1
|
Hsu S, Massolo FIS, Schaposnik LP. A Physarum-inspired approach to the Euclidean Steiner tree problem. Sci Rep 2022; 12:14536. [PMID: 36008426 PMCID: PMC9411548 DOI: 10.1038/s41598-022-18316-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 08/09/2022] [Indexed: 11/09/2022] Open
Abstract
This paper presents a novel biologically-inspired explore-and-fuse approach to solving a large array of problems. The inspiration comes from Physarum, a unicellular slime mold capable of solving the traveling salesman and Steiner tree problems. Besides exhibiting individual intelligence, Physarum can also share information with other Physarum organisms through fusion. These characteristics of Physarum imply that spawning many such organisms we can explore the problem space in parallel, each individual gathering information and forming partial solutions pertaining to a local region of the problem space. When the organisms meet, they fuse and share information, eventually forming one organism which has a global view of the problem and can apply its intelligence to find an overall solution to the problem. This approach can be seen as a "softer" method of divide and conquer. We demonstrate this novel approach, developing the Physarum Steiner Algorithm which is capable of finding feasible solutions to the Euclidean Steiner tree problem. This algorithm is of particular interest due to its resemblance to Physarum polycephalum, ability to leverage parallel processing, avoid obstacles, and operate on various shapes and topological surfaces including the rectilinear grid.
Collapse
Affiliation(s)
- Sheryl Hsu
- Valley Christian High School, San Jose, USA
| | | | | |
Collapse
|
2
|
Al-Taie Z, Liu D, Mitchem JB, Papageorgiou C, Kaifi JT, Warren WC, Shyu CR. Explainable artificial intelligence in high-throughput drug repositioning for subgroup stratifications with interventionable potential. J Biomed Inform 2021; 118:103792. [PMID: 33915273 DOI: 10.1016/j.jbi.2021.103792] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 03/26/2021] [Accepted: 04/21/2021] [Indexed: 01/02/2023]
Abstract
Enabling precision medicine requires developing robust patient stratification methods as well as drugs tailored to homogeneous subgroups of patients from a heterogeneous population. Developing de novo drugs is expensive and time consuming with an ultimately low FDA approval rate. These limitations make developing new drugs for a small portion of a disease population unfeasible. Therefore, drug repositioning is an essential alternative for developing new drugs for a disease subpopulation. This shows the importance of developing data-driven approaches that find druggable homogeneous subgroups within the disease population and reposition the drugs for these subgroups. In this study, we developed an explainable AI approach for patient stratification and drug repositioning. Contrast pattern mining and network analysis were used to discover homogeneous subgroups within a disease population. For each subgroup, a biomedical network analysis was done to find the drugs that are most relevant to a given subgroup of patients. The set of candidate drugs for each subgroup was ranked using an aggregated drug score assigned to each drug. The proposed method represents a human-in-the-loop framework, where medical experts use the data-driven results to generate hypotheses and obtain insights into potential therapeutic candidates for patients who belong to a subgroup. Colorectal cancer (CRC) was used as a case study. Patients' phenotypic and genotypic data was utilized with a heterogeneous knowledge base because it gives a multi-view perspective for finding new indications for drugs outside of their original use. Our analysis of the top candidate drugs for the subgroups identified by medical experts showed that most of these drugs are cancer-related, and most of them have the potential to be a CRC regimen based on studies in the literature.
Collapse
Affiliation(s)
- Zainab Al-Taie
- Institute for Data Science & Informatics, University of Missouri, Columbia, MO 65211, USA; Department of Computer Science, College of Science for Women, University of Baghdad, Baghdad, Iraq
| | - Danlu Liu
- Electrical Engineering and Computer Science Department, University of Missouri, Columbia, MO 65211, USA
| | - Jonathan B Mitchem
- Institute for Data Science & Informatics, University of Missouri, Columbia, MO 65211, USA; Department of Surgery, School of Medicine, University of Missouri, Columbia, MO 65212, USA; Harry S. Truman Memorial Veterans' Hospital, Columbia, MO 65201, USA.
| | - Christos Papageorgiou
- Department of Surgery, School of Medicine, University of Missouri, Columbia, MO 65212, USA
| | - Jussuf T Kaifi
- Department of Surgery, School of Medicine, University of Missouri, Columbia, MO 65212, USA; Harry S. Truman Memorial Veterans' Hospital, Columbia, MO 65201, USA
| | - Wesley C Warren
- Institute for Data Science & Informatics, University of Missouri, Columbia, MO 65211, USA; Department of Surgery, School of Medicine, University of Missouri, Columbia, MO 65212, USA; Department of Animal Sciences, Bond Life Sciences Center, University of Missouri, 1201 Rollins Street, Columbia, MO 65211, USA
| | - Chi-Ren Shyu
- Institute for Data Science & Informatics, University of Missouri, Columbia, MO 65211, USA; Electrical Engineering and Computer Science Department, University of Missouri, Columbia, MO 65211, USA; Department of Medicine, School of Medicine, University of Missouri, Columbia, MO 65212, USA.
| |
Collapse
|
3
|
Li G, Liu Z, Hu J, Li HJ. Understanding the network optimization based on the Physarum-inspired model: Comment on "Does being multi-headed make you better at solving problems? A survey of Physarum-based models and computations" by C. Gao et al. Phys Life Rev 2019; 29:29-31. [PMID: 30733190 DOI: 10.1016/j.plrev.2019.01.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 01/28/2019] [Indexed: 10/27/2022]
Affiliation(s)
- Guijun Li
- School of Management Science and Engineering, Central University of Finance and Economics, Beijing 100081, China
| | - Zhidong Liu
- School of Management Science and Engineering, Central University of Finance and Economics, Beijing 100081, China.
| | - Jun Hu
- School of Management Science and Engineering, Central University of Finance and Economics, Beijing 100081, China
| | - Hui-Jia Li
- School of Management Science and Engineering, Central University of Finance and Economics, Beijing 100081, China
| |
Collapse
|
4
|
Hameed PN, Verspoor K, Kusljic S, Halgamuge S. A two-tiered unsupervised clustering approach for drug repositioning through heterogeneous data integration. BMC Bioinformatics 2018; 19:129. [PMID: 29642848 PMCID: PMC5896044 DOI: 10.1186/s12859-018-2123-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 03/21/2018] [Indexed: 01/02/2023] Open
Abstract
Background Drug repositioning is the process of identifying new uses for existing drugs. Computational drug repositioning methods can reduce the time, costs and risks of drug development by automating the analysis of the relationships in pharmacology networks. Pharmacology networks are large and heterogeneous. Clustering drugs into small groups can simplify large pharmacology networks, these subgroups can also be used as a starting point for repositioning drugs. In this paper, we propose a two-tiered drug-centric unsupervised clustering approach for drug repositioning, integrating heterogeneous drug data profiles: drug-chemical, drug-disease, drug-gene, drug-protein and drug-side effect relationships. Results The proposed drug repositioning approach is threefold; (i) clustering drugs based on their homogeneous profiles using the Growing Self Organizing Map (GSOM); (ii) clustering drugs based on drug-drug relation matrices based on the previous step, considering three state-of-the-art graph clustering methods; and (iii) inferring drug repositioning candidates and assigning a confidence value for each identified candidate. In this paper, we compare our two-tiered clustering approach against two existing heterogeneous data integration approaches with reference to the Anatomical Therapeutic Chemical (ATC) classification, using GSOM. Our approach yields Normalized Mutual Information (NMI) and Standardized Mutual Information (SMI) of 0.66 and 36.11, respectively, while the two existing methods yield NMI of 0.60 and 0.64 and SMI of 22.26 and 33.59. Moreover, the two existing approaches failed to produce useful cluster separations when using graph clustering algorithms while our approach is able to identify useful clusters for drug repositioning. Furthermore, we provide clinical evidence for four predicted results (Chlorthalidone, Indomethacin, Metformin and Thioridazine) to support that our proposed approach can be reliably used to infer ATC code and drug repositioning. Conclusion The proposed two-tiered unsupervised clustering approach is suitable for drug clustering and enables heterogeneous data integration. It also enables identifying reliable repositioning drug candidates with reference to ATC therapeutic classification. The repositioning drug candidates identified consistently by multiple clustering algorithms and with high confidence have a higher possibility of being effective repositioning candidates. Electronic supplementary material The online version of this article (10.1186/s12859-018-2123-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Pathima Nusrath Hameed
- Department of Mechanical Engineering, University of Melbourne, Parkville, Melbourne, 3010, Australia. .,Data61, Victoria Research Lab, West Melbourne, 3003, Australia. .,Department of Computer Science, University of Ruhuna, Matara, 81000, Sri Lanka.
| | - Karin Verspoor
- Department of Computing and Information Systems, University of Melbourne, Parkville, Melbourne, 3010, Australia
| | - Snezana Kusljic
- Department of Nursing, University of Melbourne, Parkville, Melbourne, 3010, Australia.,The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Melbourne, 3010, Australia
| | - Saman Halgamuge
- Research School of Engineering, College of Engineering & Computer Science, The Australian National University, Canberra, ACT, 2601, Australia
| |
Collapse
|
5
|
Sun Y, Ma C, Halgamuge S. The node-weighted Steiner tree approach to identify elements of cancer-related signaling pathways. BMC Bioinformatics 2017; 18:551. [PMID: 29297291 PMCID: PMC5751691 DOI: 10.1186/s12859-017-1958-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Background Cancer constitutes a momentous health burden in our society. Critical information on cancer may be hidden in its signaling pathways. However, even though a large amount of money has been spent on cancer research, some critical information on cancer-related signaling pathways still remains elusive. Hence, new works towards a complete understanding of cancer-related signaling pathways will greatly benefit the prevention, diagnosis, and treatment of cancer. Results We propose the node-weighted Steiner tree approach to identify important elements of cancer-related signaling pathways at the level of proteins. This new approach has advantages over previous approaches since it is fast in processing large protein-protein interaction networks. We apply this new approach to identify important elements of two well-known cancer-related signaling pathways: PI3K/Akt and MAPK. First, we generate a node-weighted protein-protein interaction network using protein and signaling pathway data. Second, we modify and use two preprocessing techniques and a state-of-the-art Steiner tree algorithm to identify a subnetwork in the generated network. Third, we propose two new metrics to select important elements from this subnetwork. On a commonly used personal computer, this new approach takes less than 2 s to identify the important elements of PI3K/Akt and MAPK signaling pathways in a large node-weighted protein-protein interaction network with 16,843 vertices and 1,736,922 edges. We further analyze and demonstrate the significance of these identified elements to cancer signal transduction by exploring previously reported experimental evidences. Conclusions Our node-weighted Steiner tree approach is shown to be both fast and effective to identify important elements of cancer-related signaling pathways. Furthermore, it may provide new perspectives into the identification of signaling pathways for other human diseases.
Collapse
Affiliation(s)
- Yahui Sun
- Department of Mechanical Engineering, The University of Melbourne, Melbourne, 3010, Australia.
| | - Chenkai Ma
- Department of Surgery, The University of Melbourne, Melbourne, 3010, Australia
| | - Saman Halgamuge
- Research School of Engineering, College of Engineering & Computer Science, The Australian National University, Canberra, 2601, ACT, Australia
| |
Collapse
|
6
|
Schönbach C, Verma C, Bond PJ, Ranganathan S. Bioinformatics and systems biology research update from the 15 th International Conference on Bioinformatics (InCoB2016). BMC Bioinformatics 2016; 17:524. [PMID: 28155668 PMCID: PMC5259976 DOI: 10.1186/s12859-016-1409-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The International Conference on Bioinformatics (InCoB) has been publishing peer-reviewed conference papers in BMC Bioinformatics since 2006. Of the 44 articles accepted for publication in supplement issues of BMC Bioinformatics, BMC Genomics, BMC Medical Genomics and BMC Systems Biology, 24 articles with a bioinformatics or systems biology focus are reviewed in this editorial. InCoB2017 is scheduled to be held in Shenzen, China, September 20-22, 2017.
Collapse
Affiliation(s)
- Christian Schönbach
- International Research Center for Medical Sciences, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, 860-0811 Japan
| | - Chandra Verma
- Bioinformatics Institute, Agency for Science, Technology and Research (A∗STAR), Singapore, 138671 Singapore
| | - Peter J. Bond
- Bioinformatics Institute, Agency for Science, Technology and Research (A∗STAR), Singapore, 138671 Singapore
| | - Shoba Ranganathan
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, NSW 2109 Australia
| |
Collapse
|