1
|
Solazzo D, Moretti MV, Tchamba JJ, Rafael MFF, Tonini M, Fico G, Basterrecea T, Levi S, Marini L, Bruschi P. Preserving Ethnoveterinary Medicine (EVM) along the Transhumance Routes in Southwestern Angola: Synergies between International Cooperation and Academic Research. PLANTS (BASEL, SWITZERLAND) 2024; 13:670. [PMID: 38475516 DOI: 10.3390/plants13050670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 02/15/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024]
Abstract
This study delves into the ethnoveterinary medicine (EVM) practiced by pastoralists along the transhumance routes in southwestern Angola. Within the framework of three cooperation projects, we conducted 434 interviews, collecting information on 89 taxa used for treating 16 livestock diseases. The most cited species was Ptaeroxylon obliquum (132 citations), followed by Salvadora persica (59) and Elaeodendron transvaalense (49). Contagious bovine pleuropneumonia (CBPP) was the disease most cited (223 citations; 44 species), followed by wounds (95; 20) and Newcastle (86; 14). We found that 30 species and 48 uses have not been previously reported in the ethnoveterinary literature. Jaccard index (mean value = 0.13) showed a greatly diversified knowledge among the ethnic groups: Kuvale and Nyaneka were the most knowledgeable and should be included in the various strategies for disseminating EVM in the area. Most informants recognized that abundance of some species decreased in the last years as a result of human activities and climatic changes. Finally, we discuss challenges in preserving the EVM in the area. Our findings suggest that preservation of the EVM in southwestern Angola is widely impacted by the access to biomedicine. Future studies should investigate the opportunity to integrate traditional medicine into mainstream development projects, which is crucial for decolonizing the veterinary sector in Angola.
Collapse
Affiliation(s)
- David Solazzo
- FAO Angola Country Office, Largo Antonio Jacinto, 4° Andar, Luanda Caixa Postal 10043, Angola
- Dipartimento di Scienze e Tecnologie Agrarie, Alimentari, Ambientali e Forestali (DAGRI), Università di Firenze, Piazzale delle Cascine 18, 50144 Firenze, Italy
| | - Maria Vittoria Moretti
- Dipartimento di Scienze e Tecnologie Agrarie, Alimentari, Ambientali e Forestali (DAGRI), Università di Firenze, Piazzale delle Cascine 18, 50144 Firenze, Italy
| | - José J Tchamba
- Centro de Estudos da Biodiversidade e Educação Ambiental, Instituto Superior de Ciências da Educação da Huíla (ISCED-Huíla), Rua Sarmeto Rodrigues, Lubango Caixa Postal 230, Angola
| | - Marina Filomena Francisco Rafael
- Centro de Estudos da Biodiversidade e Educação Ambiental, Instituto Superior de Ciências da Educação da Huíla (ISCED-Huíla), Rua Sarmeto Rodrigues, Lubango Caixa Postal 230, Angola
| | - Matteo Tonini
- FAO Angola Country Office, Largo Antonio Jacinto, 4° Andar, Luanda Caixa Postal 10043, Angola
- Dipartimento di Scienze e Tecnologie Agrarie, Alimentari, Ambientali e Forestali (DAGRI), Università di Firenze, Piazzale delle Cascine 18, 50144 Firenze, Italy
| | - Gelsomina Fico
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Via Mangiagalli 25, 20133 Milano, Italy
| | - Txaran Basterrecea
- FAO Angola Country Office, Largo Antonio Jacinto, 4° Andar, Luanda Caixa Postal 10043, Angola
| | - Silvano Levi
- Instituto Superior Poletécnico Sinodal de Lubango, Rua cdt Hoji ya Henda, Lubango, Angola
| | - Lorenzo Marini
- Dipartimento di Scienze e Tecnologie Agrarie, Alimentari, Ambientali e Forestali (DAGRI), Università di Firenze, Piazzale delle Cascine 18, 50144 Firenze, Italy
| | - Piero Bruschi
- Dipartimento di Scienze e Tecnologie Agrarie, Alimentari, Ambientali e Forestali (DAGRI), Università di Firenze, Piazzale delle Cascine 18, 50144 Firenze, Italy
| |
Collapse
|
2
|
Liu HY, Zhu C, Zhu M, Yuan L, Li S, Gu F, Hu P, Chen S, Cai D. Alternatives to antibiotics in pig production: looking through the lens of immunophysiology. STRESS BIOLOGY 2024; 4:1. [PMID: 38163818 PMCID: PMC10758383 DOI: 10.1007/s44154-023-00134-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 11/02/2023] [Indexed: 01/03/2024]
Abstract
In the livestock production system, the evolution of porcine gut microecology is consistent with the idea of "The Hygiene Hypothesis" in humans. I.e., improved hygiene conditions, reduced exposure to environmental microorganisms in early life, and frequent use of antimicrobial drugs drive immune dysregulation. Meanwhile, the overuse of antibiotics as feed additives for infectious disease prevention and animal growth induces antimicrobial resistance genes in pathogens and spreads related environmental pollutants. It justifies our attempt to review alternatives to antibiotics that can support optimal growth and improve the immunophysiological state of pigs. In the current review, we first described porcine mucosal immunity, followed by discussions of gut microbiota dynamics during the critical weaning period and the impacts brought by antibiotics usage. Evidence of in-feed additives with immuno-modulatory properties highlighting probiotics, prebiotics, and phytobiotics and their cellular and molecular networking are summarized and reviewed. It may provide insights into the immune regulatory mechanisms of antibiotic alternatives and open new avenues for health management in pig production.
Collapse
Affiliation(s)
- Hao-Yu Liu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, PR China
- Joint International Research Laboratory of Agricultural & Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Chuyang Zhu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, PR China
| | - Miaonan Zhu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, PR China
| | - Long Yuan
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, PR China
| | - Shicheng Li
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, PR China
| | - Fang Gu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, PR China
| | - Ping Hu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, PR China
| | - Shihao Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, PR China
- Joint International Research Laboratory of Agricultural & Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Demin Cai
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, PR China.
- Joint International Research Laboratory of Agricultural & Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China.
| |
Collapse
|
3
|
Mehdiyeva GM. Synthesis of Allyl- and Propenyl-Substituted 1,3-Benzoxazines and Their Antimicrobial Activity. Pharm Chem J 2023. [DOI: 10.1007/s11094-023-02791-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
4
|
de Jesús Dzul-Beh A, Uc-Cachón AH, González-Sánchez AA, Dzib-Baak HE, Ortiz-Andrade R, Barrios-García HB, Jiménez-Delgadillo B, Molina-Salinas GM. Antimicrobial potential of the Mayan medicine plant Matayba oppositifolia (A. Rich.) Britton against antibiotic-resistant priority pathogens. JOURNAL OF ETHNOPHARMACOLOGY 2023; 300:115738. [PMID: 36165961 DOI: 10.1016/j.jep.2022.115738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/13/2022] [Accepted: 09/14/2022] [Indexed: 06/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The bark of Matayba oppositifolia (A. Rich.) Britton (commonly known as "huaya" or "palo huacax") is commonly utilized in traditional Mayan medicine for treating diarrhea and for canker and other sores. AIM OF THE STUDY The aim of this study was to investigate the in-vitro antimicrobial activity of M. oppositifolia bark extracts against drug-susceptible and -resistant ESKAPE-E pathogens. In addition, the phytochemical composition of the best antibacterial extract was analyzed. MATERIALS AND METHODS The bark extracts were prepared with different solvents, including water, n-hexane, ethyl acetate and methanol. These were tested against ESKAPE-E (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa and Enterobacter spp., including Escherichia coli) strains using Resazurin Microtiter Assay. In addition, the composition of the most active extract was analyzed by GC-MS. RESULTS The aqueous and organic bark extracts showed activity on drug-susceptible and -resistant ESKAPE-E microbes (MIC = 1000-31.25 μg/mL). The n-hexane bark extract was more active against the superbugs carbapenem-resistant K. pneumoniae (MIC = 500-31.25 μg/mL) and A. baumannii (MIC = 250-125 μg/mL). The GC-MS analysis of this extract allowed the identification of 12 phytochemicals as the potential antibacterial compounds. The major compounds identified were palmitic acid (1), friedelan-3-one (2) and 7-dehydrodiosgenin (3). CONCLUSION The present study reveals the strong in-vitro antibacterial activity of the n-hexane extract from the bark of M. oppositifolia and demonstrates the potential of natural products as a source of antibacterial compounds or phytomedicines that are specifically effective against drug-resistant ESKAPE-E bugs. Additionally, our investigation contributes to the ethnopharmacological knowledge and reappraisal of Mayan medicinal flora, as well as supports the traditional use of the bark of the medicinal plant M. oppositifolia for the treatment of infectious diseases.
Collapse
Affiliation(s)
- Angel de Jesús Dzul-Beh
- Unidad de Investigación Médica Yucatán, Instituto Mexicano del Seguro Social, Mérida, Yucatán, Mexico
| | - Andrés Humberto Uc-Cachón
- Unidad de Investigación Médica Yucatán, Instituto Mexicano del Seguro Social, Mérida, Yucatán, Mexico
| | | | - Haziel Eleazar Dzib-Baak
- Unidad de Investigación Médica Yucatán, Instituto Mexicano del Seguro Social, Mérida, Yucatán, Mexico
| | | | - Hugo B Barrios-García
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Tamaulipas, Ciudad Victoria, Tamaulipas, Mexico
| | | | | |
Collapse
|
5
|
Zhan Y, Tong H, He S, Zhu H, Guo H, Sun H, Liu M. A New 7-azaindole Structure Analog: Molecular Docking, Synthesis and Preliminary Biological Activity in vitro for Anticancer. Chem Biodivers 2022; 19:e202200692. [PMID: 36082623 DOI: 10.1002/cbdv.202200692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 09/08/2022] [Indexed: 11/11/2022]
Abstract
In this work, a series of 7-azaindole analogs was designed by the bioisosteric principle based on pharmacodynamic parent nucleus. Moreover, 5-Chloro-3-{[2-({[6-(trifluoromethyl) pyridin-3-yl]methyl}amino)pyrimidin-5-yl]methyl}-1H-pyrrolo[2,3-b]pyridine (compound P1 ) with the strongest interaction with colony-stimulating factor 1 receptor (CSF-1R) was screened by molecular docking. Compound P1 was successfully prepared by the six-step reaction with HPLC purity of 99.26% and characterized by 1 H NMR and ESI-MS spectra. In vitro bioactivity study showed that compound P1 appeared the cytotoxicity to MCF-7 and A549 cells, especially to HOS cells (IC 50 = 88.79 ± 8.07 nM), while it had lower toxicity to normal L929 cells (IC 50 = 140.49 ± 8.03 μM). In addition, compound P1 could induce HOS cell death by apoptosis and blocking the G0/G1 phase at nanomolar concentrations. The obtained results indicated that compound P1 might be a promising candidate compound for anticancer drug.
Collapse
Affiliation(s)
- Yifeng Zhan
- Hubei University of Technology, Pharmaceutical Engineering, Nanli Road 28, 430068, Wuhan, CHINA
| | - Hang Tong
- Hubei University of Technology, Pharmaceutical Engineering, Nanli Road 28, 430068, Wuhan, CHINA
| | - Shibo He
- Hubei University of Technology, Pharmaceutical Engineering, Nanli Road 28, 430068, Wuhan, CHINA
| | - Hongda Zhu
- Hubei University of Technology, Pharmaceutical Engineering, Nanli Road 28, 430068, Wuhan, CHINA
| | - Huiling Guo
- Hubei University of Technology, Pharmaceutical Engineering, Nanli Road 28, 430068, Wuhan, CHINA
| | - Hongmei Sun
- Hubei University of Technology, Pharmaceutical Engineering, Nanli Road 28, 430068, Wuhan, CHINA
| | - Mingxing Liu
- Hubei University of Technology, Pharmaceutical Engineering, Nanli Road 28, 430068, Wuhan, CHINA
| |
Collapse
|
6
|
Mehdiyeva GM. Synthesis and Antimicrobial Activity of 3-Substituted 8-Propenylbenzo[e][1,3]oxazines. RUSS J APPL CHEM+ 2022. [DOI: 10.1134/s1070427222020070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
7
|
Abstract
The recent COVID-19 pandemic requires long-term and real-life applicable antimicrobial skin protection. However, there has been no practical solution to prevent cross-infection while preserving intrinsic skin naturalness. Conventional blocking-based approaches such as gloves cannot preserve the skin sterility and modify the morphology, temperature change rate, and humidity affecting our sensation and comfort. Here, we propose a skin-attachable protection platform copper nanomesh, which prevents cross-infection while maintaining skin naturalness. Copper nanomesh composed of copper coating and interconnected polymer nanofibers kills 99.99% of bacteria and viruses within 1 and 10 min and prevents bacterial cross-infection. The thin and porous structure of the nanomesh enables natural skin-environment interaction in terms of the morphology, temperature change rate, and humidity compared to films or gloves. The functional support and advancement of our body while preserving inherent naturalness is one of the ultimate goals of bioengineering. Skin protection against infectious pathogens is an application that requires common and long-term wear without discomfort or distortion of the skin functions. However, no antimicrobial method has been introduced to prevent cross-infection while preserving intrinsic skin conditions. Here, we propose an antimicrobial skin protection platform copper nanomesh, which prevents cross-infectionmorphology, temperature change rate, and skin humidity. Copper nanomesh exhibited an inactivation rate of 99.99% for Escherichia coli bacteria and influenza virus A within 1 and 10 min, respectively. The thin and porous nanomesh allows for conformal coating on the fingertips, without significant interference with the rate of skin temperature change and humidity. Efficient cross-infection prevention and thermal transfer of copper nanomesh were demonstrated using direct on-hand experiments.
Collapse
|
8
|
Uddin ABMN, Hossain F, Reza ASMA, Nasrin MS, Alam AHMK. Traditional uses, pharmacological activities, and phytochemical constituents of the genus Syzygium: A review. Food Sci Nutr 2022; 10:1789-1819. [PMID: 35702283 PMCID: PMC9179155 DOI: 10.1002/fsn3.2797] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 02/04/2022] [Accepted: 02/11/2022] [Indexed: 12/13/2022] Open
Abstract
The genus Syzygium comprises 1200-1800 species that belong to the family of Myrtaceae. Moreover, plants that are belonged to this genus are being used in the traditional system of medicine in Asian countries, especially in China, India, and Bangladesh. The aim of this review is to describe the scientific works and to provide organized information on the available traditional uses, phytochemical constituents, and pharmacological activities of mostly available species of the genus Syzygium in Bangladesh. The information related to genus Syzygium was analytically composed from the scientific databases, including PubMed, Google Scholar, Science Direct, Web of Science, Wiley Online Library, Springer, Research Gate link, published books, and conference proceedings. Bioactive compounds such as flavanone derivatives, ellagic acid derivatives and other polyphenolics, and terpenoids are reported from several species of the genus Syzygium. However, many members of the species of the genus Syzygium need further comprehensive studies regarding phytochemical constituents and mechanism-based pharmacological activities.
Collapse
Affiliation(s)
- A. B. M. Neshar Uddin
- Department of Pharmaceutical SciencesNorth South UniversityDhakaBangladesh
- Department of PharmacyFaculty of Science and EngineeringInternational Islamic University ChittagongChittagongBangladesh
| | - Farhad Hossain
- Department of PharmacyUniversity of RajshahiRajshahiBangladesh
| | - A. S. M. Ali Reza
- Department of PharmacyFaculty of Science and EngineeringInternational Islamic University ChittagongChittagongBangladesh
| | - Mst. Samima Nasrin
- Department of PharmacyFaculty of Science and EngineeringInternational Islamic University ChittagongChittagongBangladesh
| | | |
Collapse
|
9
|
Attallah NGM, Mokhtar FA, Elekhnawy E, Heneidy SZ, Ahmed E, Magdeldin S, Negm WA, El-Kadem AH. Mechanistic Insights on the In Vitro Antibacterial Activity and In Vivo Hepatoprotective Effects of Salvinia auriculata Aubl against Methotrexate-Induced Liver Injury. Pharmaceuticals (Basel) 2022; 15:ph15050549. [PMID: 35631375 PMCID: PMC9145932 DOI: 10.3390/ph15050549] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 04/24/2022] [Accepted: 04/27/2022] [Indexed: 02/04/2023] Open
Abstract
Methotrexate (MTX) is widely used in the treatment of numerous malignancies; however, its use is associated with marked hepatotoxicity. Herein, we assessed the possible hepatoprotective effects of Salvinia auriculata methanol extract (SAME) against MTX-induced hepatotoxicity and elucidated the possible fundamental mechanisms that mediated such protective effects for the first time. Forty mice were randomly allocated into five groups (eight/group). Control saline, MTX, and MTX groups were pre-treated with SAME 10, 20, and 30 mg/kg. The results revealed that MTX caused a considerable increase in blood transaminase and lactate dehydrogenase levels, oxidative stress, significant activation of the Nod-like receptor-3 (NLPR3)/caspase-1 inflammasome axis, and its downstream inflammatory cytokines interleukin-1β (IL-1β) and interleukin-18 (IL-18). MTX also down-regulated nuclear factor erythroid 2-related factor 2 (Nrf2) expression. Additionally, it increased the immunostaining of nuclear factor kappa-B (NF-κB) and downstream inflammatory mediators. Furthermore, the hepatic cellular apoptosis was dramatically up-regulated in the MTX group. On the contrary, prior treatment with SAME significantly improved biochemical, histopathological, immunohistochemical alterations caused by MTX in a dose-dependent manner. The antibacterial activity of SAME has also been investigated against Acinetobacter baumannii clinical isolates. LC-ESI-MS/MS contributed to the authentication of the studied plant and identified 24 active constituents that can be accountable for the SAME-exhibited effects. Thus, our findings reveal new evidence of the hepatoprotective and antibacterial properties of SAME that need further future investigation.
Collapse
Affiliation(s)
- Nashwah G. M. Attallah
- Department of Pharmaceutical Science, College of Pharmacy, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia;
| | - Fatma Alzahraa Mokhtar
- Department of Pharmacognosy, Faculty of Pharmacy, ALSalam University, Kafr El Zayat 31616, Al Gharbiya, Egypt
- Correspondence: (F.A.M.); (W.A.N.)
| | - Engy Elekhnawy
- Pharmaceutical Microbiology Department, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt;
| | - Selim Z. Heneidy
- Department of Botany & Microbiology, Faculty of Science, Alexandria University, Alexandria 21521, Egypt;
| | - Eman Ahmed
- Department of Pharmacology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt;
- Proteomics and Metabolomics Research Program, Department of Basic Research, Children’s Cancer Hospital 57357, Cairo 11441, Egypt;
| | - Sameh Magdeldin
- Proteomics and Metabolomics Research Program, Department of Basic Research, Children’s Cancer Hospital 57357, Cairo 11441, Egypt;
- Department of Physiology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Walaa A. Negm
- Department of Pharmacognosy, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt
- Correspondence: (F.A.M.); (W.A.N.)
| | - Aya H. El-Kadem
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt;
| |
Collapse
|
10
|
Li L, Sun X, Zhao D, Dai H. Pharmacological Applications and Action Mechanisms of Phytochemicals as Alternatives to Antibiotics in Pig Production. Front Immunol 2021; 12:798553. [PMID: 34956234 PMCID: PMC8695855 DOI: 10.3389/fimmu.2021.798553] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 11/22/2021] [Indexed: 12/13/2022] Open
Abstract
Antibiotics are widely used for infectious diseases and feed additives for animal health and growth. Antibiotic resistant caused by overuse of antibiotics poses a global health threat. It is urgent to choose safe and environment-friendly alternatives to antibiotics to promote the ecological sustainable development of the pig industry. Phytochemicals are characterized by little residue, no resistance, and minimal side effects and have been reported to improve animal health and growth performance in pigs, which may become a promising additive in pig production. This paper summarizes the biological functions of recent studies of phytochemicals on growth performance, metabolism, antioxidative capacity, gut microbiota, intestinal mucosa barrier, antiviral, antimicrobial, immunomodulatory, detoxification of mycotoxins, as well as their action mechanisms in pig production. The review may provide the theoretical basis for the application of phytochemicals functioning as alternative antibiotic additives in the pig industry.
Collapse
Affiliation(s)
- Lexing Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Xueyan Sun
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Dai Zhao
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Hanchuan Dai
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
11
|
Attallah NGM, Negm WA, Elekhnawy E, Elmongy EI, Altwaijry N, El-Haroun H, El-Masry TA, El-Sherbeni SA. Elucidation of Phytochemical Content of Cupressus macrocarpa Leaves: In Vitro and In Vivo Antibacterial Effect against Methicillin-Resistant Staphylococcus aureus Clinical Isolates. Antibiotics (Basel) 2021; 10:antibiotics10080890. [PMID: 34438940 PMCID: PMC8388636 DOI: 10.3390/antibiotics10080890] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/12/2021] [Accepted: 07/15/2021] [Indexed: 01/25/2023] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is an important human pathogen that causes various infections. The increasing resistance of MRSA to different antibiotics is widely spreading; therefore, plant extracts may be novel therapeutic alternatives. The phytochemical profiling of Cupressus macrocarpa Hartw. ex Gordon leaves in vitro, and in vivo, antimicrobial potential of its extracts against MRSA clinical isolates were explored. A phytochemical tentative identification of 49 compounds was performed in the leaves using LC-ESI-MS/MS; in addition, isolation, and structure elucidation of hesperidin and eriocitrin were achieved for the first time. The diethyl ether extract (DEEL) exhibited the best antibacterial effect with MIC values ranging from 2 to 8 µg/mL, which significantly reduced the growth and efflux activity in 48.78% and 29.26% of isolates, respectively. qRT-PCR showed a significant down expression of norA and norB genes, which significantly affected the bacterial cell morphology and had a non-significant effect on membrane depolarization (using flow cytometry). In a rat model, four groups were wounded and treated with normal saline or DEEL, or infected with MRSA, or infected and treated with DEEL. The regeneration of the epidermis, maturation of granulation tissue, and reduction of inflammatory cell infiltration were observed after treatment with DEEL. Thus, C. macrocarpa leaves may be a promising source for new antimicrobials against MRSA.
Collapse
Affiliation(s)
- Nashwah G. M. Attallah
- Pharmaceutical Sciences Department, College of Pharmacy, Princess Nourah Bint Abdulrahman University, Riyadh 84428, Saudi Arabia; (N.G.M.A.); (N.A.)
- Egyptian Drug Authority (EDA), Giza 8655, Egypt (previously NODCAR)
| | - Walaa A. Negm
- Pharmacognosy Department, Faculty of Pharmacy, Tanta University, Tanta 31111, Egypt; (W.A.N.); (S.A.E.-S.)
| | - Engy Elekhnawy
- Pharmaceutical Microbiology Department, Faculty of Pharmacy, Tanta University, Tanta 31111, Egypt
- Correspondence: (E.E.); or (E.I.E.)
| | - Elshaymaa I. Elmongy
- Pharmaceutical Sciences Department, College of Pharmacy, Princess Nourah Bint Abdulrahman University, Riyadh 84428, Saudi Arabia; (N.G.M.A.); (N.A.)
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Helwan University, Helwan 11795, Egypt
- Correspondence: (E.E.); or (E.I.E.)
| | - Najla Altwaijry
- Pharmaceutical Sciences Department, College of Pharmacy, Princess Nourah Bint Abdulrahman University, Riyadh 84428, Saudi Arabia; (N.G.M.A.); (N.A.)
| | - Hala El-Haroun
- Histology Department, Faculty of Medicine, Menoufia University, Shibin Al Kawm 32511, Egypt;
| | - Thanaa A. El-Masry
- Pharmacology Department, Faculty of Pharmacy, Tanta University, Tanta 31111, Egypt;
| | - Suzy A. El-Sherbeni
- Pharmacognosy Department, Faculty of Pharmacy, Tanta University, Tanta 31111, Egypt; (W.A.N.); (S.A.E.-S.)
| |
Collapse
|