1
|
Grózner D, Kreizinger Z, Mitter A, Bekő K, Buni D, Kovács ÁB, Wehmann E, Nagy EZ, Dobos Á, Dán Á, Belecz N, Költő K, Hrivnák V, Udvari L, Földi D, Czifra G, Kiss M, Spitzmüller L, Molnár B, Gyuranecz M. Evaluating the dynamics and efficacy of a live, attenuated Mycoplasma anserisalpingitidis vaccine candidate under farm conditions. Avian Pathol 2024; 53:257-263. [PMID: 38353105 DOI: 10.1080/03079457.2024.2318006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 02/08/2024] [Indexed: 02/27/2024]
Abstract
The aim of the present study was to monitor the dynamics and to measure the safety and efficacy of a live, attenuated, thermosensitive Mycoplasma anserisalpingitidis vaccine candidate, namely MA271, in geese breeder flocks under field conditions. Two rearing flocks were vaccinated with MA271 at 4 weeks of age and boosted at 24 weeks of age by cloaca inoculation (1 ml) and eye-dropping (60 µl). The geese then were transported to multi-aged breeding farms. Two breeding flocks served as controls. Colonization of the cloaca by MA271 showed 75% maximum prevalence between 4 and 6 weeks after the first vaccination. Then the prevalence decreased to 25% until the cooler, humid fall months which coincided with the booster vaccination. Boosting raised cloacal colonization to 100%. No clinical signs were observed in the vaccinated birds. After transportation to five multi-aged breeding farms, the wild-type strain appeared as well as MA271 in three flocks. In one flock, the wild-type strain completely displaced MA271, while in one flock only MA271 was detected. Only wild-type strains were detected in the control flocks; however, due to an HPAI outbreak, both flocks were exterminated before the end of the study. Based on the available data, the median percentage of infertile eggs was 3.7-5.1% in the MA271 vaccinated flocks, and 7.7% in the non-vaccinated flock. In conclusion, MA271 can colonize the cloaca of geese under field conditions. MA271 proved to be safe and presumably protects against M. anserisalpingitidis-induced reproduction losses.
Collapse
Affiliation(s)
- Dénes Grózner
- HUN-REN Veterinary Medical Research Institute, Budapest, Hungary
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, Budapest, Hungary
| | - Zsuzsa Kreizinger
- HUN-REN Veterinary Medical Research Institute, Budapest, Hungary
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, Budapest, Hungary
- MolliScience Kft., Biatorbágy, Hungary
| | - Alexa Mitter
- HUN-REN Veterinary Medical Research Institute, Budapest, Hungary
| | - Katinka Bekő
- HUN-REN Veterinary Medical Research Institute, Budapest, Hungary
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, Budapest, Hungary
| | - Dominika Buni
- HUN-REN Veterinary Medical Research Institute, Budapest, Hungary
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, Budapest, Hungary
| | - Áron B Kovács
- HUN-REN Veterinary Medical Research Institute, Budapest, Hungary
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, Budapest, Hungary
| | - Enikő Wehmann
- HUN-REN Veterinary Medical Research Institute, Budapest, Hungary
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, Budapest, Hungary
| | - Eszter Zsófia Nagy
- HUN-REN Veterinary Medical Research Institute, Budapest, Hungary
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, Budapest, Hungary
| | | | - Ádám Dán
- SCG Diagnosztika Kft., Délegyháza, Hungary
| | - Nikolett Belecz
- HUN-REN Veterinary Medical Research Institute, Budapest, Hungary
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, Budapest, Hungary
| | - Karola Költő
- HUN-REN Veterinary Medical Research Institute, Budapest, Hungary
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, Budapest, Hungary
| | - Veronika Hrivnák
- HUN-REN Veterinary Medical Research Institute, Budapest, Hungary
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, Budapest, Hungary
| | - Lilla Udvari
- HUN-REN Veterinary Medical Research Institute, Budapest, Hungary
| | - Dorottya Földi
- HUN-REN Veterinary Medical Research Institute, Budapest, Hungary
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, Budapest, Hungary
| | - György Czifra
- HUN-REN Veterinary Medical Research Institute, Budapest, Hungary
| | | | | | | | - Miklós Gyuranecz
- HUN-REN Veterinary Medical Research Institute, Budapest, Hungary
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, Budapest, Hungary
- MolliScience Kft., Biatorbágy, Hungary
- Department of Microbiology and Infectious Diseases, University of Veterinary Medicine, Budapest, Hungary
| |
Collapse
|
2
|
Sartini I, Vercelli C, Lebkowska-Wieruszewska B, Lisowski A, Fadel C, Poapolathep A, Dessì F, Giorgi M. Pharmacokinetics and antibacterial activity of tiamulin after single and multiple oral administrations in geese. Vet Anim Sci 2023; 22:100317. [PMID: 37920697 PMCID: PMC10618762 DOI: 10.1016/j.vas.2023.100317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2023] Open
Abstract
Tiamulin is an antibiotic approved exclusively in veterinary medicine, active against G-positive bacteria as well as Mycoplasma spp. and Leptospirae spp. The study was aimed to establish its pharmacokinetics and to evaluate drug effects on resistance in cloacal flora in vivo in geese. Eight healthy geese underwent to a two-phase longitudinal study (60 mg/kg single oral administration vs 60 mg/kg/day for 4 days) with a two-week wash-out period. Blood samples and cloacal swabs were collected at pre-assigned times. Minimal inhibitory concentration (MIC) has been evaluated for each isolated bacterial species. The pharmacokinetic parameters that significantly differed between the groups were Cmax (p = 0.024), AUC0-t (p = 0.031), AUC0-inf (p = 0.038), t1/2kel (p = 0.021), Cl/F (p = 0.036), and Vd/F (p = 0.012). Tiamulin exhibited a slow to moderate terminal half-life (3.13 h single; 2.62 h multiple) and a rapid absorption (1 h single; 0.5 h multiple) in geese, with an accumulation ratio of 1.8 after multiple doses. An in-silico simulation of multiple dosing did not reflect the results of the in vivo multiple dosage study. In both treatments, the MIC values were very high demonstrating a resistance (> 64 μg/ml) against tiamulin that can be present prior the drug administration for some strains, or emerge shortly after the commencing of treatment for some others.
Collapse
Affiliation(s)
- Irene Sartini
- Department of Veterinary Medicine, University of Sassari, Sassari, Italy
| | - Cristina Vercelli
- Department of Veterinary Sciences, University of Turin, Torino, Italy
| | | | - Andrzej Lisowski
- Department of Biology and Animal Breeding, University of Life Sciences, Lublin, Poland
| | - Charbel Fadel
- Department of Veterinary Medicine, University of Sassari, Sassari, Italy
| | - Amnart Poapolathep
- Department of Pharmacology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
| | - Filomena Dessì
- Department of Veterinary Medicine, University of Sassari, Sassari, Italy
| | - Mario Giorgi
- Department of Veterinary Medicine, University of Sassari, Sassari, Italy
- Department of Veterinary Sciences, University of Pisa, Via Livornese (lato monte), 56122, San Piero a Grado, Pisa, Italy
| |
Collapse
|
3
|
Nagy EZ, Kovács ÁB, Wehmann E, Bekő K, Földi D, Bányai K, Kreizinger Z, Gyuranecz M. Phenotypic and genetic insights into efflux pump mechanism in Mycoplasma anserisalpingitidis. Front Microbiol 2023; 14:1216893. [PMID: 37502405 PMCID: PMC10371760 DOI: 10.3389/fmicb.2023.1216893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 06/23/2023] [Indexed: 07/29/2023] Open
Abstract
Introduction Mycoplasma anserisalpingitidis is one of the most important waterfowl-pathogenic mycoplasmas. Due to inadequate antibiotic treatment, many strains with high minimal inhibitory concentration (MIC) values for multiple drugs have been isolated lately. Decreased antibiotic susceptibility in several Mycoplasma species are known to be associated with mutations in topoisomerase and ribosomal genes, but other strategies such as active efflux pump mechanisms were also described. The scope of this study was the phenotypic and genetic characterization of the active efflux mechanism in M. anserisalpingitidis. Methods We measured the MIC values in the presence and absence of different efflux pump inhibitors (EPIs), such as carbonyl cyanide m-chlorophenylhydrazine (CCCP), orthovanadate (OV), and reserpine (RSP). Moreover, bioinformatic tools were utilized to detect putative regulatory sequences of membrane transport proteins coding genes, while comparative genome analysis was performed to reveal potential markers of antibiotic resistance. Results Out of the three examined EPIs, CCCP decreased the MICs at least two-fold below the original MICs (in 23 cases out of 36 strains). In the presence of OV or RSP, MIC value differences could be seen only if modified dilution series (10% decrease steps were used instead of two-fold dilutions) were applied (in 24/36 cases with OV and 9/36 with RSP). During comparative genome analysis, non-synonymous single nucleotide polymorphisms (nsSNPs) were identified in genes encoding ABC membrane transport proteins, which were displayed in higher percentages in M. anserisalpingitidis strains with increased MICs. In terms of other genes, a nsSNP was identified in DNA gyrase subunit A (gyrA) gene which can be related to decreased susceptibility to enrofloxacin. The present study is the first to highlight the importance of efflux pump mechanisms in M. anserisalpingitidis. Discussion Considering the observed effects of the EPI CCCP against this bacterium, it can be assumed, that the use of EPIs would increase the efficiency of targeted antibiotic therapy in the future control of this pathogen. However, further research is required to obtain a more comprehensive understanding of efflux pump mechanism in this bacterium.
Collapse
Affiliation(s)
- Eszter Zsófia Nagy
- Veterinary Medical Research Institute, Budapest, Hungary
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, Budapest, Hungary
| | - Áron Botond Kovács
- Veterinary Medical Research Institute, Budapest, Hungary
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, Budapest, Hungary
| | - Enikő Wehmann
- Veterinary Medical Research Institute, Budapest, Hungary
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, Budapest, Hungary
| | - Katinka Bekő
- Veterinary Medical Research Institute, Budapest, Hungary
| | - Dorottya Földi
- Veterinary Medical Research Institute, Budapest, Hungary
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, Budapest, Hungary
| | - Krisztián Bányai
- Veterinary Medical Research Institute, Budapest, Hungary
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, Budapest, Hungary
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, Budapest, Hungary
| | - Zsuzsa Kreizinger
- Veterinary Medical Research Institute, Budapest, Hungary
- MolliScience Kft., Biatorbágy, Hungary
| | - Miklós Gyuranecz
- Veterinary Medical Research Institute, Budapest, Hungary
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, Budapest, Hungary
- MolliScience Kft., Biatorbágy, Hungary
- Department of Microbiology and Infectious Diseases, University of Veterinary Medicine, Budapest, Hungary
| |
Collapse
|
4
|
Kovács ÁB, Wehmann E, Grózner D, Bali K, Nemesházi E, Hrivnák V, Morrow CJ, Bányai K, Kreizinger Z, Gyuranecz M. Characterization of atypical Mycoplasma anserisalpingitidis strains. Vet Microbiol 2023; 280:109722. [PMID: 36940525 DOI: 10.1016/j.vetmic.2023.109722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/22/2023] [Accepted: 03/09/2023] [Indexed: 03/13/2023]
Abstract
Mycoplasma anserisalpingitidis is a waterfowl colonizing mycoplasma, mainly found in geese. In this study, we compared the whole genomes of five atypical M. anserisalpingitidis strains originating from China, Vietnam and Hungary, with the rest of the collection. Common methods used in the description of species are genomic analyses like the analysis of 16 S - intergenic transcribed spacer (ITS) - 23 S rRNA, of housekeeping genes, of the average nucleotide identity (ANI) and average amino acid identity (AAI) and phenotypic analyses like testing the growth inhibition and the growth parameters of the strains. The atypical strains showed notable genomic differences in all of the genetic analyses: on average ANI and AAI 95% (M. anserisalpingitidis ANI Minimum: 92.45, Maximum: 95.10; AAI Minimum: 93.34, Maximum: 96.37). The atypical strains formed a separate branch among the M. anserisalpingitidis strains in all phylogenetic studies. The small genome size and possibly higher mutation rate of the M. anserisalpingitidis species likely contributed to the observed genetic difference. Based on genetic analyses, the studied strains clearly represent a new genotype of M. anserisalpingitidis. The atypical strains showed slower growth in the medium containing fructose and three of the atypical strains showed diminished growth in the inhibition test. However, no definitive geno-phenotype associations were found regarding the fructose metabolism pathway in the atypical strains. The atypical strains are potentially at an early stage of speciation.
Collapse
Affiliation(s)
- Áron B Kovács
- Veterinary Medical Research Institute, Budapest, Hungary; National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, Veterinary Medical Research Institute, Budapest, Hungary
| | - Enikő Wehmann
- Veterinary Medical Research Institute, Budapest, Hungary; National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, Veterinary Medical Research Institute, Budapest, Hungary
| | - Dénes Grózner
- Veterinary Medical Research Institute, Budapest, Hungary
| | - Krisztina Bali
- Veterinary Medical Research Institute, Budapest, Hungary
| | | | | | - Chris J Morrow
- Asia Pacific Centre for Animal Health, Melbourne Veterinary School, The University of Melbourne, Victoria, Australia; Bioproperties Pty Ltd., Victoria, Australia
| | - Krisztián Bányai
- Veterinary Medical Research Institute, Budapest, Hungary; National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, Veterinary Medical Research Institute, Budapest, Hungary; Department of Pharmacology and Toxicology, University of Veterinary Medicine, Budapest, Hungary
| | - Zsuzsa Kreizinger
- Veterinary Medical Research Institute, Budapest, Hungary; MolliScience Kft., Biatorbágy, Hungary
| | - Miklós Gyuranecz
- Veterinary Medical Research Institute, Budapest, Hungary; National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, Veterinary Medical Research Institute, Budapest, Hungary; MolliScience Kft., Biatorbágy, Hungary.
| |
Collapse
|
5
|
Bekő K, Nagy EZ, Grózner D, Kreizinger Z, Gyuranecz M. Biofilm formation and its impact on environmental survival and antibiotic resistance of Mycoplasma anserisalpingitidis strains. Acta Vet Hung 2022; 70:184-191. [PMID: 36178765 DOI: 10.1556/004.2022.00029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 09/09/2022] [Indexed: 11/19/2022]
Abstract
Several Mycoplasma species can form biofilm, facilitating their survival in the environment, and shielding them from therapeutic agents. The aim of this study was to examine the biofilm-forming ability and its potential effects on environmental survival and antibiotic resistance in Mycoplasma anserisalpingitidis, the clinically and economically most important waterfowl Mycoplasma species. The biofilm-forming ability of 32 M. anserisalpingitidis strains was examined by crystal violet assay. Biofilms and planktonic cultures of the selected strains were exposed to a temperature of 50 °C (20 and 30 min), to desiccation at room temperature (16 and 24 h), or to various concentrations of eight different antibiotics. Crystal violet staining revealed great diversity in the biofilm-forming ability of the 32 tested M. anserisalpingitidis strains, with positive staining in more than half of them. Biofilms were found to be more resistant to heat and desiccation than planktonic cultures, while no correlation was shown between biofilm formation and antibiotic susceptibility. Our results indicate that M. anserisalpingitidis biofilms may contribute to the persistence of the organisms in the environment, which should be taken into account for proper management. Antibiotic susceptibility was not affected by biofilm formation; however, it is important to note that correlations were examined only in vitro.
Collapse
Affiliation(s)
- Katinka Bekő
- Veterinary Medical Research Institute, Hungária körút 21, H-1143 Budapest, Hungary
| | - Eszter Zsófia Nagy
- Veterinary Medical Research Institute, Hungária körút 21, H-1143 Budapest, Hungary
| | - Dénes Grózner
- Veterinary Medical Research Institute, Hungária körút 21, H-1143 Budapest, Hungary
| | - Zsuzsa Kreizinger
- Veterinary Medical Research Institute, Hungária körút 21, H-1143 Budapest, Hungary
| | - Miklós Gyuranecz
- Veterinary Medical Research Institute, Hungária körút 21, H-1143 Budapest, Hungary
| |
Collapse
|
6
|
Bekő K, Grózner D, Mitter A, Udvari L, Földi D, Wehmann E, Kovács ÁB, Domán M, Bali K, Bányai K, Gyuris É, Thuma Á, Kreizinger Z, Gyuranecz M. Development and evaluation of temperature-sensitive Mycoplasma anserisalpingitidis clones as vaccine candidates. Avian Pathol 2022; 51:535-549. [PMID: 35866306 DOI: 10.1080/03079457.2022.2102967] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Mycoplasma anserisalpingitidis is economically the most important pathogenic Mycoplasma species of waterfowl in Europe and Asia. The lack of commercially available vaccines against M. anserisalpingitidis had prompted this study with the aim to produce temperature-sensitive (ts+) clones as candidates for an attenuated live vaccine. The production of ts+ clones was performed by N-methyl-N'-nitro-N-nitrosoguanidine (NTG)-evoked mutagenesis of Hungarian M. anserisalpingitidis field isolates. The clones were administered via eye drop and intracloacally to 33-day-old geese. Colonisation ability was examined by PCR and isolation from the trachea and cloaca, while the serological response of the birds was tested by ELISA. Pathological and histopathological examinations were performed at the eighth week after inoculation. Whole-genome sequence (WGS) analysis of the selected clone and its parent strain was also performed. NTG-treatment provided three ts+ mutants (MA177/1/11, MA177/1/12, MA271). MA271 was detected at the highest rate from cloacal (86.25%) and tracheal (30%) samples, while MA177/1/12 and MA271 elicited remarkable serological responses with 90% of the animals showing seroconversion. Re-isolates of MA271 remained ts+ throughout the experiment. Based on these properties, clone MA271 was found to be the most promising vaccine candidate. WGS analysis revealed 59 mutations in the genome of MA271 when compared to its parent strain, affecting both polypeptides involved in different cellular processes and proteins previously linked to bacterial fitness and virulence. Although further studies are needed to prove that MA271 is in all aspects a suitable vaccine strain, it is expected that this ts+ clone will contribute to the control of M. anserisalpingitidis infection.
Collapse
Affiliation(s)
- Katinka Bekő
- Veterinary Medical Research Institute, Hungária körút 21, Budapest 1143, Hungary
| | - Dénes Grózner
- Veterinary Medical Research Institute, Hungária körút 21, Budapest 1143, Hungary.,MolliScience Ltd., Március 15. utca 1, Biatorbágy 2051, Hungary
| | - Alexa Mitter
- Veterinary Medical Research Institute, Hungária körút 21, Budapest 1143, Hungary.,MolliScience Ltd., Március 15. utca 1, Biatorbágy 2051, Hungary
| | - Lilla Udvari
- Veterinary Medical Research Institute, Hungária körút 21, Budapest 1143, Hungary
| | - Dorottya Földi
- Veterinary Medical Research Institute, Hungária körút 21, Budapest 1143, Hungary
| | - Enikő Wehmann
- Veterinary Medical Research Institute, Hungária körút 21, Budapest 1143, Hungary
| | - Áron B Kovács
- Veterinary Medical Research Institute, Hungária körút 21, Budapest 1143, Hungary
| | - Marianna Domán
- Veterinary Medical Research Institute, Hungária körút 21, Budapest 1143, Hungary
| | - Krisztina Bali
- Veterinary Medical Research Institute, Hungária körút 21, Budapest 1143, Hungary
| | - Krisztián Bányai
- Veterinary Medical Research Institute, Hungária körút 21, Budapest 1143, Hungary.,University of Veterinary Medicine, István utca 2, Budapest 1078, Hungary
| | - Éva Gyuris
- Veterinary Diagnostic Directorate, National Food Chain Safety Office, Tábornok utca 2, Budapest 1143, Hungary
| | - Ákos Thuma
- Veterinary Diagnostic Directorate, National Food Chain Safety Office, Tábornok utca 2, Budapest 1143, Hungary
| | - Zsuzsa Kreizinger
- Veterinary Medical Research Institute, Hungária körút 21, Budapest 1143, Hungary.,MolliScience Ltd., Március 15. utca 1, Biatorbágy 2051, Hungary
| | - Miklós Gyuranecz
- Veterinary Medical Research Institute, Hungária körút 21, Budapest 1143, Hungary.,MolliScience Ltd., Március 15. utca 1, Biatorbágy 2051, Hungary
| |
Collapse
|
7
|
Grózner D, Beko K, Kovács ÁB, Mitter A, Hrivnák V, Sawicka A, Tomczyk G, Bányai K, Jánosi S, Kreizinger Z, Gyuranecz M. Identification and detection of mutations potentially associated with decreased susceptibility to macrolides and lincomycin in Mycoplasma anserisalpingitidis isolates. Vet Microbiol 2022; 266:109362. [DOI: 10.1016/j.vetmic.2022.109362] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 01/26/2022] [Accepted: 01/27/2022] [Indexed: 11/26/2022]
|
8
|
Çelebi Ö, Özdemir Ü, Büyük F, Baca AÜ, Erpek ŞH, Karahan M, Otlu S, Şahin M, Coşkun MR, Çelik E, Sağlam AG, Büyük E, Akça D. Isolation of Mycoplasma spp. from Geese with Pneumonia and Identification of Microbial Isolates via Molecular Methods. BRAZILIAN JOURNAL OF POULTRY SCIENCE 2022. [DOI: 10.1590/1806-9061-2021-1522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
| | - Ü Özdemir
- Pendik Veterinary Control Institute, Turkey
| | | | | | - ŞH Erpek
- Pendik Veterinary Control Institute, Turkey
| | - M Karahan
- Pendik Veterinary Control Institute, Turkey
| | - S Otlu
- Kafkas University, Turkey
| | | | | | | | | | | | - D Akça
- Kafkas University, Turkey
| |
Collapse
|
9
|
Sawicka-Durkalec A, Tomczyk G, Kursa O, Stenzel T, Gyuranecz M. Evidence of Mycoplasma spp. transmission by migratory wild geese. Poult Sci 2021; 101:101526. [PMID: 34823180 PMCID: PMC8627964 DOI: 10.1016/j.psj.2021.101526] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 09/01/2021] [Accepted: 10/07/2021] [Indexed: 11/15/2022] Open
Abstract
Mycoplasma infections have been found in different species of waterfowl worldwide. However, the question of how the pathogens have been transmitted and dispersed is still poorly understood. Samples collected from clinically healthy greater white-fronted geese (Anser albifrons) (N = 12), graylag geese (Anser anser) (N = 6), taiga bean geese (Anser fabalis) (N = 10), and barnacle geese (Branta leucopsis) (N = 1) were tested for Mycoplasma spp. All Mycoplasma-positive samples were specified by species-specific PCR for Mycoplasma anserisalpingitidis (formerly known as Mycoplasma sp. 1220), M. anseris, M. anatis, and M. cloacale. The presence of Mycoplasma spp. was confirmed in 22 of 29 sampled birds (75.9%). Mycoplasma anserisalpingitidis was the most frequently detected species (15 of 22, 68.2%). However, we did not detect any of the other Mycoplasma spp. typical for geese, among which are M. anatis, M. anseris, and M. cloacale. Phylogenetic analysis revealed that Polish sequences of M. anserisalpingitidis formed a distinct branch, along with 2 Hungarian isolates obtained from domestic geese. Eight of the samples identified as Mycoplasma spp.-positive were negative for the aforementioned Mycoplasma species. A phylogenetic tree constructed based on partial 16S rRNA gene analysis showed that Mycoplasma spp. sequences collected from Polish wild geese represent a distinct phylogenetic group with Mycoplasma sp. strain 2445 isolated from a domestic goose from Austria. The results of our study showed that wild geese could be a reservoir and vector of different species of the Mycoplasma genus that can cause significant economic losses in the domestic goose industry.
Collapse
Affiliation(s)
- Anna Sawicka-Durkalec
- Department of Poultry Diseases, National Veterinary Research Institute, Puławy 24-100, Poland.
| | - Grzegorz Tomczyk
- Department of Poultry Diseases, National Veterinary Research Institute, Puławy 24-100, Poland
| | - Olimpia Kursa
- Department of Poultry Diseases, National Veterinary Research Institute, Puławy 24-100, Poland
| | - Tomasz Stenzel
- Department of Poultry Diseases, Faculty of Veterinary Medicine, University of Warmia and Mazury, Olsztyn 10-719, Poland
| | - Miklós Gyuranecz
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Budapest 1143, Hungary
| |
Collapse
|
10
|
Végi B, Bíró E, Grózner D, Drobnyák Á, Kreizinger Z, Gyuranecz M, Barna J. Mycoplasma species in the male reproductive organs and the fresh and frozen semen of the Hungarian native goose. Avian Pathol 2021; 50:458-464. [PMID: 34519598 DOI: 10.1080/03079457.2021.1978391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The objective of this study was to clarify whether the most common species of Mycoplasma can be detected in the reproductive organs and the cloaca, as well as in the semen of asymptomatic native Hungarian male geese. As it is necessary for the semen of that breed to be preserved pathogen-free in an in vitro gene-conservation programme, the presence of and sources of infection, as well as prevention of the survival of pathogens following semen cryopreservation, are key issues. Ten asymptomatic, 2-year-old ganders were tested. For the detection of mycoplasmas, samples were taken from both fresh and frozen/thawed semen, cloaca, phallus lymph, testes and vas deferens; that is five samples from each of the 10 ganders. The semen was statically frozen using dimethyl-formamide as a cryoprotectant and stored in liquid nitrogen at -196°C. Species-specific PCR systems targeting M. anserisalpingitidis, M. anseris and M. cloacale were used for screening and identification. Results of this study have shown, for the first time, that (1) among the three Mycoplasma species examined, all were detectable in the indigenous Hungarian ganders, with no clinical signs; (2) the pathogens could be detected in the cloaca, in both fresh and cryopreserved semen samples, but remained undetected within the inner reproductive organs; and (3) as pathogens were able to survive the freezing/storing/thawing procedures, the possibility of vertical transmission of the pathogens during artificial inseminations does exist, which causes problems in the in vitro gene-conservation programmes for this breed.
Collapse
Affiliation(s)
- Barbara Végi
- National Centre of Biodiversity and Gene Conservation, Institute for Animal Gene Conservation, Tapioszele, Hungary
| | - Enikő Bíró
- National Centre of Biodiversity and Gene Conservation, Institute for Animal Gene Conservation, Tapioszele, Hungary
| | - Dénes Grózner
- Veterinary Medical Research Institute, Budapest, Hungary
| | - Árpád Drobnyák
- National Centre of Biodiversity and Gene Conservation, Institute for Animal Gene Conservation, Tapioszele, Hungary
| | - Zsuzsa Kreizinger
- Veterinary Medical Research Institute, Budapest, Hungary.,MolliScience kft. Biatorbágy, Hungary
| | - Miklós Gyuranecz
- Veterinary Medical Research Institute, Budapest, Hungary.,MolliScience kft. Biatorbágy, Hungary
| | - Judit Barna
- National Centre of Biodiversity and Gene Conservation, Institute for Animal Gene Conservation, Tapioszele, Hungary
| |
Collapse
|
11
|
Sawicka-Durkalec A, Kursa O, Bednarz Ł, Tomczyk G. Occurrence of Mycoplasma spp. in wild birds: phylogenetic analysis and potential factors affecting distribution. Sci Rep 2021; 11:17065. [PMID: 34426624 PMCID: PMC8382738 DOI: 10.1038/s41598-021-96577-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 08/12/2021] [Indexed: 02/07/2023] Open
Abstract
Different Mycoplasma species have been reported in avian hosts. However, the majority of studies focus on one particular species of Mycoplasma or one host. In our research, we screened a total of 1141 wild birds representing 55 species, 26 families, and 15 orders for the presence of mycoplasmas by conventional PCR based on the 16S rRNA gene. Selected PCR products were sequenced to perform the phylogenetic analysis. All mycoplasma-positive samples were tested for M. gallisepticum and M. synoviae, which are considered the major pathogens of commercial poultry. We also verified the influence of ecological characteristics of the tested bird species including feeding habits, habitat types, and movement patterns. The presence of Mycoplasma spp. was confirmed in 498 birds of 29 species, but none of the tested birds were positive for M. gallisepticum or M. synoviae. We found possible associations between the presence of Mycoplasma spp. and all investigated ecological factors. The phylogenetic analysis showed a high variability of Mycoplasma spp.; however, some clustering of sequences was observed regarding particular bird species. We found that wild migratory waterfowl, particularly the white-fronted goose (Anser albifrons) and mallard (Anas platyrhynchos) could be reservoirs and vectors of mycoplasmas pathogenic to commercial waterfowl.
Collapse
Affiliation(s)
- Anna Sawicka-Durkalec
- grid.419811.4Department of Poultry Diseases, National Veterinary Research Institute, Aleja Partyzantów 57, 24-100 Puławy, Poland
| | - Olimpia Kursa
- grid.419811.4Department of Poultry Diseases, National Veterinary Research Institute, Aleja Partyzantów 57, 24-100 Puławy, Poland
| | - Łukasz Bednarz
- Bird Horizons Foundation, Spółdzielcza 34, 24-220 Niedrzwica Duża, Poland
| | - Grzegorz Tomczyk
- grid.419811.4Department of Poultry Diseases, National Veterinary Research Institute, Aleja Partyzantów 57, 24-100 Puławy, Poland
| |
Collapse
|
12
|
Sartini I, Łebkowska-Wieruszewska B, Lisowski A, Poapolathep A, Sitovs A, Giorgi M. Doxycycline pharmacokinetics in geese. J Vet Pharmacol Ther 2021; 44:975-981. [PMID: 34318509 PMCID: PMC9291109 DOI: 10.1111/jvp.13002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/28/2021] [Accepted: 07/13/2021] [Indexed: 11/30/2022]
Abstract
The study aims to describe the pharmacokinetics of doxycycline after a single intravenous and oral dose (20 mg/kg) in geese. In addition, two multiple‐dose simulations have been performed to investigate the predicted plasma concentration after either a 10 or 20 mg/kg daily administration repeated consecutively for 5 days. Ten geese were enrolled in a two‐phase cross‐over study with a washout period of two weeks. All animals were treated intravenously and orally with doxycycline, and blood samples were collected up to 48 h after drug administration. Sample analysis was performed using a validated HPLC‐UV method. A non‐compartmental approach was used to evaluate the pharmacokinetic parameters of the drug. A long elimination half‐life was observed (13 h). The area under the curve was statistically different between the two treatments, with the oral bioavailability being moderate (43%). The pharmacokinetic/pharmacodynamic index (%T>MIC) during the 48 h treatment period in the present study (71%) suggests that doxycycline appears to have therapeutic efficacy against some Mycoplasma species in the goose. The multiple‐dose simulations showed a low accumulation index. A dosage of 10 mg/kg/day for 5 days seemed to be adequate for a good therapeutic efficacy without reaching unnecessarily high plasma concentrations.
Collapse
Affiliation(s)
- Irene Sartini
- Department of Veterinary Medicine, University of Sassari, Sassari, Italy
| | - Beata Łebkowska-Wieruszewska
- Department of Pharmacology, Toxicology and Environmental Protection, University of Life Sciences, Lublin, Poland
| | - Andrzej Lisowski
- Institute of Animal Breeding and Biodiversity Conservation, University of Life Sciences, Lublin, Poland
| | - Amnart Poapolathep
- Department of Pharmacology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
| | - Andrejs Sitovs
- Department of Pharmacology, Riga Stradins University, Riga, Latvia
| | - Mario Giorgi
- Department of Veterinary Sciences, University of Pisa, Pisa, Italy.,Department of Veterinary Medicine, School of Veterinary Sciences, University of Sassari, Sassari, Italy
| |
Collapse
|
13
|
Fang H, Quan H, Zhang Y, Li Q, Wang Y, Yuan S, Huang S, He C. Co-Infection of Escherichia coli, Enterococcus faecalis and Chlamydia psittaci Contributes to Salpingitis of Laying Layers and Breeder Ducks. Pathogens 2021; 10:pathogens10060755. [PMID: 34203970 PMCID: PMC8232623 DOI: 10.3390/pathogens10060755] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 06/11/2021] [Accepted: 06/11/2021] [Indexed: 11/20/2022] Open
Abstract
Salpingitis is manifested as hemorrhagic follicular inflammation exudations and peritonitis, leading to reduced egg production and high culling of breeder flocks. From 2018 to 2021, increasing salpingitis during egg peak is threatening the poultry industry post-artificial insemination, both in breeder layers and breeder ducks across China. In our study, Escherichia coli (E. coli), Enterococcus faecalis(E. faecalis) and Chlamydia psittaci (C. psittaci) were isolated and identified from the diseased oviducts using biochemical tests and PCR. To identify and isolate pathogenicity, we inoculated the isolates into laying hens via an intravaginal route. Later, laying hens developed typical salpingitis after receiving the combination of the aforementioned three isolates (1 × 105 IFU/mL of C. psittaci and 1 × 106 CFU/mL of E. faecalis and E. coli, respectively), while less oviduct inflammation was observed in the layers inoculated with the above isolate alone. Furthermore, 56 breeder ducks were divided into seven groups, eight ducks per group. The birds received the combination of three isolates, synergic infection of E. coli and E. faecalis, and C. psittaci alone via vaginal tract, while the remaining ducks were inoculated with physiological saline as the control group. Egg production was monitored daily and lesions of oviducts and follicles were determined post-infection on day 6. Interestingly, typical salpingitis, degenerated follicles and yolk peritonitis were obviously found in the synergic infection of three isolates and the birds inoculated with C. psittaci alone developed hemorrhagic follicles and white exudates in oviducts, while birds with E. faecalis or E. coli alone did not develop typical salpingitis. Finally, higher E. coli loads were determined in the oviducts as compared to E. faecalis and C. psittaci infection. Taken together, the combination of E. coli and E. faecalis, and C. psittaci could induce typical salpingitis and yolk peritonitis both in laying hens and breeder ducks. Secondary infection of E. coli and E. faecalis via artificial insemination is urgently needed for investigation against salpingitis.
Collapse
Affiliation(s)
- Huanxin Fang
- College of Life Science and Engineering, Foshan University, Foshan 528011, China; (H.F.); (S.Y.); (S.H.)
| | - Hongkun Quan
- Key Lab of Animal Epidemiology and Zoonoses of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agriculture University, Beijing 100193, China; (H.Q.); (Y.Z.); (Q.L.); (Y.W.)
| | - Yuhang Zhang
- Key Lab of Animal Epidemiology and Zoonoses of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agriculture University, Beijing 100193, China; (H.Q.); (Y.Z.); (Q.L.); (Y.W.)
| | - Qiang Li
- Key Lab of Animal Epidemiology and Zoonoses of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agriculture University, Beijing 100193, China; (H.Q.); (Y.Z.); (Q.L.); (Y.W.)
| | - Yihui Wang
- Key Lab of Animal Epidemiology and Zoonoses of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agriculture University, Beijing 100193, China; (H.Q.); (Y.Z.); (Q.L.); (Y.W.)
| | - Sheng Yuan
- College of Life Science and Engineering, Foshan University, Foshan 528011, China; (H.F.); (S.Y.); (S.H.)
| | - Shujian Huang
- College of Life Science and Engineering, Foshan University, Foshan 528011, China; (H.F.); (S.Y.); (S.H.)
| | - Cheng He
- College of Life Science and Engineering, Foshan University, Foshan 528011, China; (H.F.); (S.Y.); (S.H.)
- Key Lab of Animal Epidemiology and Zoonoses of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agriculture University, Beijing 100193, China; (H.Q.); (Y.Z.); (Q.L.); (Y.W.)
- Correspondence:
| |
Collapse
|
14
|
Kovács ÁB, Wehmann E, Sváb D, Bekő K, Grózner D, Mitter A, Bali K, Morrow CJ, Bányai K, Gyuranecz M. Novel prophage-like sequences in Mycoplasma anserisalpingitidis. INFECTION GENETICS AND EVOLUTION 2021; 92:104886. [PMID: 33932611 DOI: 10.1016/j.meegid.2021.104886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 04/16/2021] [Accepted: 04/26/2021] [Indexed: 10/21/2022]
Abstract
Mycoplasma anserisalpingitidis is a bacterial waterfowl pathogen. In these days of growing antibiotic resistance, it is necessary to search for alternative methods of defense against Mycoplasma impacts in flocks. In order to identify prophage-like sequences, three established bioinformatics tools (PHASTER, PhiSpy, Prophage Hunter) were used in this study for the in silico screening of 82 M. anserisalpingitidis whole genomes. The VIBRANT software was used as a novel approach to further investigate the possibility of prophages in the sequences. The commonly used softwares found prophage-like sequences in the strains, but the results were inconclusive. The VIBRANT search resulted in multiple hits, and many of them were over 10,000 base pairs (bp). These putative prophages are comparable in size to the few described mycoplasma phages. The translated coding DNA sequences of the putative prophages were checked with protein BLAST. The functions of the proteins found by the BLASTP search are common among bacteriophages. The BLASTN search of the sequences found that many of these were more similar to the M. anatis NCTC 10156 strain, rather than the available M. anserisalpingitidis strains. The initial screening pointed at the presence of novel bacteriophages in the M. anserisalpingitidis and M. anatis strains. The VIBRANT search results were very similar to each other and none of these sequences were part of the core genome of M. anserisalpingitidis, with a few exceptions. The VIBRANT analysis explored presumably intact, novel prophages.
Collapse
Affiliation(s)
- Áron B Kovács
- Institute for Veterinary Medical Research, Centre for Agricultural Research, H-1143 Hungária krt. 21, Budapest, Hungary
| | - Enikő Wehmann
- Institute for Veterinary Medical Research, Centre for Agricultural Research, H-1143 Hungária krt. 21, Budapest, Hungary
| | - Domonkos Sváb
- Institute for Veterinary Medical Research, Centre for Agricultural Research, H-1143 Hungária krt. 21, Budapest, Hungary
| | - Katinka Bekő
- Institute for Veterinary Medical Research, Centre for Agricultural Research, H-1143 Hungária krt. 21, Budapest, Hungary
| | - Dénes Grózner
- Institute for Veterinary Medical Research, Centre for Agricultural Research, H-1143 Hungária krt. 21, Budapest, Hungary
| | - Alexa Mitter
- Institute for Veterinary Medical Research, Centre for Agricultural Research, H-1143 Hungária krt. 21, Budapest, Hungary
| | - Krisztina Bali
- Institute for Veterinary Medical Research, Centre for Agricultural Research, H-1143 Hungária krt. 21, Budapest, Hungary
| | - Christopher J Morrow
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Krisztián Bányai
- Institute for Veterinary Medical Research, Centre for Agricultural Research, H-1143 Hungária krt. 21, Budapest, Hungary
| | - Miklós Gyuranecz
- Institute for Veterinary Medical Research, Centre for Agricultural Research, H-1143 Hungária krt. 21, Budapest, Hungary.
| |
Collapse
|
15
|
Grózner D, Kovács ÁB, Wehmann E, Kreizinger Z, Bekő K, Mitter A, Sawicka A, Jánosi S, Tomczyk G, Morrow CJ, Bányai K, Gyuranecz M. Multilocus sequence typing of the goose pathogen Mycoplasma anserisalpingitidis. Vet Microbiol 2020; 254:108972. [PMID: 33422690 DOI: 10.1016/j.vetmic.2020.108972] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 12/21/2020] [Indexed: 11/27/2022]
Abstract
Mycoplasma anserisalpingitidis infection is associated with the inflammation of the genital tract and cloaca, embryo lethality, and decreased egg production in geese, leading to serious economic losses. M. anserisalpingitidis has been detected mainly in Central and Eastern Europe, especially in Hungary, but the pathogen was identified recently in China, predicting it's worldwide occurrence. In this study, a novel multilocus sequence typing (MLST) scheme was developed to analyse phylogenetic relationships between M. anserisalpingitidis field isolates and clinical specimens originating from different geographical locations. Five loci (atpG, fusA, pgiB, plsY, and uvrA) were selected for the final MLST study. The examined 89 M. anserisalpingitidis samples yielded 76 unique sequence types with a 0.994 Simpson's index of diversity. The samples were originated from Hungary, Poland, Ukraine, China, and Vietnam. Phylogenetic analysis revealed the existence of three distinct clades (A-C) and six subclades within clade C. Generally, samples originating from the same geographical locations or livestock integration clustered together. Isolates in clade A showed the closest relationships to the M. anatis outgroup due to sequence similarity of the plsY locus. The highest genetic distance was observed in 5C among the subclades of clade C, containing the Asian and some Hungarian field isolates. The developed MLST assay revealed high diversity of the investigated M. anserisalpingitidis samples. The method proved to be a valuable and cost-effective tool for sequence typing of this waterfowl Mycoplasma species, enabling the better understanding of its phylogeny and providing a robust assay for future molecular epidemiological investigations.
Collapse
Affiliation(s)
- Dénes Grózner
- Institute for Veterinary Medical Research, Centre for Agricultural Research, 1143, Budapest, Hungária Krt. 21., Hungary.
| | - Áron Botond Kovács
- Institute for Veterinary Medical Research, Centre for Agricultural Research, 1143, Budapest, Hungária Krt. 21., Hungary.
| | - Enikő Wehmann
- Institute for Veterinary Medical Research, Centre for Agricultural Research, 1143, Budapest, Hungária Krt. 21., Hungary.
| | - Zsuzsa Kreizinger
- Institute for Veterinary Medical Research, Centre for Agricultural Research, 1143, Budapest, Hungária Krt. 21., Hungary.
| | - Katinka Bekő
- Institute for Veterinary Medical Research, Centre for Agricultural Research, 1143, Budapest, Hungária Krt. 21., Hungary.
| | - Alexa Mitter
- Institute for Veterinary Medical Research, Centre for Agricultural Research, 1143, Budapest, Hungária Krt. 21., Hungary.
| | - Anna Sawicka
- Department of Poultry Diseases, National Veterinary Research Institute, 24-100, Pulawy, Aleja Partyzantow 57, Poland.
| | - Szilárd Jánosi
- Veterinary Diagnostic Directorate, National Food Chain Safety Office, 1143, Budapest, Tábornok u. 2., Hungary.
| | - Grzegorz Tomczyk
- Department of Poultry Diseases, National Veterinary Research Institute, 24-100, Pulawy, Aleja Partyzantow 57, Poland.
| | - Christopher John Morrow
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Melbourne, Victoria, 3010, Australia.
| | - Krisztián Bányai
- Institute for Veterinary Medical Research, Centre for Agricultural Research, 1143, Budapest, Hungária Krt. 21., Hungary.
| | - Miklós Gyuranecz
- Institute for Veterinary Medical Research, Centre for Agricultural Research, 1143, Budapest, Hungária Krt. 21., Hungary; Department of Microbiology and Infectious Diseases, University of Veterinary Medicine, 1078, Budapest, István u. 2., Hungary.
| |
Collapse
|