomotor disorders linked to NGPV infection in ducks.
Collapse
Affiliation(s)
- Mohamed A Lebdah
- Department of Avian and Rabbit Medicine, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt
| | - Amal A M Eid
- Department of Avian and Rabbit Medicine, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt
| | - Reham M ElBakrey
- Department of Avian and Rabbit Medicine, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt
| | - Abd Elgalil El-Gohary
- Department of Poultry and Rabbit Diseases, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh 33511, Egypt
| | - Mohamed R Mousa
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Hagar F Gouda
- Department of Animal Wealth Development, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt
| | - Ahmed F Gad
- Biological Prevention Department, Chemical Warfare, Ministry of Defense11775, Egypt
| | - Sarah S Helal
- Department of Avian and Rabbit Medicine, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt
| | - Mohamed G Seadawy
- Biological Prevention Department, Chemical Warfare, Ministry of Defense11775, Egypt
| |
Collapse
|
2
|
Zhang Q, Sun Y, Sun Y, Zhang H, Yang R. Expression of VP2 protein of novel goose parvovirus in baculovirus and evaluation of its immune effect. Microb Pathog 2024; 195:106751. [PMID: 38880314 DOI: 10.1016/j.micpath.2024.106751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 05/02/2024] [Accepted: 06/13/2024] [Indexed: 06/18/2024]
Abstract
Short-beak and dwarfism syndrome (SBDS) is a new disease caused by a genetic variant of goose parvovirus in ducks that results in enormous economic losses for the waterfowl industry. Currently, there is no commercial vaccine for this disease, so it is urgent to develop a safer and more effective vaccine to prevent this disease. In this study, we optimized the production conditions to enhance the expression of the recombinant VP2 protein and identified the optimal conditions for subsequent large-scale expression. Furthermore, the protein underwent purification via nickel column affinity chromatography, followed by concentration using ultrafiltration tube. Subsequently, it was observed by transmission electron microscopy (TEM) that the NGPV recombinant VP2 protein assembled into virus-like particles (VLPs) resembling those of the original virus. Finally, the ISA 78-VG adjuvant was mixed with the NGPV-VP2 VLPs to be prepared as a subunit vaccine. Furthermore, both agar gel precipitation test (AGP) and serum neutralization test demonstrated that NGPV VLP subunit vaccine could induce the increase of NGPV antibody in breeding ducks. The ducklings were also challenged with the NGPV, and the results showed that the maternal antibody level could provide sufficient protection to the ducklings. These results indicated that the use of the NGPV VLP subunit vaccine based on the baculovirus expression system could facilitate the large-scale development of a reliable vaccine in the future.
Collapse
Affiliation(s)
- Qing Zhang
- Qingdao agriculture university, Qingdao, 266109, China
| | | | - Yudian Sun
- Qingdao agriculture university, Qingdao, 266109, China
| | | | - Ruimei Yang
- Qingdao agriculture university, Qingdao, 266109, China.
| |
Collapse
|
3
|
Shang Y, Ma Y, Tang S, Chen X, Feng H, Li L, Wang H, Zeng Z, Yao L, Zhang T, Zeng C, Luo Q, Wen G. Virus-Like Particles Based on the Novel Goose Parvovirus (NGPV) VP2 Protein Protect Ducks against NGPV Challenge. Vaccines (Basel) 2023; 11:1768. [PMID: 38140173 PMCID: PMC10748189 DOI: 10.3390/vaccines11121768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/24/2023] [Accepted: 11/24/2023] [Indexed: 12/24/2023] Open
Abstract
Novel goose parvovirus (NGPV), a genetic variant of goose parvovirus, has been spreading throughout China since 2015 and mainly infects ducklings with the symptoms of growth retardation, beak atrophy, and protruding tongue, leading to huge economic losses every year. A safe and effective vaccine is urgently needed to control NGPV infection. In this study, virus-like particles (VLPs) of NPGV were assembled and evaluated for their immunogenicity. The VP2 protein of NGPV was expressed in Spodoptera frugiperda insect cells using baculovirus as vector. The VP2 protein was efficiently expressed in the nucleus of insect cells, and the particles with a circular or hexagonal shape and a diameter of approximately 30 nm, similar to the NGPV virion, were observed using transmission electron microscopy (TEM). The purified particles were confirmed to be composed of VP2 using western blot and TEM, indicating that the VLPs of NGPV were successfully assembled. Furthermore, the immunogenicity of the VLPs of NGPV was evaluated in Cherry Valley ducks. The level of NGPV serum antibodies increased significantly at 1-4 weeks post-immunization. No clinical symptoms or deaths of ducks occurred in all groups after being challenged with NGPV at 4 weeks post-immunization. There was no viral shedding in the immunized group. However, viral shedding was detected at 3-7 days post-challenge in the non-immunized group. Moreover, VLPs can protect ducks from histopathological lesions caused by NGPV and significantly reduce viral load in tissue at 5 days post-challenge. Based on these findings, NGPV VLPs are promising candidates for vaccines against NGPV.
Collapse
Affiliation(s)
- Yu Shang
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis, Ministry of Agriculture and Rural Affairs, Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (Y.S.); (Y.M.); (Z.Z.); (T.Z.)
| | - Yao Ma
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis, Ministry of Agriculture and Rural Affairs, Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (Y.S.); (Y.M.); (Z.Z.); (T.Z.)
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China;
| | - Sheng Tang
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis, Ministry of Agriculture and Rural Affairs, Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (Y.S.); (Y.M.); (Z.Z.); (T.Z.)
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China;
| | - Xing Chen
- Institute of Animal Husbandry and Veterinary, Wuhan Academy of Agricultural Sciences, Wuhan 430071, China;
| | - Helong Feng
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis, Ministry of Agriculture and Rural Affairs, Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (Y.S.); (Y.M.); (Z.Z.); (T.Z.)
| | - Li Li
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis, Ministry of Agriculture and Rural Affairs, Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (Y.S.); (Y.M.); (Z.Z.); (T.Z.)
| | - Hongcai Wang
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis, Ministry of Agriculture and Rural Affairs, Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (Y.S.); (Y.M.); (Z.Z.); (T.Z.)
| | - Zhe Zeng
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis, Ministry of Agriculture and Rural Affairs, Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (Y.S.); (Y.M.); (Z.Z.); (T.Z.)
| | - Lun Yao
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis, Ministry of Agriculture and Rural Affairs, Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (Y.S.); (Y.M.); (Z.Z.); (T.Z.)
| | - Tengfei Zhang
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis, Ministry of Agriculture and Rural Affairs, Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (Y.S.); (Y.M.); (Z.Z.); (T.Z.)
| | - Chi Zeng
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China;
| | - Qingping Luo
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis, Ministry of Agriculture and Rural Affairs, Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (Y.S.); (Y.M.); (Z.Z.); (T.Z.)
- Hubei Hongshan Laboratory, the People’s Government of Hubei Province, Wuhan 430070, China
| | - Guoyuan Wen
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis, Ministry of Agriculture and Rural Affairs, Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (Y.S.); (Y.M.); (Z.Z.); (T.Z.)
| |
Collapse
|
4
|
Advances in research on genetic relationships of waterfowl parvoviruses. J Vet Res 2021; 65:391-399. [PMID: 35111991 PMCID: PMC8775729 DOI: 10.2478/jvetres-2021-0063] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 11/18/2021] [Indexed: 01/23/2023] Open
Abstract
Abstract
Derzsy’s disease and Muscovy duck parvovirus disease have become common diseases in waterfowl culture in the world and their potential to cause harm has risen. The causative agents are goose parvovirus (GPV) and Muscovy duck parvovirus (MDPV), which can provoke similar clinical symptoms and high mortality and morbidity rates. In recent years, duck short beak and dwarfism syndrome has been prevalent in the Cherry Valley duck population in eastern China. It is characterised by the physical signs for which it is named. Although the mortality rate is low, it causes stunting and weight loss, which have caused serious economic losses to the waterfowl industry. The virus that causes this disease was named novel goose parvovirus (NGPV). This article summarises the latest research on the genetic relationships of the three parvoviruses, and reviews the aetiology, epidemiology, and necropsy characteristics in infected ducks, in order to facilitate further study.
Collapse
|
5
|
The First Nonmammalian Pegivirus Demonstrates Efficient In Vitro Replication and High Lymphotropism. J Virol 2020; 94:JVI.01150-20. [PMID: 32759314 DOI: 10.1128/jvi.01150-20] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 07/28/2020] [Indexed: 11/20/2022] Open
Abstract
Members of the Pegivirus genus, family Flaviviridae, widely infect humans and other mammals, including nonhuman primates, bats, horses, pigs, and rodents, but are not associated with disease. Here, we report a new, genetically distinct pegivirus in goose (Anser cygnoides), the first identified in a nonmammalian host species. Goose pegivirus (GPgV) can be propagated in goslings, embryonated goose eggs, and primary goose embryo fibroblasts, and is thus the first pegivirus that can be efficiently cultured in vitro Experimental infection of GPgV in goslings via intravenous injection revealed robust replication and high lymphotropism. Analysis of the tissue tropism of GPgV revealed that the spleen and thymus were the organs bearing the highest viral loads. Importantly, GPgV could promote clinical manifestations of goose parvovirus infection, including reduced weight gain and 7% mortality. This finding contrasts with the lack of pathogenicity that is characteristic of previously reported pegiviruses.IMPORTANCE Members of the Pegivirus genus, family Flaviviridae, widely infect humans and other mammals, but are described as causing persistent infection and lacking pathogenicity. The efficiency of in vitro replication systems for pegivirus is poor, thus limiting investigation into viral replication steps. Because of that, the pathogenesis, cellular tropism, route of transmission, biology, and epidemiology of pegiviruses remain largely uncovered. Here, we report a phylogenetically distinct goose pegivirus (GPgV) that should be classified as a new species. GPgV proliferated in cell culture in a species- and cell-type-specific manner. Animal experiments show GPgV lymphotropism and promote goose parvovirus clinical manifestations. This study provides the first cell culture model for pegivirus, opening new possibilities for studies of pegivirus molecular biology. More importantly, our findings stand in contrast to the lack of identified pathogenicity of previously reported pegiviruses, which sheds lights on the pathobiology of pegivirus.
Collapse
|
6
|
Chang WS, Li CX, Hall J, Eden JS, Hyndman TH, Holmes EC, Rose K. Meta-Transcriptomic Discovery of a Divergent Circovirus and a Chaphamaparvovirus in Captive Reptiles with Proliferative Respiratory Syndrome. Viruses 2020; 12:v12101073. [PMID: 32992674 PMCID: PMC7600432 DOI: 10.3390/v12101073] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/19/2020] [Accepted: 09/22/2020] [Indexed: 12/11/2022] Open
Abstract
Viral pathogens are being increasingly described in association with mass morbidity and mortality events in reptiles. However, our knowledge of reptile viruses remains limited. Herein, we describe the meta-transcriptomic investigation of a mass morbidity and mortality event in a colony of central bearded dragons (Pogona vitticeps) in 2014. Severe, extensive proliferation of the respiratory epithelium was consistently found in affected dragons. Similar proliferative lung lesions were identified in bearded dragons from the same colony in 2020 in association with increased intermittent mortality. Total RNA sequencing identified two divergent DNA viruses: a reptile-infecting circovirus, denoted bearded dragon circovirus (BDCV), and the first exogeneous reptilian chaphamaparvovirus—bearded dragon chaphamaparvovirus (BDchPV). Phylogenetic analysis revealed that BDCV was most closely related to bat-associated circoviruses, exhibiting 70% amino acid sequence identity in the Replicase (Rep) protein. In contrast, in the nonstructural (NS) protein, the newly discovered BDchPV showed approximately 31%–35% identity to parvoviruses obtained from tilapia fish and crocodiles in China. Subsequent specific PCR assays revealed BDCV and BDchPV in both diseased and apparently normal captive reptiles, although only BDCV was found in those animals with proliferative pulmonary lesions and respiratory disease. This study expands our understanding of viral diversity in captive reptiles.
Collapse
Affiliation(s)
- Wei-Shan Chang
- Marie Bashir Institute for Infectious Diseases and Biosecurity, School of Life and Environmental Sciences and School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia; (W.-S.C.); (C.-X.L.); (J.-S.E.)
| | - Ci-Xiu Li
- Marie Bashir Institute for Infectious Diseases and Biosecurity, School of Life and Environmental Sciences and School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia; (W.-S.C.); (C.-X.L.); (J.-S.E.)
| | - Jane Hall
- Australian Registry of Wildlife Health, Taronga Conservation Society Australia, Mosman, NSW 2088, Australia;
| | - John-Sebastian Eden
- Marie Bashir Institute for Infectious Diseases and Biosecurity, School of Life and Environmental Sciences and School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia; (W.-S.C.); (C.-X.L.); (J.-S.E.)
- Westmead Institute for Medical Research, Centre for Virus Research, Westmead, NSW 2145, Australia
| | - Timothy H. Hyndman
- School of Veterinary Medicine, Murdoch University, Murdoch, WA 6150, Australia;
| | - Edward C. Holmes
- Marie Bashir Institute for Infectious Diseases and Biosecurity, School of Life and Environmental Sciences and School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia; (W.-S.C.); (C.-X.L.); (J.-S.E.)
- Correspondence: (E.C.H.); (K.R.)
| | - Karrie Rose
- Australian Registry of Wildlife Health, Taronga Conservation Society Australia, Mosman, NSW 2088, Australia;
- Correspondence: (E.C.H.); (K.R.)
| |
Collapse
|