1
|
Panase P, Vongkampang T, Wangkahart E, Sutthi N. Impacts of astaxanthin-enriched Paracoccus carotinifaciens on growth, immune responses, and reproduction performance of broodstock Nile tilapia during winter season. FISH PHYSIOLOGY AND BIOCHEMISTRY 2024; 50:1205-1224. [PMID: 38512396 DOI: 10.1007/s10695-024-01331-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 03/12/2024] [Indexed: 03/23/2024]
Abstract
The growth, immune response, and reproductive performance of broodstock of Nile tilapia (Oreochromis niloticus) under winter stress conditions were investigated the effects of supplementary diets with astaxanthin-enriched Paracoccus carotinifaciens. Throughout an eight-week period in the winter season, male and female tilapia were fed with diets containing different levels of P. carotinifaciens dietary supplementation: 0 g/kg (T1; control), 5 g/kg (T2), 10 g/kg (T3), and 20 g/kg (T4). Subsequently, a four-week mating system was implemented during the winter stress period. The results revealed that there were no significant differences observed in growth, hematological indices, and blood chemical profiles among all treatment groups for both male and female tilapia. However, a significant increase in cholesterol content was noted in both male and female tilapia fed with the T4 diet (p<0.05). The total carotenoid content in the muscle was evaluated, and significantly higher values were found in both male and female tilapia that fed T4 supplementation (p<0.05). Moreover, immunological parameters such as myeloperoxidase and antioxidant parameters in the liver including superoxide dismutase activity and catalase enzyme activity showed significant increases in tilapia fed with the T4 diet. The impact of P. carotinifaciens supplementation on broodstock tilapia indicated a significant increase in spermatozoa concentration in males and increased egg production in females after consumption of the T4 diet (p<0.05). Thus, this study highlighted that the presence of astaxanthin-enriched P. carotinifaciens in the diet of broodstock Nile tilapia can lead to the accumulation of carotenoids in their muscle tissue, improvement in antioxidant status, enhancement of immune function, and potential enhancement of reproductive capabilities, even under overwintering conditions.
Collapse
Affiliation(s)
- Paiboon Panase
- Fisheries Division, School of Agriculture and Natural Resources, University of Phayao, Phayao, 56000, Thailand
- Unit of Excellence Physiology and Sustainable Production of Terrestrial and Aquatic Animals, School of Agriculture and Natural Resources, University of Phayao, Phayao, 56000, Thailand
| | - Thitiwut Vongkampang
- Department of Biotechnology, Faculty of Technology, Mahasarakham University, Maha Sarakham, 44150, Thailand
| | - Eakapol Wangkahart
- Department of Agricultural Technology, Faculty of Technology, Mahasarakham University, Maha Sarakham, 44150, Thailand
- Applied Animal and Aquatic Sciences Research Unit, Division of Fisheries, Faculty of Technology, Mahasarakham University, Maha sarakham, 44150, Thailand
| | - Nantaporn Sutthi
- Unit of Excellence Physiology and Sustainable Production of Terrestrial and Aquatic Animals, School of Agriculture and Natural Resources, University of Phayao, Phayao, 56000, Thailand.
- Department of Agricultural Technology, Faculty of Technology, Mahasarakham University, Maha Sarakham, 44150, Thailand.
- Applied Animal and Aquatic Sciences Research Unit, Division of Fisheries, Faculty of Technology, Mahasarakham University, Maha sarakham, 44150, Thailand.
| |
Collapse
|
2
|
Tang S, Janpoom S, Prasertlux S, Rongmung P, Ittarat W, Ratdee O, Khamnamtong B, Klinbunga S. Identification of pigmentation genes in skin, muscle and tail of a Thai-flag variety of Siamese fighting fish Betta splendens. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 50:101243. [PMID: 38749208 DOI: 10.1016/j.cbd.2024.101243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 05/02/2024] [Accepted: 05/04/2024] [Indexed: 05/27/2024]
Abstract
Pigmentation genes expressed in skin, body muscle and tail of Thai-flag compared with Blue, White and Red varieties of Siamese fighting fish Betta splendens were identified. In total, 22,919 new unigenes were found. Pearson correlation and PCA analysis revealed that expression profiles of genes in muscle, skin and tail across solid color variety were similar. In contrast, those in skin and red tail part of Thai-flag were closely related but they showed different expression profiles with the white tail part. Moreover, 21,347-64,965 SNPs were identified in exonic regions of identified genes. In total, 28,899 genes were differentially expressed between paired comparisons of libraries where 13,907 genes (48.12 %) were upregulated and 14,992 genes (51.88 %) were downregulated. DEGs between paired libraries were 106-5775 genes relative to the compared libraries (56-2982 and 50-2782 for upregulated and downregulated DEGs). Interestingly, 432 pigmentation genes of B. splendens were found. Of these, 297 DEGs showed differential expression between varieties. Many DEGs in melanogenesis (Bsmcr1r, Bsmcr5r, and Bsslc2a15b), tyrosine metabolism (Bstyr, Bstyrp1b and Bsdct), stripe repressor (BsAsip1 and BsAsip2b), pteridine (Bsgch2) and carotenoid (BsBco2) biosynthesis were downregulated in the Thai-flag compared with solid color varieties. Expression of Bsbco1l, Bsfrem2b, Bskcnj13, Bszic2a and Bspah in skin, muscle and tail of Thai-flag, Blue, Red and White varieties was analyzed by qRT-PCR and revealed differential expression between fish varieties and showed anatomical tissue-preferred expression patterns in the same fish variety. The information could be applied to assist genetic-based development of new B. splendens varieties in the future.
Collapse
Affiliation(s)
- Sureerat Tang
- Aquatic Molecular Genetics and Biotechnology Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
| | - Sirithorn Janpoom
- Aquatic Molecular Genetics and Biotechnology Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
| | - Sirikan Prasertlux
- Aquatic Molecular Genetics and Biotechnology Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
| | - Puttawan Rongmung
- Aquatic Molecular Genetics and Biotechnology Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
| | - Wanwipa Ittarat
- Aquatic Molecular Genetics and Biotechnology Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
| | - Onchuda Ratdee
- Aquatic Molecular Genetics and Biotechnology Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
| | - Bavornlak Khamnamtong
- Aquatic Molecular Genetics and Biotechnology Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
| | - Sirawut Klinbunga
- Aquatic Molecular Genetics and Biotechnology Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand.
| |
Collapse
|
3
|
Tang S, Janpoom S, Prasertlux S, Rongmung P, Ratdee O, Zhang W, Khamnamtong B, Klinbunga S. Transcriptome comparison for identification of pigmentation-related genes in different color varieties of Siamese fighting fish Betta splendens. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2022; 43:101014. [PMID: 35868113 DOI: 10.1016/j.cbd.2022.101014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 06/19/2022] [Accepted: 07/10/2022] [Indexed: 06/15/2023]
Abstract
Transcriptome comparison was performed to identify genes expressed in skin, muscle and tails of mono-color (Red, Blue, Black, White and Yellow), bi-color (Cambodian) and multi-color (Marble) varieties of Siamese fighting fish Betta splendens. In total, 163,140 unigenes covering 26.348 Gb were found. Of these, 93,899 (57.55 %) unigenes significantly matched at least one database. In total, 5039 differentially expressed genes (DEGs) were found where 2415 genes (47.93 %) showed higher expression and 2624 genes (52.07 %) showed lower expression for all pairwise comparisons. DEGs between paired color varieties were 133-443. Of these, 38-220 genes were more highly expressed while 37-280 genes were more lowly expressed relative to the compared varieties. A total of 897 sequences (148 genes) significantly matched pigmentation-related genes of Danio rerio (E-value < 1e-06). Of these, 19 DEGs were identified. Examples are tyrosinase-related protein 1a (BsTyrp1a), epidermal growth factor receptor (BsEgfr) and neurofibronin 1a (BsNf1a). Moreover, 711,123 SNPs were identified and 1365 of these were located in pigmentation-related genes. Interestingly, an A > C474 SNP in the gene BsTrpm7 and an indel (position 3571) in the BsItgb1a gene were found only in Cambodian. A C > T2520 SNP in BsFzd4 and 10 of 11 SNPs in BsTyrp1a were found only in Black. Different expression levels (P < 0.05) were found for tyrosinase (BsTyr), BsTyrp1a, BsNf1a and BsEgf1 among skin, body muscle and tails of the same variety and among the same tissues of different varieties (Red, Green, Blue, Black, Cambodian and Multi-colors, N = 5 each).
Collapse
Affiliation(s)
- Sureerat Tang
- Aquatic Molecular Genetics and Biotechnology Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
| | - Sirithorn Janpoom
- Aquatic Molecular Genetics and Biotechnology Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
| | - Sirikan Prasertlux
- Aquatic Molecular Genetics and Biotechnology Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
| | - Puttawan Rongmung
- Aquatic Molecular Genetics and Biotechnology Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
| | - Ornchuda Ratdee
- Aquatic Molecular Genetics and Biotechnology Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
| | - Wanchang Zhang
- School of Life Sciences, Nanchang University, Nanchang 330031, China
| | - Bavornlak Khamnamtong
- Aquatic Molecular Genetics and Biotechnology Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
| | - Sirawut Klinbunga
- Aquatic Molecular Genetics and Biotechnology Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand.
| |
Collapse
|
4
|
Sankaran M, Maruthanila VL. The impact of bioactive compounds derived from marine fish on cancer. Anticancer Agents Med Chem 2022; 22:2757-2765. [PMID: 35362395 DOI: 10.2174/1871520622666220330142442] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 02/13/2022] [Accepted: 02/18/2022] [Indexed: 11/22/2022]
Abstract
Cancer persists as the world's leading cause of mortality, thereby making it a compelling condition to research and potentially develop prevention options. Anticancer therapies such as chemotherapy, surgery and radiation therapy are becoming highly futile and tend to have achieved a clinical deficit, due to massive side effects, toxicities, and limited specificity. Anticancer agents from natural sources, such as aquatic fishes, terrestrial mammals, animal venoms, and amphibians, have mainly been focused on in recent researches. Edible marine fishes contain high contents of fatty acids, vitamins, and proteins, also having bioactive compounds. Fish derivatives are naturally having the potential to target cancer cells while being less hazardous to normal tissues, making them a better choice for cancer prevention and therapy. In this review, we mainly focused on the bioactive compounds identified from marine fishes which have significant biological properties including anticancer effects, also discuss the mechanism of action.
Collapse
Affiliation(s)
- Mirunalini Sankaran
- Department of Biochemistry and Biotechnology, Annamalai University, Annamalainagar, Chidambaram-608 002, Tamil Nadu, India
| | - V L Maruthanila
- Department of Biochemistry and Biotechnology, Annamalai University, Annamalainagar, Chidambaram-608 002, Tamil Nadu, India
| |
Collapse
|