1
|
Huang S, Yang L, Wang L, Chen Y, Ding X, Yang F, Qiao S, Huang J. The Effects of Octapeptin Supplementation on Growth Performance, Serum Biochemistry, Serum Immunity, and Gut Microbiota in Weaned Piglets. Animals (Basel) 2024; 14:2546. [PMID: 39272331 PMCID: PMC11394056 DOI: 10.3390/ani14172546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/26/2024] [Accepted: 08/30/2024] [Indexed: 09/15/2024] Open
Abstract
With the prohibition of antibiotics in animal feed, the livestock industry faces significant challenges, including increased morbidity and mortality rates and reduced farming efficiency. Developing green, natural, and safe antibiotic alternatives has become a research hotspot. This study evaluated the effects of octapeptin as a feed additive on growth performance, diarrhea incidence, serum biochemistry, serum immune factors, and gut microbiota of weaned piglets. Seventy-two weaned piglets were randomly assigned to three groups based on body weight and sex, with each group receiving different dietary treatments: a negative control group (CON, basal diet), a positive control group (MC, basal diet + 5 mg/kg Microcin C7), and an octapeptin supplement group (OP, basal diet + 40 mg/kg octapeptin). After 28 days of feeding experimental diets, the results demonstrated that supplementing the diet of weaned piglets with octapeptin significantly improved the feed conversion ratio compared to the control group (p < 0.05) over the entire experimental period. Furthermore, a reduction in diarrhea incidence was observed during the late nursery period (14-28 d), resulting in an overall improvement in diarrhea compared to the other two groups (p < 0.01). Serum biochemical analysis results revealed a trend towards decreased alanine aminotransferase level in the octapeptin group, with no significant differences in other indicators, suggesting potential improvements in liver function without causing liver damage. In addition, compared to the control group, octapeptin enhanced mucosal immunity by decreasing TNF-α level (p < 0.05). Fecal microbiota analysis results showed a significant increase in beneficial bacteria such as Collinsella and Olsenella in the octapeptin group compared to the other two groups (p < 0.05), indicating a positive impact on gut health. These findings supported the potential of octapeptin as an alternative to antibiotic growth promoters in weaned piglets' diets.
Collapse
Affiliation(s)
- Sheng Huang
- Chongqing Academy of Animal Sciences, Chongqing 402460, China
- National Center of Technology Innovation for Pigs, Chongqing 402460, China
| | - Li Yang
- National Center of Technology Innovation for Pigs, Chongqing 402460, China
| | - Li Wang
- National Center of Technology Innovation for Pigs, Chongqing 402460, China
| | - Yu Chen
- National Center of Technology Innovation for Pigs, Chongqing 402460, China
| | - Xiuliang Ding
- Chongqing Academy of Animal Sciences, Chongqing 402460, China
- National Center of Technology Innovation for Pigs, Chongqing 402460, China
| | - Feiyun Yang
- Chongqing Academy of Animal Sciences, Chongqing 402460, China
- National Center of Technology Innovation for Pigs, Chongqing 402460, China
| | - Shiyan Qiao
- State Key Laboratory of Animal Nutrition and Feeding, Ministry of Agriculture and Rural Affairs Feed Industry Centre, China Agricultural University, Beijing 100193, China
| | - Jinxiu Huang
- Chongqing Academy of Animal Sciences, Chongqing 402460, China
- National Center of Technology Innovation for Pigs, Chongqing 402460, China
| |
Collapse
|
2
|
Castillo Zuniga J, Fresno Rueda AM, Samuel RS, St-Pierre B, Levesque CL. Impact of Lactobacillus- and Bifidobacterium-Based Direct-Fed Microbials on the Performance, Intestinal Morphology, and Fecal Bacterial Populations of Nursery Pigs. Microorganisms 2024; 12:1786. [PMID: 39338461 PMCID: PMC11433873 DOI: 10.3390/microorganisms12091786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 08/26/2024] [Accepted: 08/27/2024] [Indexed: 09/30/2024] Open
Abstract
Weaning is a critical stage in the swine production cycle, as young pigs need to adjust to sudden and dramatic changes in their diet and environment. Among the various organ systems affected, the gastrointestinal tract is one of the more severely impacted during this transition. Traditionally, challenges at weaning have been managed by prophylactic use of antibiotics, which not only provides protection against diarrhea and other gut dysfunction but also has growth-promoting effects. With banning or major restrictions on the use of antibiotics for this purpose, various alternative products have been developed as potential replacements, including direct-fed microbials (DFMs) such as probiotics and postbiotics. As their efficiency needs to be improved, a continued effort to gain a deeper understanding of their mechanism of action is necessary. In this context, this report presents a study on the impact of a Lactobacillus-based probiotic (LPr) and a Bifidobacterium-based postbiotic (BPo) when added to the diet during the nursery phase. For animal performance, an effect was observed in the early stages (Day 0 to Day 10), as pigs fed diets supplemented with either DFMs were found to have higher average daily feed intake (ADFI) compared to pigs fed the control diet (p < 0.05). Histological analysis of intestinal morphology on D10 revealed that the ileum of supplemented pigs had a higher villus height/crypt depth ratio (p < 0.05) compared to controls, indicating a benefit of the DFMs for gut health. In an effort to further explore potential mechanisms of action, the effects of the DFMs on gut microbial composition were investigated using fecal microbial communities as a non-invasive representative approach. At the bacterial family level, Lactobacillaceae were found in higher abundance in pigs fed either LPr (D10; p < 0.05) or BPo (D47; p < 0.05). At the Operational Taxonomic Unit (OTU) level, which can be used as a proxy to assess species composition, Ssd-00950 and Ssd-01187 were found in higher abundance in DFM-supplemented pigs on D47 (p < 0.05). Using nucleotide sequence identity, these OTUs were predicted to be putative strains of Congobacterium massiliense and Absicoccus porci, respectively. In contrast, OTU Ssd-00039, which was predicted to be a strain of Streptococcus alactolyticus, was in lower abundance in BPo-supplemented pigs on D47 (p < 0.05). Together, these results indicate that the DFMs tested in this study can impact various aspects of gut function.
Collapse
Affiliation(s)
- Juan Castillo Zuniga
- Animal Science Complex, Department of Animal Science, South Dakota State University, P.O. Box 2170, Brookings, SD 57007, USA
| | - Anlly M Fresno Rueda
- Animal Science Complex, Department of Animal Science, South Dakota State University, P.O. Box 2170, Brookings, SD 57007, USA
| | - Ryan S Samuel
- Animal Science Complex, Department of Animal Science, South Dakota State University, P.O. Box 2170, Brookings, SD 57007, USA
| | - Benoit St-Pierre
- Animal Science Complex, Department of Animal Science, South Dakota State University, P.O. Box 2170, Brookings, SD 57007, USA
| | - Crystal L Levesque
- Animal Science Complex, Department of Animal Science, South Dakota State University, P.O. Box 2170, Brookings, SD 57007, USA
| |
Collapse
|
3
|
Halfen J, Carpinelli NA, Lasso-Ramirez S, Michelotti TC, Fowler EC, St-Pierre B, Trevisi E, Osorio JS. Physiological Conditions Leading to Maternal Subclinical Ketosis in Holstein Dairy Cows Can Impair the Offspring's Postnatal Growth and Gut Microbiome Development. Microorganisms 2023; 11:1839. [PMID: 37513011 PMCID: PMC10383123 DOI: 10.3390/microorganisms11071839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/13/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
Maternal metabolic disruptions, such as ketosis, can have adverse effects on fetal development and influence postnatal factors. Twelve Holstein calves were randomly enrolled in this study at birth and monitored until 8 weeks of age. The study was conducted from fall 2018 until spring 2019. After completing the data collection period, calves were classified according to their respective dams ketotic condition after parturition. This classification was based on dam blood β-hydroxybutyrate < 1.4 mmol/L nonketotic (NONKET; n = 6 calves) or ≥1.4 mmol/L subclinical-ketotic (SK; n = 6 calves). SK calves had greater birth body weight (p = 0.05) but exhibited a slower growth rate compared to NONKET calves from 1 to 8 weeks (p = 0.02). At birth, SK calves had lower (p < 0.01) levels of non-esterified fatty acids and bilirubin compared to NONKET calves. Analysis of feces alpha diversity indicates that by 3 weeks, NONKET calves had greater diversity, richness, and evenness. Butyricicoccus pullicaecorum and Gallibacterium anatis were more abundant in SK calves (p < 0.05) at 3 weeks. In contrast, NONKET calves had a greater (p < 0.05) abundance of Sharpae azabuensis at 3 weeks. These findings suggest that subclinical ketosis in cows can impact the in-utero development, postnatal growth, and maturing gut microbiome of their offspring.
Collapse
Affiliation(s)
- Jessica Halfen
- School of Animal Science, Virginia Tech, Blacksburg, VA 24061, USA
| | - Nathaly Ana Carpinelli
- Department of Dairy and Food Science, South Dakota State University, Brookings, SD 57007, USA
| | - Sergio Lasso-Ramirez
- Department of Dairy and Food Science, South Dakota State University, Brookings, SD 57007, USA
- Deparment of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Tainara Cristina Michelotti
- Department of Dairy and Food Science, South Dakota State University, Brookings, SD 57007, USA
- Unité Mixte de Recherche sur les Herbivores, INRAE, F-63122 Saint-Genès-Champanelle, France
| | - Emily C Fowler
- Department of Animal Science, South Dakota State University, Brookings, SD 57007, USA
| | - Benoit St-Pierre
- Department of Animal Science, South Dakota State University, Brookings, SD 57007, USA
| | - Erminio Trevisi
- Department of Animal Sciences, Food and Nutrition (DIANA), Faculty of Agriculture, Food and Environmental Science, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy
| | - Johan S Osorio
- School of Animal Science, Virginia Tech, Blacksburg, VA 24061, USA
| |
Collapse
|
4
|
St-Pierre B, Perez Palencia JY, Samuel RS. Impact of Early Weaning on Development of the Swine Gut Microbiome. Microorganisms 2023; 11:1753. [PMID: 37512925 PMCID: PMC10385335 DOI: 10.3390/microorganisms11071753] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 06/29/2023] [Accepted: 07/03/2023] [Indexed: 07/30/2023] Open
Abstract
Considering that pigs are naturally weaned between 12 and 18 weeks of age, the common practice in the modern swine industry of weaning as early as between two and four weeks of age increases challenges during this transition period. Indeed, young pigs with an immature gut are suddenly separated from the sow, switched from milk to a diet consisting of only solid ingredients, and subjected to a new social hierarchy from mixing multiple litters. From the perspective of host gut development, weaning under these conditions causes a regression in histological structure as well as in digestive and barrier functions. While the gut is the main center of immunity in mature animals, the underdeveloped gut of early weaned pigs has yet to contribute to this function until seven weeks of age. The gut microbiota or microbiome, an essential contributor to the health and nutrition of their animal host, undergoes dramatic alterations during this transition, and this descriptive review aims to present a microbial ecology-based perspective on these events. Indeed, as gut microbial communities are dependent on cross-feeding relationships, the change in substrate availability triggers a cascade of succession events until a stable composition is reached. During this process, the gut microbiota is unstable and prone to dysbiosis, which can devolve into a diseased state. One potential strategy to accelerate maturation of the gut microbiome would be to identify microbial species that are critical to mature swine gut microbiomes, and develop strategies to facilitate their establishment in early post-weaning microbial communities.
Collapse
Affiliation(s)
- Benoit St-Pierre
- Department of Animal Science, South Dakota State University, Animal Science Complex, Box 2170, Brookings, SD 57007, USA
| | - Jorge Yair Perez Palencia
- Department of Animal Science, South Dakota State University, Animal Science Complex, Box 2170, Brookings, SD 57007, USA
| | - Ryan S Samuel
- Department of Animal Science, South Dakota State University, Animal Science Complex, Box 2170, Brookings, SD 57007, USA
| |
Collapse
|
5
|
Fowler EC, Samuel RS, St-Pierre B. A Comparative Analysis of the Fecal Bacterial Communities of Light and Heavy Finishing Barrows Raised in a Commercial Swine Production Environment. Pathogens 2023; 12:pathogens12050738. [PMID: 37242408 DOI: 10.3390/pathogens12050738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 05/15/2023] [Accepted: 05/19/2023] [Indexed: 05/28/2023] Open
Abstract
For commercial swine producers, the natural variation in body weight amongst pigs in a herd presents a challenge in meeting the standards of meat processors who incentivize target carcass weights by offering more favorable purchase prices. Body weight variation in a swine herd is evident as early as birth, and it is typically maintained throughout the entire production cycle. Amongst the various factors that can affect growth performance, the gut microbiome has emerged as an important factor that can affect efficiency, as it contributes to vital functions such as providing assimilable nutrients from feed ingredients that are inedible to the host, as well as resistance to infection by a pathogen. In this context, the objective of the study described in this report was to compare the fecal microbiomes of light and heavy barrows (castrated male finishing pigs) that were part of the same research herd that was raised under commercial conditions. Using high-throughput sequencing of amplicons generated from the V1-V3 regions of the 16S rRNA gene, two abundant candidate bacterial species identified as operational taxonomic units (OTUs), Ssd-1085 and Ssd-1144, were found to be in higher abundance in the light barrows group. Ssd-1085 was predicted to be a potential strain of Clostridium jeddahitimonense, a bacterial species capable of utilizing tagatose, a monosaccharide known to act as a prebiotic that can enhance the proliferation of beneficial microorganisms while inhibiting the growth of bacterial pathogens. OTU Ssd-1144 was identified as a candidate strain of C. beijerinckii, which would be expected to function as a starch utilizing symbiont in the swine gut. While it remains to be determined why putative strains of these beneficial bacterial species would be in higher abundance in lower weight pigs, their overall high levels in finishing pigs could be the result of including ingredients such as corn and soybean-based products in swine diets. Another contribution from this study was the determination that these two OTUs, along with five others that were also abundant in the fecal bacterial communities of the barrows that were analyzed, had been previously identified in weaned pigs, suggesting that these OTUs can become established as early as the nursery phase.
Collapse
Affiliation(s)
- Emily C Fowler
- Department of Animal Science, South Dakota State University, Animal Science Complex, Box 2170, Brookings, SD 57007, USA
| | - Ryan S Samuel
- Department of Animal Science, South Dakota State University, Animal Science Complex, Box 2170, Brookings, SD 57007, USA
| | - Benoit St-Pierre
- Department of Animal Science, South Dakota State University, Animal Science Complex, Box 2170, Brookings, SD 57007, USA
| |
Collapse
|
6
|
Canibe N, Højberg O, Kongsted H, Vodolazska D, Lauridsen C, Nielsen TS, Schönherz AA. Review on Preventive Measures to Reduce Post-Weaning Diarrhoea in Piglets. Animals (Basel) 2022; 12:2585. [PMID: 36230326 PMCID: PMC9558551 DOI: 10.3390/ani12192585] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/30/2022] [Accepted: 08/30/2022] [Indexed: 02/08/2023] Open
Abstract
In many countries, medical levels of zinc (typically as zinc oxide) are added to piglet diets in the first two weeks post-weaning to prevent the development of post-weaning diarrhoea (PWD). However, high levels of zinc constitute an environmental polluting agent, and may contribute to the development and/or maintenance of antimicrobial resistance (AMR) among bacteria. Consequently, the EU banned administering medical levels of zinc in pig diets as of June 2022. However, this may result in an increased use of antibiotic therapeutics to combat PWD and thereby an increased risk of further AMR development. The search for alternative measures against PWD with a minimum use of antibiotics and in the absence of medical levels of zinc has therefore been intensified over recent years, and feed-related measures, including feed ingredients, feed additives, and feeding strategies, are being intensively investigated. Furthermore, management strategies have been developed and are undoubtedly relevant; however, these will not be addressed in this review. Here, feed measures (and vaccines) are addressed, these being probiotics, prebiotics, synbiotics, postbiotics, proteobiotics, plants and plant extracts (in particular essential oils and tannins), macroalgae (particularly macroalgae-derived polysaccharides), dietary fibre, antimicrobial peptides, specific amino acids, dietary fatty acids, milk replacers, milk components, creep feed, vaccines, bacteriophages, and single-domain antibodies (nanobodies). The list covers measures with a rather long history and others that require significant development before their eventual use can be extended. To assess the potential of feed-related measures in combating PWD, the literature reviewed here has focused on studies reporting parameters of PWD (i.e., faeces score and/or faeces dry matter content during the first two weeks post-weaning). Although the impact on PWD (or related parameters) of the investigated measures may often be inconsistent, many studies do report positive effects. However, several studies have shown that control pigs do not suffer from diarrhoea, making it difficult to evaluate the biological and practical relevance of these improvements. From the reviewed literature, it is not possible to rank the efficacy of the various measures, and the efficacy most probably depends on a range of factors related to animal genetics and health status, additive doses used, composition of the feed, etc. We conclude that a combination of various measures is probably most recommendable in most situations. However, in this respect, it should be considered that combining strategies may lead to additive (e.g., synbiotics), synergistic (e.g., plant materials), or antagonistic (e.g., algae compounds) effects, requiring detailed knowledge on the modes of action in order to design effective strategies.
Collapse
Affiliation(s)
- Nuria Canibe
- Department of Animal and Veterinary Sciences, Aarhus University, Blichers Allé 20, 8830 Tjele, Denmark
| | | | | | | | | | | | | |
Collapse
|
7
|
Guo J, Wilson T, Chiba L, Spangler E, Wu G, Shieh T. Effect of diet complexity and dietary fish peptide and enzyme complex supplementation on weanling pigs. Livest Sci 2022. [DOI: 10.1016/j.livsci.2022.105020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
8
|
Poudel P, Samuel R, Levesque C, St-Pierre B. Investigating the effects of peptide-based, MOS and protease feed additives on the growth performance and fecal microbial composition of weaned pigs. J Anim Sci Biotechnol 2022; 13:25. [PMID: 35296347 PMCID: PMC8928611 DOI: 10.1186/s40104-022-00681-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 01/13/2022] [Indexed: 11/12/2022] Open
Abstract
Background Digestive disorders in weaning pigs remain a major challenge for swine producers. Different types of commercial feed additives have been developed to promote gut health and development in young pigs, but their effects on resident gut microbial communities remain largely unexplored. The aim of this study was to investigate the impact of a peptide-based product (Peptiva) in combination with mannose oligosaccharides (MOS) and an exogenous protease on the performance and fecal microbiome of nursery pigs. Methods A total of 1097 weaned pigs were divided into 44 pens (24–26 pigs/pen) with each pen randomly assigned to one of four experimental diets as part of Phase II and Phase III of a standard nursery phase feeding program. Fecal samples collected from representative control and treatment pigs were used to investigate bacterial composition profiles by high throughput sequencing of PCR-generated amplicons targeting the V1-V3 region of the 16S rRNA gene. Results Higher gain:feed was observed for pigs fed Peptiva and MOS compared to Controls during the period when experimental diets were fed, but the benefits of supplementation were not maintained after pigs were transitioned to a non-supplemented diet. Three candidate bacterial species, identified as Operational Taxonomic Units (OTUs), were found to have significantly different abundances between control samples and treatment samples during the same phase. In Phase III samples, SD_Ssd-00039, predicted to be a strain of Streptococcus alactolyticus based on nucleotide sequence identity, was the most highly represented of these OTUs with an average abundance in pigs fed Peptiva, MOS and protease that was 3.9 times higher than in Controls. The report also presents evidence of microbial succession that occurred during the trial, with 16 of the 32 most abundant OTUs found to vary between Phase II and Phase III samples for the same dietary treatment. Conclusions Dietary supplementation with a combination of a peptide-based product, MOS, and protease increased the growth performance of weaned pigs compared to control animals during the nursery phase, but these benefits were no longer observed within 2 weeks after all animals were transitioned to a non-supplemented diet. Supplementation with these feed additives was found to modulate the composition of the swine gut microbiome during this period. Supplementary Information The online version contains supplementary material available at 10.1186/s40104-022-00681-8.
Collapse
Affiliation(s)
- Prakash Poudel
- Current address: Himalayan Pet Foods, Mukilteo, Washington, 98275, USA
| | - Ryan Samuel
- Department of Animal Science, South Dakota State University, Animal Science Complex, Box 2170, Brookings, SD, 57007, USA
| | - Crystal Levesque
- Department of Animal Science, South Dakota State University, Animal Science Complex, Box 2170, Brookings, SD, 57007, USA
| | - Benoit St-Pierre
- Department of Animal Science, South Dakota State University, Animal Science Complex, Box 2170, Brookings, SD, 57007, USA.
| |
Collapse
|
9
|
Eugenio FA, van Milgen J, Duperray J, Sergheraert R, Le Floc'h N. Feeding intact proteins, peptides, or free amino acids to monogastric farm animals. Amino Acids 2022; 54:157-168. [PMID: 35106634 DOI: 10.1007/s00726-021-03118-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 12/09/2021] [Indexed: 12/13/2022]
Abstract
For terrestrial farm animals, intact protein sources like soybean meal have been the main ingredients providing the required amino acids (AA) to sustain life. However, in recent years, the availability of hydrolysed protein sources and free AA has led to the use of other forms of AA to feed farm animals. The advent of using these new forms is especially important to reduce the negative environmental impacts of animal production because these new forms allow reducing the dietary crude protein content and provide more digestible materials. However, the form in which dietary AA are provided can have an effect on the dynamics of nutrient availability for protein deposition and tissue growth including the efficiency of nutrient utilization. In this literature review, the use of different forms of AA in animal diets is explored, and their differences in digestion and absorption rates are focused on. These differences affect the postprandial plasma appearance of AA, which can have metabolic consequences, like greater insulin response when free AA or hydrolysates instead of intact proteins are fed, which can have a profound effect on metabolism and growth performance. Nevertheless, the use and application of the different AA forms in animal diets are important to achieve a more sustainable and efficient animal production system in the future, as they allow for a more precise diet formulation and reduced negative environmental impact. It is, therefore, important to differentiate the physiological and metabolic effects of different forms of AA to maximize their nutritional value in animal diets.
Collapse
Affiliation(s)
- F A Eugenio
- PEGASE, INRAE, Institut Agro, 35590, Saint Gilles, France
- BCF Life Sciences, Boisel, 56140, Pleucadeuc, France
| | - J van Milgen
- PEGASE, INRAE, Institut Agro, 35590, Saint Gilles, France
| | - J Duperray
- BCF Life Sciences, Boisel, 56140, Pleucadeuc, France
| | - R Sergheraert
- BCF Life Sciences, Boisel, 56140, Pleucadeuc, France
| | - N Le Floc'h
- PEGASE, INRAE, Institut Agro, 35590, Saint Gilles, France.
| |
Collapse
|
10
|
Feed Supplementation with the GHRP-6 Peptide, a Ghrelin Analog, Improves Feed Intake, Growth Performance and Aerobic Metabolism in the Gilthead Sea Bream Sparus aurata. FISHES 2022. [DOI: 10.3390/fishes7010031] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The aquaculture sector has experienced rapid and important growth with the subsequent increase of feeding and nutritional issues for sustaining this activity, mainly related to the use of high quality, safe and environmentally friendly feed ingredients. The use of additives in aquafeeds has proven to be a suitable option to improve different productive indicators in farmed fish. In the present study, the effect of adding the GHRP-6 peptide, a ghrelin analog, to a commercial diet of gilthead sea bream (Sparus aurata) was studied at two proportions (100 or 500 μg/kg of feed). Both experimental diets show an increase in growth performance, as well as in feed efficiency after 97 days of experiment. The lower inclusion of GHRP-6 (100 μg/kg) results in a better aerobic metabolism, while the higher inclusion significantly increased plasma GH levels in agreement with the GH secretagogue effects of ghrelin. Similar growth outcome and differences between GHRP-6 levels in aerobic metabolism and GH stimulation suggest that improvements in culture performance by this peptide may occur through different mechanisms. Taken together, this compound can be considered as a viable dietary supplement for increasing production efficiency of sea bream aquaculture, although a better understanding of its dose-specific effects is still required.
Collapse
|
11
|
Early Life Fecal Microbiota Transplantation in Neonatal Dairy Calves Promotes Growth Performance and Alleviates Inflammation and Oxidative Stress during Weaning. Animals (Basel) 2021; 11:ani11092704. [PMID: 34573670 PMCID: PMC8471931 DOI: 10.3390/ani11092704] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/24/2021] [Accepted: 08/29/2021] [Indexed: 12/21/2022] Open
Abstract
This study aimed to evaluate the effects of early life fecal microbiota transplantation (FMT) on the health and performance of neonatal dairy calves. The donor was selected based on health and production records and fecal material testing negative for infectious pathogens. Sixteen healthy newborn Holstein calves were randomized to either a baseline nutritional program (CON) or 1×/d inoculations with 25 g of fecal donor material (FMT) mixed in the milk replacer (n = 8/TRT) from 8 to 12 days of age. Blood and fecal samples were collected weekly, and calves were weaned at 7 weeks of age. A TRT × Week interaction was observed in haptoglobin, which was reflected in a positive quadratic effect in FMT calves but not in CON. A trend for a TRT × Week interaction was observed in the liver function biomarker paraoxonase, which resulted in greater paraoxonase in FMT calves than CON at three weeks of age. Fecal microbial community analysis revealed a significant increase in the alpha-diversity between week 1 and week 5 for the FMT calves. These results suggest that early life FMT in neonatal calves has positive effects in mediating the inflammatory response and gut microbial maturation.
Collapse
|
12
|
Investigating the Effects of a Phytobiotics-Based Product on the Fecal Bacterial Microbiome of Weaned Pigs. Animals (Basel) 2021; 11:ani11071950. [PMID: 34208843 PMCID: PMC8300416 DOI: 10.3390/ani11071950] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/22/2021] [Accepted: 06/25/2021] [Indexed: 12/12/2022] Open
Abstract
The transition to a solid diet, as well as environmental and social stress, have a direct impact on swine gut physiology during weaning, affecting host gastrointestinal functions, as well as resident symbiotic microbial communities. While plant-derived bioactive products, such as phytobiotics, have shown great potential to mitigate these challenges, providing benefits such as antimicrobial, antioxidant, and anti-inflammatory activities, their mechanisms of action remain largely unexplored. To gain more insight, a 21 day trial is conducted to investigate the effects of LiveXtract, a commercial plant-based product, using fecal samples as a proxy for gut bacteria in weaned pigs. High-throughput sequencing of amplicons targeting the V1-V3 region of the 16S rRNA gene is used to determine bacterial composition at days 1 (pre-treatment), 4, 10, and 21 postweaning. Our results show that Lactobacillaceae and Peptostreptococcaceae are both higher in the supplemented group at D4 (p < 0.05), while Streptococcaceae are significantly lower in the treated group at D10 and D21. At D10, Erysipelotrichaceae are lower, and Veillonellaceae are higher in the treated samples than the control group (p < 0.05). Of the thirteen abundant Operational Taxonomic Units (OTUs) that have different representation between treated and control pigs (p < 0.05), six are predicted to be lactate producers (affiliation to Lactobacillus or Streptococcus), and one is predicted to be a lactate utilizer, based on its high identity to Megasphaera elsdenii. Together, these data suggest that phytobiotics may provide a favorable metabolic equilibrium between lactate production and utilization. Lactate is considered a critical microbial end product in gut environments, as it can inhibit pathogens or be metabolized to propionate for utilization by host cells.
Collapse
|
13
|
Fowler EC, Poudel P, White B, St-Pierre B, Brown M. Effects of a Bioprocessed Soybean Meal Ingredient on the Intestinal Microbiota of Hybrid Striped Bass, Morone chrysops x M. saxatilis. Microorganisms 2021; 9:microorganisms9051032. [PMID: 34064862 PMCID: PMC8151853 DOI: 10.3390/microorganisms9051032] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/07/2021] [Accepted: 05/09/2021] [Indexed: 12/12/2022] Open
Abstract
The hybrid striped bass (Morone chrysops x M. saxatilis) is a carnivorous species and a major product of US aquaculture. To reduce costs and improve resource sustainability, traditional ingredients used in fish diets are becoming more broadly replaced by plant-based products; however, plant meals can be problematic for carnivorous fish. Bioprocessing has improved nutritional quality and allowed higher inclusions in fish diets, but these could potentially affect other systems such as the gut microbiome. In this context, the effects of bioprocessed soybean meal on the intestinal bacterial composition in hybrid striped bass were investigated. Using high-throughput sequencing of amplicons targeting the V1-V3 region of the 16S rRNA gene, no significant difference in bacterial composition was observed between fish fed a control diet, and fish fed a diet with the base bioprocessed soybean meal. The prominent Operational Taxonomic Unit (OTU) in these samples was predicted to be a novel species affiliated to Peptostreptococcaceae. In contrast, the intestinal bacterial communities of fish fed bioprocessed soybean meal that had been further modified after fermentation exhibited lower alpha diversity (p < 0.05), as well as distinct and more varied composition patterns, with OTUs predicted to be strains of Lactococcus lactis, Plesiomonas shigelloides, or Ralstonia pickettii being the most dominant. Together, these results suggest that compounds in bioprocessed soybean meal can affect intestinal bacterial communities in hybrid striped bass.
Collapse
Affiliation(s)
- Emily Celeste Fowler
- Department of Animal Science, South Dakota State University, Brookings, SD 57007, USA; (E.C.F.); (P.P.)
| | - Prakash Poudel
- Department of Animal Science, South Dakota State University, Brookings, SD 57007, USA; (E.C.F.); (P.P.)
| | - Brandon White
- Department of Natural Resource Management, South Dakota State University, Brookings, SD 57007, USA;
| | - Benoit St-Pierre
- Department of Animal Science, South Dakota State University, Brookings, SD 57007, USA; (E.C.F.); (P.P.)
- Correspondence: (B.S.-P.); (M.B.)
| | - Michael Brown
- Department of Natural Resource Management, South Dakota State University, Brookings, SD 57007, USA;
- Correspondence: (B.S.-P.); (M.B.)
| |
Collapse
|
14
|
Wei X, Tsai T, Howe S, Zhao J. Weaning Induced Gut Dysfunction and Nutritional Interventions in Nursery Pigs: A Partial Review. Animals (Basel) 2021; 11:1279. [PMID: 33946901 PMCID: PMC8146462 DOI: 10.3390/ani11051279] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/27/2021] [Accepted: 04/27/2021] [Indexed: 01/08/2023] Open
Abstract
Weaning is one of the most stressful events in the life of a pig. Unsuccessful weaning often leads to intestinal and immune system dysfunctions, resulting in poor growth performance as well as increased morbidity and mortality. The gut microbiota community is a complex ecosystem and is considered an "organ," producing various metabolites with many beneficial functions. In this review, we briefly introduce weaning-associated gut microbiota dysbiosis. Then, we explain the importance of maintaining a balanced gut microbiota. Finally, we discuss dietary supplements and their abilities to restore intestinal balance and improve the growth performance of weaning pigs.
Collapse
Affiliation(s)
| | | | | | - Jiangchao Zhao
- Department of Animal Science, Division of Agriculture, University of Arkansas, Fayetteville, AR 72701, USA; (X.W.); (T.T.); (S.H.)
| |
Collapse
|
15
|
Effects of a low allergenic soybean variety on gut permeability, microbiota composition, ileal digestibility of amino acids, and growth performance in pigs. Livest Sci 2021. [DOI: 10.1016/j.livsci.2020.104369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|