1
|
Chen B, Liu J. Advancements in Hydrogel-Based Therapies for Ovarian Cancer: A Review. Cell Biochem Biophys 2024:10.1007/s12013-024-01483-7. [PMID: 39190214 DOI: 10.1007/s12013-024-01483-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/09/2024] [Indexed: 08/28/2024]
Abstract
Ovarian cancer, the most deadly gynecologic malignancy, is often resistant to conventional antitumor therapy due to various factors such as severe side effects, unexpected recurrence, and significant tissue damage. The limitations of current treatments and the resistance of invasive tumor cells contribute to these challenges. Hydrogel therapy has recently emerged as a potential treatment option for ovarian cancer, offering advantages such as controllability, biocompatibility, high drug loading capacity, prolonged drug release, and responsiveness to specific stimuli. Hence, the utilization of biodegradable hydrogels as carriers for chemotherapeutic agents has emerged as a significant concern in the field. Injectable hydrogel-based drug delivery systems, in particular, have demonstrated superior efficacy compared to traditional systemic chemotherapy for cancer treatment. The pliability of hydrogel therapy allows for access to anatomical regions that may be challenging for surgical intervention. This review article examines recent advancements in the application of hydrogels for diagnosing and treating ovarian cancer, while also proposing a novel direction for the use of hydrogel technology in this context. The objective of this article is to offer a novel point of reference and serve as a source of inspiration for the advancement of more precise and individualized cancer therapies.
Collapse
Affiliation(s)
- Biqing Chen
- Harbin Medical University, Harbin, Heilongjiang, China.
| | - Jiaqi Liu
- Jilin University, Changchun, Jilin, China
| |
Collapse
|
2
|
Finding EJT, Faulkner A, Nash L, Wheeler-Jones CPD. Equine Endothelial Cells Show Pro-Angiogenic Behaviours in Response to Fibroblast Growth Factor 2 but Not Vascular Endothelial Growth Factor A. Int J Mol Sci 2024; 25:6017. [PMID: 38892205 PMCID: PMC11172845 DOI: 10.3390/ijms25116017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/14/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024] Open
Abstract
Understanding the factors which control endothelial cell (EC) function and angiogenesis is crucial for developing the horse as a disease model, but equine ECs remain poorly studied. In this study, we have optimised methods for the isolation and culture of equine aortic endothelial cells (EAoECs) and characterised their angiogenic functions in vitro. Mechanical dissociation, followed by magnetic purification using an anti-VE-cadherin antibody, resulted in EC-enriched cultures suitable for further study. Fibroblast growth factor 2 (FGF2) increased the EAoEC proliferation rate and stimulated scratch wound closure and tube formation by EAoECs on the extracellular matrix. Pharmacological inhibitors of FGF receptor 1 (FGFR1) (SU5402) or mitogen-activated protein kinase (MEK) (PD184352) blocked FGF2-induced extracellular signal-regulated kinase 1/2 (ERK1/2) phosphorylation and functional responses, suggesting that these are dependent on FGFR1/MEK-ERK signalling. In marked contrast, vascular endothelial growth factor-A (VEGF-A) had no effect on EAoEC proliferation, migration, or tubulogenesis and did not promote ERK1/2 phosphorylation, indicating a lack of sensitivity to this classical pro-angiogenic growth factor. Gene expression analysis showed that unlike human ECs, FGFR1 is expressed by EAoECs at a much higher level than both VEGF receptor (VEGFR)1 and VEGFR2. These results suggest a predominant role for FGF2 versus VEGF-A in controlling the angiogenic functions of equine ECs. Collectively, our novel data provide a sound basis for studying angiogenic processes in horses and lay the foundations for comparative studies of EC biology in horses versus humans.
Collapse
Affiliation(s)
- Elizabeth J. T. Finding
- Department of Comparative Biomedical Sciences, Royal Veterinary College, Royal College Street, London NW1 0TU, UK; (A.F.); (L.N.); (C.P.D.W.-J.)
| | | | | | | |
Collapse
|
3
|
Ribeiro G, Carvalho L, Borges J, Prazeres J. The Best Protocol to Treat Equine Skin Wounds by Second Intention Healing: A Scoping Review of the Literature. Animals (Basel) 2024; 14:1500. [PMID: 38791717 PMCID: PMC11117370 DOI: 10.3390/ani14101500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/06/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024] Open
Abstract
Equine skin wound treatment continues to be a challenge for veterinarians. Despite being a frequent practice, it remains difficult to choose an evidence-based treatment protocol. This study aimed to comprehensively explore the literature and provide a scoping review of therapeutic strategies for equine skin wounds and identify knowledge gaps and opportunities for future research. This review was conducted using specific criteria to select literature that described methods to manage second intention wound healing. After removing duplicates and screening papers for suitability, 81 manuscripts were included for data extraction. Of these, 59 articles were experimental studies, 10 were case reports, 9 were case series, and 3 were clinical studies. The most frequent wound location was the distal limbs. Macroscopic assessment was the main tool used to evaluate treatment effectiveness. All of the case reports, case series, and clinical studies reported positive outcomes with regard to the treatment used, while only 36% of the experimental studies found significant healing improvement in treated wounds compared to control groups. It was found that there are many treatments that have exhibited controversial results, and there exists a lack of evidence for the adoption of specific treatment protocols.
Collapse
Affiliation(s)
- Gesiane Ribeiro
- Faculty of Veterinary Medicine, Lusófona University, Campo Grande 376, 1749-024 Lisbon, Portugal; (L.C.); (J.B.); (J.P.)
- Veterinary and Animal Research Centre (CECAV), Faculty of Veterinary Medicine, Lusófona University—Lisbon University Centre, Campo Grande 376, 1749-024 Lisbon, Portugal
| | - Lúcia Carvalho
- Faculty of Veterinary Medicine, Lusófona University, Campo Grande 376, 1749-024 Lisbon, Portugal; (L.C.); (J.B.); (J.P.)
| | - João Borges
- Faculty of Veterinary Medicine, Lusófona University, Campo Grande 376, 1749-024 Lisbon, Portugal; (L.C.); (J.B.); (J.P.)
- MED—Mediterranean Institute for Agriculture, Environment and Development, Évora University, Pólo da Mitra Apartado 94, 7006-554 Évora, Portugal
| | - José Prazeres
- Faculty of Veterinary Medicine, Lusófona University, Campo Grande 376, 1749-024 Lisbon, Portugal; (L.C.); (J.B.); (J.P.)
| |
Collapse
|
4
|
Anantama NA, Du Cheyne C, Martens A, Roth SP, Burk J, De Spiegelaere W, Michler JK. The granulation (t)issue: A narrative and scoping review of basic and clinical research of the equine distal limb exuberant wound healing disorder. Vet J 2022; 280:105790. [PMID: 35093532 DOI: 10.1016/j.tvjl.2022.105790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 01/17/2022] [Accepted: 01/21/2022] [Indexed: 10/19/2022]
Abstract
Exuberant granulation tissue (EGT) is often observed during second intention wound healing in horses. Despite its impact on wound care, the basic mechanisms leading to EGT are still unclear and effective strategies to prevent and/or treat EGT are lacking. The development of EGT is a poorly understood, multifactorial process involving hyperproliferating fibroblasts and malfunctional differentiation of keratinocytes, suboptimal wound contraction, dysfunctional vascularisation, and chronic inflammation. To consolidate and describe basic and clinical research literature on EGT and to identify knowledge gaps and opportunities for future research, a search was systematically conducted using predefined search terms. Subsequently, a scoping review was conducted using specific criteria to select the peer-reviewed literature that described methods to treat and/or prevent EGT. Proposed mechanisms of effects as well as results and main conclusions were extracted and tabulated. The systematic search resulted in 1062 publications in PubMed and 767 in Web of Science. Twenty additional studies were later included. Of these, 327 studies were reviewed for the narrative review on basic research and 35 controlled clinical trials were eligible for the scoping review. All 35 studies were conducted in university hospitals, and all but one involved surgically induced non-infected wounds. The study population was predominantly horses (n = 230) with a small number of ponies (n = 18) and donkeys (n = 14). In conclusion, there remains a strong need for evidence-based recommendations on EGT treatment, preferably using multi-centre studies that represent the general population of horses, include higher numbers of animals, and are performed in naturally occurring wounds. This narrative and scoping review also emphasises the importance of incorporating basic research knowledge in the study design of clinical trials.
Collapse
Affiliation(s)
- Nadia Ayurini Anantama
- Institute of Veterinary Anatomy, Histology and Embryology, Leipzig University, An den Tierkliniken 43, 04103 Leipzig, Germany
| | - Charis Du Cheyne
- Department of Morphology, Ghent University, Salisburylaan 133, B-9820 Merelbeke, Belgium
| | - Ann Martens
- Department of Surgery and Anaesthesiology of Domestic Animals, Ghent University, Salisburylaan 133, B-9820 Merelbeke, Belgium
| | - Susanne Pauline Roth
- Veterinary Teaching Hospital, Department for Horses, University of Leipzig, An den Tierkliniken 21, 04103 Leipzig, Germany
| | - Janina Burk
- Equine Clinic (Surgery, Orthopedics), Giessen University, Frankfurter Str. 108, 35392 Gießen, Germany
| | - Ward De Spiegelaere
- Department of Morphology, Ghent University, Salisburylaan 133, B-9820 Merelbeke, Belgium
| | - Jule Kristin Michler
- Institute of Veterinary Anatomy, Histology and Embryology, Leipzig University, An den Tierkliniken 43, 04103 Leipzig, Germany.
| |
Collapse
|
5
|
Wei SY, Chen TH, Kao FS, Hsu YJ, Chen YC. Strategy for improving cell-mediated vascularized soft tissue formation in a hydrogen peroxide-triggered chemically-crosslinked hydrogel. J Tissue Eng 2022; 13:20417314221084096. [PMID: 35296029 PMCID: PMC8918759 DOI: 10.1177/20417314221084096] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 02/13/2022] [Indexed: 12/03/2022] Open
Abstract
The physically-crosslinked collagen hydrogels can provide suitable microenvironments for cell-based functional vascular network formation due to their biodegradability, biocompatibility, and good diffusion properties. However, encapsulation of cells into collagen hydrogels results in extensive contraction and rapid degradation of hydrogels, an effect known from their utilization as a pre-vascularized graft in vivo. Various types of chemically-crosslinked collagen-based hydrogels have been successfully synthesized to decrease volume contraction, retard the degradation rate, and increase mechanical tunability. However, these hydrogels failed to form vascularized tissues with uniformly distributed microvessels in vivo. Here, the enzymatically chemically-crosslinked collagen-Phenolic hydrogel was used as a model to determine and overcome the difficulties in engineering vascular networks. Results showed that a longer duration of inflammation and excessive levels of hydrogen peroxide limited the capability for blood vessel forming cells-mediated vasculature formation in vivo. Lowering the unreacted amount of crosslinkers reduced the densities of infiltrating host myeloid cells by half on days 2-4 after implantation, but blood vessels remained at low density and were mainly located on the edge of the implanted constructs. Co-implantation of a designed spacer with cell-laden hydrogel maintained the structural integrity of the hydrogel and increased the degree of hypoxia in embedded cells. These effects resulted in a two-fold increase in the density of perfused blood vessels in the hydrogel. Results agreed with computer-based simulations. Collectively, our findings suggest that simultaneous reduction of the crosslinker-induced host immune response and increase in hypoxia in hydrogen peroxide-triggered chemically-crosslinked hydrogels can effectively improve the formation of cell-mediated functional vascular networks.
Collapse
Affiliation(s)
- Shih-Yen Wei
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Tzu-Hsuan Chen
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Feng-Sheng Kao
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Yi-Jung Hsu
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Ying-Chieh Chen
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, Taiwan
| |
Collapse
|
6
|
Cyclosporine A and Tacrolimus Induce Functional Impairment and Inflammatory Reactions in Endothelial Progenitor Cells. Int J Mol Sci 2021; 22:ijms22189696. [PMID: 34575860 PMCID: PMC8472421 DOI: 10.3390/ijms22189696] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/29/2021] [Accepted: 09/03/2021] [Indexed: 12/12/2022] Open
Abstract
Immunosuppressants are a mandatory therapy for transplant patients to avoid rejection of the transplanted organ by the immune system. However, there are several known side effects, including alterations of the vasculature, which involve a higher occurrence of cardiovascular events. While the effects of the commonly applied immunosuppressive drugs cyclosporine A (CsA) and tacrolimus (Tac) on mature endothelial cells have been addressed in several studies, we focused our research on the unexplored effects of CsA and Tac on endothelial colony-forming cells (ECFCs), a subgroup of endothelial progenitor cells, which play an important role in vascular repair and angiogenesis. We hypothesized that CsA and Tac induce functional defects and activate an inflammatory cascade via NF-κB signaling in ECFCs. ECFCs were incubated with different doses (0.01 µM–10 µM) of CsA or Tac. ECFC function was determined using in vitro models. The expression of inflammatory cytokines and adhesion molecules was explored by quantitative real-time PCR and flow cytometry. NF-κB subunit modification was assessed by immunoblot and immunofluorescence. CsA and Tac significantly impaired ECFC function, including proliferation, migration, and tube formation. TNF-α, IL-6, VCAM, and ICAM mRNA expression, as well as PECAM and VCAM surface expression, were enhanced. Furthermore, CsA and Tac led to NF-κB p65 subunit phosphorylation and nuclear translocation. Pharmacological inhibition of NF-κB by parthenolide diminished CsA- and Tac-mediated proinflammatory effects. The data of functional impairment and activation of inflammatory signals provide new insight into mechanisms associated with CsA and Tac and cardiovascular risk in transplant patients.
Collapse
|
7
|
Reyner CL, Winter RL, Maneval KL, Boone LH, Wooldridge AA. Effect of recombinant equine interleukin-1β on function of equine endothelial colony-forming cells in vitro. Am J Vet Res 2021; 82:318-325. [PMID: 33764832 DOI: 10.2460/ajvr.82.4.318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To investigate the effects of recombinant equine IL-1β on function of equine endothelial colony-forming cells (ECFCs) in vitro. SAMPLE ECFCs derived from peripheral blood samples of 3 healthy adult geldings. PROCEDURES Function testing was performed to assess in vitro wound healing, tubule formation, cell adhesion, and uptake of 1,1'-dioctadecyl-3,3,3',3' tetramethylindocarbocyanine perchlorate-labeled acetylated low-density lipoprotein (DiI-Ac-LDL) by cultured ECFCs. Cell proliferation was determined by 2,3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide assay. Effects on function test results of different concentrations and exposure times of recombinant equine IL-1β were assessed. RESULTS Challenge of cultured ECFCs with IL-1β for 48 hours inhibited tubule formation. Continuous challenge (54 hours) with IL-1β in the wound healing assay reduced gap closure. The IL-1β exposure did not significantly affect ECFC adhesion, DiI-Ac-LDL uptake, or ECFC proliferation. CONCLUSIONS AND CLINICAL RELEVANCE These results suggested a role for IL-1β in the inhibition of ECFC function in vitro. Functional changes in ECFCs following challenge with IL-1β did not appear to be due to changes in cell proliferative capacity. These findings have implications for designing microenvironments for and optimizing therapeutic effects of ECFCs used to treat ischemic diseases in horses.
Collapse
|
8
|
Sparks HD, Sigaeva T, Tarraf S, Mandla S, Pope H, Hee O, Di Martino ES, Biernaskie J, Radisic M, Scott WM. Biomechanics of Wound Healing in an Equine Limb Model: Effect of Location and Treatment with a Peptide-Modified Collagen-Chitosan Hydrogel. ACS Biomater Sci Eng 2020; 7:265-278. [PMID: 33342210 DOI: 10.1021/acsbiomaterials.0c01431] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The equine distal limb wound healing model, characterized by delayed re-epithelialization and a fibroproliferative response to wounding similar to that observed in humans, is a valuable tool for the study of biomaterials poised for translation into both the veterinary and human medical markets. In the current study, we developed a novel method of biaxial biomechanical testing to assess the functional outcomes of healed wounds in a modified equine model and discovered significant functional and structural differences in both unwounded and injured skin at different locations on the distal limb that must be considered when using this model in future work. Namely, the medial skin was thicker and displayed earlier collagen engagement, medial wounds experienced a greater proportion of wound contraction during closure, and proximal wounds produced significantly more exuberant granulation tissue. Using this new knowledge of the equine model of aberrant wound healing, we then investigated the effect of a peptide-modified collagen-chitosan hydrogel on wound healing. Here, we found that a single treatment with the QHREDGS (glutamine-histidine-arginine-glutamic acid-aspartic acid-glycine-serine) peptide-modified hydrogel (Q-peptide hydrogel) resulted in a higher rate of wound closure and was able to modulate the biomechanical function toward a more compliant healed tissue without observable negative effects. Thus, we conclude that the use of a Q-peptide hydrogel provides a safe and effective means of improving the rate and quality of wound healing in a large animal model.
Collapse
Affiliation(s)
- Holly D Sparks
- Department of Veterinary Clinical & Diagnostic Sciences, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Taisiya Sigaeva
- Department of Systems Design Engineering, Faculty of Engineering, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada.,Department of Civil Engineering and Centre for Bioengineering Research and Education, University of Calgary, Calgary, Alberta T2N 4Z6, Canada
| | - Samar Tarraf
- Biomedical Engineering Graduate Program, University of Calgary, Calgary, Alberta T2N 4Z6, Canada
| | - Serena Mandla
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto M5S3G9, Canada.,Toronto General Research Institute, University of Toronto, Toronto M5S3G9, Canada
| | - Hannah Pope
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Olivia Hee
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Elena S Di Martino
- Department of Civil Engineering and Centre for Bioengineering Research and Education, University of Calgary, Calgary, Alberta T2N 4Z6, Canada
| | - Jeff Biernaskie
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta T2N 4N1, Canada.,Alberta Children's Hospital Research Institute, Calgary, Alberta T2N 4N1, Canada.,Hotchkiss Brain Institute, Calgary, Alberta T2N 4N1, Canada
| | - Milica Radisic
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto M5S3G9, Canada.,Toronto General Research Institute, University of Toronto, Toronto M5S3G9, Canada.,Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto M5S3G9, Canada
| | - W Michael Scott
- Department of Veterinary Clinical and Diagnostic Sciences, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta T2N 4Z6, Canada
| |
Collapse
|
9
|
Harman RM, Patel RS, Fan JC, Park JE, Rosenberg BR, Van de Walle GR. Single-cell RNA sequencing of equine mesenchymal stromal cells from primary donor-matched tissue sources reveals functional heterogeneity in immune modulation and cell motility. Stem Cell Res Ther 2020; 11:524. [PMID: 33276815 PMCID: PMC7716481 DOI: 10.1186/s13287-020-02043-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 11/23/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND The efficacy of mesenchymal stromal cell (MSC) therapy is thought to depend on the intrinsic heterogeneity of MSC cultures isolated from different tissue sources as well as individual MSCs isolated from the same tissue source, neither of which is well understood. To study this, we used MSC cultures isolated from horses. The horse is recognized as a physiologically relevant large animal model appropriate for translational MSC studies. Moreover, due to its large size the horse allows for the simultaneous collection of adequate samples from multiple tissues of the same animal, and thus, for the unique collection of donor matched MSC cultures from different sources. The latter is much more challenging in mice and humans due to body size and ethical constraints, respectively. METHODS In the present study, we performed single-cell RNA sequencing (scRNA-seq) on primary equine MSCs that were collected from three donor-matched tissue sources; adipose tissue (AT), bone marrow (BM), and peripheral blood (PB). Based on transcriptional differences detected with scRNA-seq, we performed functional experiments to examine motility and immune regulatory function in distinct MSC populations. RESULTS We observed both inter- and intra-source heterogeneity across the three sources of equine MSCs. Functional experiments demonstrated that transcriptional differences correspond with phenotypic variance in cellular motility and immune regulatory function. Specifically, we found that (i) differential expression of junctional adhesion molecule 2 (JAM2) between MSC cultures from the three donor-matched tissue sources translated into altered cell motility of BM-derived MSCs when RNA interference was used to knock down this gene, and (ii) differences in C-X-C motif chemokine ligand 6 (CXCL6) expression in clonal MSC lines derived from the same tissue source correlated with the chemoattractive capacity of PB-derived MSCs. CONCLUSIONS Ultimately, these findings will enhance our understanding of MSC heterogeneity and will lead to improvements in the therapeutic potential of MSCs, accelerating the transition from bench to bedside.
Collapse
Affiliation(s)
- Rebecca M Harman
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Roosheel S Patel
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Jennifer C Fan
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Jee E Park
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Brad R Rosenberg
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Gerlinde R Van de Walle
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
10
|
Tan B, Huang L, Wu Y, Liao J. Advances and trends of hydrogel therapy platform in localized tumor treatment: A review. J Biomed Mater Res A 2020; 109:404-425. [PMID: 32681742 DOI: 10.1002/jbm.a.37062] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 06/29/2020] [Accepted: 07/07/2020] [Indexed: 02/04/2023]
Abstract
Due to limitations of treatment and the stubbornness of infiltrative tumor cells, the outcome of conventional antitumor treatment is often compromised by a variety of factors, including severe side effects, unexpected recurrence, and massive tissue loss during the treatment. Hydrogel-based therapy is becoming a promising option of cancer treatment, because of its controllability, biocompatibility, high drug loading, prolonged drug release, and specific stimuli-sensitivity. Hydrogel-based therapy has good malleability and can reach some areas that cannot be easily touched by surgeons. Furthermore, hydrogel can be used not only as a carrier for tumor treatment agents, but also as a scaffold for tissue repair. In this review, we presented the latest researches in hydrogel applications of localized tumor therapy and highlighted the recent progress of hydrogel-based therapy in preventing postoperative tumor recurrence and improving tissue repair, thus proposing a new trend of hydrogel-based technology in localized tumor therapy. And this review aims to provide a novel reference and inspire thoughts for a more accurate and individualized cancer treatment.
Collapse
Affiliation(s)
- Bowen Tan
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Lingxiao Huang
- Department of Basic Research, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Yongzhi Wu
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jinfeng Liao
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
11
|
Rieger J, Kaessmeyer S, Al Masri S, Hünigen H, Plendl J. Endothelial cells and angiogenesis in the horse in health and disease-A review. Anat Histol Embryol 2020; 49:656-678. [PMID: 32639627 DOI: 10.1111/ahe.12588] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 04/04/2020] [Accepted: 06/01/2020] [Indexed: 12/15/2022]
Abstract
The cardiovascular system is the first functional organ in the embryo, and its blood vessels form a widespread conductive network within the organism. Blood vessels develop de novo, by the differentiation of endothelial progenitor cells (vasculogenesis) or by angiogenesis, which is the formation of new blood vessels from existing ones. This review presents an overview of the current knowledge on physiological and pathological angiogenesis in the horse including studies on equine endothelial cells. Principal study fields in equine angiogenesis research were identified: equine endothelial progenitor cells; equine endothelial cells and angiogenesis (heterogeneity, markers and assessment); endothelial regulatory molecules in equine angiogenesis; angiogenesis research in equine reproduction (ovary, uterus, placenta and conceptus, testis); angiogenesis research in pathological conditions (tumours, ocular pathologies, equine wound healing, musculoskeletal system and laminitis). The review also includes a table that summarizes in vitro studies on equine endothelial cells, either describing the isolation procedure or using previously isolated endothelial cells. A particular challenge of the review was that results published are fragmentary and sometimes even contradictory, raising more questions than they answer. In conclusion, angiogenesis is a major factor in several diseases frequently occurring in horses, but relatively few studies focus on angiogenesis in the horse. The challenge for the future is therefore to continue exploring new therapeutic angiogenesis strategies for horses to fill in the missing pieces of the puzzle.
Collapse
Affiliation(s)
- Juliane Rieger
- Department of Veterinary Medicine, Institute for Veterinary Anatomy, Freie Universität Berlin, Berlin, Germany
| | - Sabine Kaessmeyer
- Department of Veterinary Medicine, Institute for Veterinary Anatomy, Freie Universität Berlin, Berlin, Germany
| | - Salah Al Masri
- Department of Veterinary Medicine, Institute for Veterinary Anatomy, Freie Universität Berlin, Berlin, Germany
| | - Hana Hünigen
- Department of Veterinary Medicine, Institute for Veterinary Anatomy, Freie Universität Berlin, Berlin, Germany
| | - Johanna Plendl
- Department of Veterinary Medicine, Institute for Veterinary Anatomy, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
12
|
Chang S, Finklea F, Williams B, Hammons H, Hodge A, Scott S, Lipke E. Emulsion-based encapsulation of pluripotent stem cells in hydrogel microspheres for cardiac differentiation. Biotechnol Prog 2020; 36:e2986. [PMID: 32108999 DOI: 10.1002/btpr.2986] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 02/12/2020] [Accepted: 02/24/2020] [Indexed: 12/11/2022]
Abstract
Cardiovascular disease is the leading cause of death worldwide, and current treatments are ineffective or unavailable to majority of patients. Engineered cardiac tissue (ECT) is a promising treatment to restore function to the damaged myocardium; however, for these treatments to become a reality, tissue fabrication must be amenable to scalable production and be used in suspension culture. Here, we have developed a low-cost and scalable emulsion-based method for producing ECT microspheres from poly(ethylene glycol) (PEG)-fibrinogen encapsulated mouse embryonic stem cells (mESCs). Cell-laden microspheres were formed via water-in-oil emulsification; encapsulation occurred by suspending the cells in hydrogel precursor solution at cell densities from 5 to 60 million cells/ml, adding to mineral oil and vortexing. Microsphere diameters ranged from 30 to 570 μm; size variability was decreased by the addition of 2% poly(ethylene glycol) diacrylate. Initial cell encapsulation density impacted the ability for mESCs to grow and differentiate, with the greatest success occurring at higher cell densities. Microspheres differentiated into dense spheroidal ECTs with spontaneous contractions occurring as early as Day 10 of cardiac differentiation; furthermore, these ECT microspheres exhibited appropriate temporal changes in gene expression and response to pharmacological stimuli. These results demonstrate the ability to use an emulsion approach to encapsulate pluripotent stem cells for use in microsphere-based cardiac differentiation.
Collapse
Affiliation(s)
- Samuel Chang
- Department of Chemical Engineering, 212 Ross Hall, Auburn University, Auburn, Alabama, USA
| | - Ferdous Finklea
- Department of Chemical Engineering, 212 Ross Hall, Auburn University, Auburn, Alabama, USA
| | - Bianca Williams
- Department of Chemical Engineering, 212 Ross Hall, Auburn University, Auburn, Alabama, USA
| | - Hanna Hammons
- Department of Chemical Engineering, 212 Ross Hall, Auburn University, Auburn, Alabama, USA
| | - Alexander Hodge
- Department of Chemical Engineering, 212 Ross Hall, Auburn University, Auburn, Alabama, USA
| | - Samantha Scott
- Department of Chemical Engineering, 212 Ross Hall, Auburn University, Auburn, Alabama, USA
| | - Elizabeth Lipke
- Department of Chemical Engineering, 212 Ross Hall, Auburn University, Auburn, Alabama, USA
| |
Collapse
|