1
|
Cañadas-Garre M, Maqueda JJ, Baños-Jaime B, Hill C, Skelly R, Cappa R, Brennan E, Doyle R, Godson C, Maxwell AP, McKnight AJ. Mitochondrial related variants associated with cardiovascular traits. Front Physiol 2024; 15:1395371. [PMID: 39258111 PMCID: PMC11385366 DOI: 10.3389/fphys.2024.1395371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 08/05/2024] [Indexed: 09/12/2024] Open
Abstract
Introduction Cardiovascular disease (CVD) is responsible for over 30% of mortality worldwide. CVD arises from the complex influence of molecular, clinical, social, and environmental factors. Despite the growing number of autosomal genetic variants contributing to CVD, the cause of most CVDs is still unclear. Mitochondria are crucial in the pathophysiology, development and progression of CVDs; the impact of mitochondrial DNA (mtDNA) variants and mitochondrial haplogroups in the context of CVD has recently been highlighted. Aims We investigated the role of genetic variants in both mtDNA and nuclear-encoded mitochondrial genes (NEMG) in CVD, including coronary artery disease (CAD), hypertension, and serum lipids in the UK Biobank, with sub-group analysis for diabetes. Methods We investigated 371,542 variants in 2,527 NEMG, along with 192 variants in 32 mitochondrial genes in 381,994 participants of the UK Biobank, stratifying by presence of diabetes. Results Mitochondrial variants showed associations with CVD, hypertension, and serum lipids. Mitochondrial haplogroup J was associated with CAD and serum lipids, whereas mitochondrial haplogroups T and U were associated with CVD. Among NEMG, variants within Nitric Oxide Synthase 3 (NOS3) showed associations with CVD, CAD, hypertension, as well as diastolic and systolic blood pressure. We also identified Translocase Of Outer Mitochondrial Membrane 40 (TOMM40) variants associated with CAD; Solute carrier family 22 member 2 (SLC22A2) variants associated with CAD and CVD; and HLA-DQA1 variants associated with hypertension. Variants within these three genes were also associated with serum lipids. Conclusion Our study demonstrates the relevance of mitochondrial related variants in the context of CVD. We have linked mitochondrial haplogroup U to CVD, confirmed association of mitochondrial haplogroups J and T with CVD and proposed new markers of hypertension and serum lipids in the context of diabetes. We have also evidenced connections between the etiological pathways underlying CVDs, blood pressure and serum lipids, placing NOS3, SLC22A2, TOMM40 and HLA-DQA1 genes as common nexuses.
Collapse
Affiliation(s)
- Marisa Cañadas-Garre
- Molecular Epidemiology and Public Health Research Group, Centre for Public Health, Queen's University Belfast, Institute for Clinical Sciences A, Royal Victoria Hospital, Belfast, United Kingdom
- MRC Integrative Epidemiology Unit, Bristol Medical School (Population Health Sciences), University of Bristol Oakfield House, Belfast, United Kingdom
| | - Joaquín J Maqueda
- Molecular Epidemiology and Public Health Research Group, Centre for Public Health, Queen's University Belfast, Institute for Clinical Sciences A, Royal Victoria Hospital, Belfast, United Kingdom
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Blanca Baños-Jaime
- Molecular Epidemiology and Public Health Research Group, Centre for Public Health, Queen's University Belfast, Institute for Clinical Sciences A, Royal Victoria Hospital, Belfast, United Kingdom
- Instituto de Investigaciones Químicas (IIQ), Centro de Investigaciones Científicas Isla de la Cartuja (cicCartuja), Universidad de Sevilla, Consejo Superior de Investigaciones Científicas (CSIC), Sevilla, Spain
| | - Claire Hill
- Molecular Epidemiology and Public Health Research Group, Centre for Public Health, Queen's University Belfast, Institute for Clinical Sciences A, Royal Victoria Hospital, Belfast, United Kingdom
| | - Ryan Skelly
- Molecular Epidemiology and Public Health Research Group, Centre for Public Health, Queen's University Belfast, Institute for Clinical Sciences A, Royal Victoria Hospital, Belfast, United Kingdom
| | - Ruaidhri Cappa
- Molecular Epidemiology and Public Health Research Group, Centre for Public Health, Queen's University Belfast, Institute for Clinical Sciences A, Royal Victoria Hospital, Belfast, United Kingdom
| | - Eoin Brennan
- UCD Diabetes Complications Research Centre, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
- School of Medicine, University College Dublin, Dublin, Ireland
| | - Ross Doyle
- UCD Diabetes Complications Research Centre, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
- School of Medicine, University College Dublin, Dublin, Ireland
- Mater Misericordiae University Hospital, Dublin, Ireland
| | - Catherine Godson
- UCD Diabetes Complications Research Centre, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
- School of Medicine, University College Dublin, Dublin, Ireland
| | - Alexander P Maxwell
- Molecular Epidemiology and Public Health Research Group, Centre for Public Health, Queen's University Belfast, Institute for Clinical Sciences A, Royal Victoria Hospital, Belfast, United Kingdom
- Regional Nephrology Unit, Belfast City Hospital Belfast, Belfast, United Kingdom
| | - Amy Jayne McKnight
- Molecular Epidemiology and Public Health Research Group, Centre for Public Health, Queen's University Belfast, Institute for Clinical Sciences A, Royal Victoria Hospital, Belfast, United Kingdom
| |
Collapse
|
2
|
Rocca C, Soda T, De Francesco EM, Fiorillo M, Moccia F, Viglietto G, Angelone T, Amodio N. Mitochondrial dysfunction at the crossroad of cardiovascular diseases and cancer. J Transl Med 2023; 21:635. [PMID: 37726810 PMCID: PMC10507834 DOI: 10.1186/s12967-023-04498-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 09/01/2023] [Indexed: 09/21/2023] Open
Abstract
A large body of evidence indicates the existence of a complex pathophysiological relationship between cardiovascular diseases and cancer. Mitochondria are crucial organelles whose optimal activity is determined by quality control systems, which regulate critical cellular events, ranging from intermediary metabolism and calcium signaling to mitochondrial dynamics, cell death and mitophagy. Emerging data indicate that impaired mitochondrial quality control drives myocardial dysfunction occurring in several heart diseases, including cardiac hypertrophy, myocardial infarction, ischaemia/reperfusion damage and metabolic cardiomyopathies. On the other hand, diverse human cancers also dysregulate mitochondrial quality control to promote their initiation and progression, suggesting that modulating mitochondrial homeostasis may represent a promising therapeutic strategy both in cardiology and oncology. In this review, first we briefly introduce the physiological mechanisms underlying the mitochondrial quality control system, and then summarize the current understanding about the impact of dysregulated mitochondrial functions in cardiovascular diseases and cancer. We also discuss key mitochondrial mechanisms underlying the increased risk of cardiovascular complications secondary to the main current anticancer strategies, highlighting the potential of strategies aimed at alleviating mitochondrial impairment-related cardiac dysfunction and tumorigenesis. It is hoped that this summary can provide novel insights into precision medicine approaches to reduce cardiovascular and cancer morbidities and mortalities.
Collapse
Affiliation(s)
- Carmine Rocca
- Cellular and Molecular Cardiovascular Pathophysiology Laboratory, Department of Biology, E and E.S. (DiBEST), University of Calabria, Arcavacata di Rende, 87036, Cosenza, Italy
| | - Teresa Soda
- Department of Health Science, University Magna Graecia of Catanzaro, 88100, Catanzaro, Italy
| | - Ernestina Marianna De Francesco
- Endocrinology Unit, Department of Clinical and Experimental Medicine, University of Catania, Garibaldi-Nesima Hospital, 95122, Catania, Italy
| | - Marco Fiorillo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Rende, Italy
| | - Francesco Moccia
- Laboratory of General Physiology, Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, 27100, Pavia, Italy
| | - Giuseppe Viglietto
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, 88100, Catanzaro, Italy
| | - Tommaso Angelone
- Cellular and Molecular Cardiovascular Pathophysiology Laboratory, Department of Biology, E and E.S. (DiBEST), University of Calabria, Arcavacata di Rende, 87036, Cosenza, Italy.
- National Institute of Cardiovascular Research (I.N.R.C.), 40126, Bologna, Italy.
| | - Nicola Amodio
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, 88100, Catanzaro, Italy.
| |
Collapse
|
3
|
Panja C, Niedzwiecka K, Baranowska E, Poznanski J, Kucharczyk R. Analysis of MT-ATP8 gene variants reported in patients by modeling in silico and in yeast model organism. Sci Rep 2023; 13:9972. [PMID: 37340059 DOI: 10.1038/s41598-023-36637-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 06/07/2023] [Indexed: 06/22/2023] Open
Abstract
Defects in ATP synthase functioning due to the substitutions in its two mitochondrially encoded subunits a and 8 lead to untreatable mitochondrial diseases. Defining the character of variants in genes encoding these subunits is challenging due to their low frequency, heteroplasmy of mitochondrial DNA in patients' cells and polymorphisms of mitochondrial genome. We successfully used yeast S. cerevisiae as a model to study the effects of variants in MT-ATP6 gene and our research led to understand how eight amino acid residues substitutions impact the proton translocation through the channel formed by subunit a and c-ring of ATP synthase at the molecular level. Here we applied this approach to study the effects of the m.8403T>C variant in MT-ATP8 gene. The biochemical data from yeast mitochondria indicate that equivalent mutation is not detrimental for the yeast enzyme functioning. The structural analysis of substitutions in subunit 8 introduced by m.8403T>C and five other variants in MT-ATP8 provides indications about the role of subunit 8 in the membrane domain of ATP synthase and potential structural consequences of substitutions in this subunit.
Collapse
Affiliation(s)
- Chiranjit Panja
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Katarzyna Niedzwiecka
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Emilia Baranowska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Jaroslaw Poznanski
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Roza Kucharczyk
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland.
| |
Collapse
|
4
|
Liu Y, Huang Y, Xu C, An P, Luo Y, Jiao L, Luo J, Li Y. Mitochondrial Dysfunction and Therapeutic Perspectives in Cardiovascular Diseases. Int J Mol Sci 2022; 23:16053. [PMID: 36555691 PMCID: PMC9788331 DOI: 10.3390/ijms232416053] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/21/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
High mortality rates due to cardiovascular diseases (CVDs) have attracted worldwide attention. It has been reported that mitochondrial dysfunction is one of the most important mechanisms affecting the pathogenesis of CVDs. Mitochondrial DNA (mtDNA) mutations may result in impaired oxidative phosphorylation (OXPHOS), abnormal respiratory chains, and ATP production. In dysfunctional mitochondria, the electron transport chain (ETC) is uncoupled and the energy supply is reduced, while reactive oxygen species (ROS) production is increased. Here, we discussed and analyzed the relationship between mtDNA mutations, impaired mitophagy, decreased OXPHOS, elevated ROS, and CVDs from the perspective of mitochondrial dysfunction. Furthermore, we explored current potential therapeutic strategies for CVDs by eliminating mtDNA mutations (e.g., mtDNA editing and mitochondrial replacement), enhancing mitophagy, improving OXPHOS capacity (e.g., supplement with NAD+, nicotinamide riboside (NR), nicotinamide mononucleotide (NMN), and nano-drug delivery), and reducing ROS (e.g., supplement with Coenzyme Q10 and other antioxidants), and dissected their respective advantages and limitations. In fact, some therapeutic strategies are still a long way from achieving safe and effective clinical treatment. Although establishing effective and safe therapeutic strategies for CVDs remains challenging, starting from a mitochondrial perspective holds bright prospects.
Collapse
Affiliation(s)
- Yu Liu
- China Astronaut Research and Training Center, Beijing 100094, China
| | - Yuejia Huang
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Chong Xu
- China Astronaut Research and Training Center, Beijing 100094, China
| | - Peng An
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Yongting Luo
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Lei Jiao
- China Astronaut Research and Training Center, Beijing 100094, China
| | - Junjie Luo
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Yongzhi Li
- China Astronaut Research and Training Center, Beijing 100094, China
| |
Collapse
|
5
|
The Role of Mitochondrial DNA Mutations in Cardiovascular Diseases. Int J Mol Sci 2022; 23:ijms23020952. [PMID: 35055137 PMCID: PMC8778138 DOI: 10.3390/ijms23020952] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/08/2022] [Accepted: 01/14/2022] [Indexed: 02/01/2023] Open
Abstract
Cardiovascular diseases (CVD) are one of the leading causes of morbidity and mortality worldwide. mtDNA (mitochondrial DNA) mutations are known to participate in the development and progression of some CVD. Moreover, specific types of mitochondria-mediated CVD have been discovered, such as MIEH (maternally inherited essential hypertension) and maternally inherited CHD (coronary heart disease). Maternally inherited mitochondrial CVD is caused by certain mutations in the mtDNA, which encode structural mitochondrial proteins and mitochondrial tRNA. In this review, we focus on recently identified mtDNA mutations associated with CVD (coronary artery disease and hypertension). Additionally, new data suggest the role of mtDNA mutations in Brugada syndrome and ischemic stroke, which before were considered only as a result of mutations in nuclear genes. Moreover, we discuss the molecular mechanisms of mtDNA involvement in the development of the disease.
Collapse
|
6
|
Ding Y, Yu J, Guo Q, Gao B, Huang J. Molecular characterization of two Chinese pedigrees with maternally inherited hypertension. J Gene Med 2021; 23:e3328. [PMID: 33625761 DOI: 10.1002/jgm.3328] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/06/2021] [Accepted: 02/19/2021] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Mutations in mitochondrial tRNA (mt-tRNA) genes are associated with hypertension, although their pathogenic mechanisms remain poorly understood. METHODS In the present study, two Han Chinese families with maternally transmitted hypertension were interviewed. The mtDNA mutations of matrilineal relatives were screened by polymerase chain reaction-Sanger sequencing. Mitochondrial ATP, membrane potential and reactive oxygen species (ROS) were also analyzed in polymononuclear leukocytes carrying these mt-tRNA mutations. Additionally, the levels of oxidative stress-related biomarkers [malondialdehyde (MDA), superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) and 8-hydroxy-2-deoxyguanosine (8-OHdG)] were analyzed. RESULTS Nine of 13 adult matrilineal relatives of these pedigrees exhibited a wide range of severity of hypertension. The age at onset of hypertension was 30-62 years (average 46 years). Mutational screening of mitochondrial genomes revealed tRNAArg T10410C and T10454C mutations. Indeed, the m.T10454C and m.T10410C mutations occurred at conserved bases of TΨC-loop and acceptor arm of tRNAArg (positions 55 and 6), which are critical for tRNAArg post-transcriptional modification. Thus, the defects in tRNA modification may cause failure in tRNA metabolism, impairing mitochondrial translation. Biochemical analysis revealed that m.T10454C or m.T10410C mutation significantly reduced mitochondrial ATP and membrane potential and also increased ROS production in mutant cell lines (all p < 0.05). In addition, the levels of MDA and 8-OHdG in hypertensive patients markedly increased, whereas those of SOD and GSH-Px decreased (all p < 0.05). CONCLUSIONS These findings demonstrate that m.T10410C and m.T10454C mutations affect the structure and function of tRNAArg and consequently alter mitochondrial function and lead to oxidative stress, which are involved in the pathogenesis of maternally inherited hypertension.
Collapse
Affiliation(s)
- Yu Ding
- Central laboratory, Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jinfang Yu
- Department of Cardiology, Xiaoshan First People's Hospital, Hangzhou, China
| | - Qinxian Guo
- Central laboratory, Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Beibei Gao
- Department of Cardiology, Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jinyu Huang
- Department of Cardiology, Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
7
|
Bai J, Ma Q, Lan Y, Chen Y, Ma S, Li J, Liu C, Fu Z, Lu X, Huang Y, Li Y. Mitochondrial tRNA Mutation and Regulation of the Adiponectin Pathway in Maternally Inherited Hypertension in Chinese Han. Front Cell Dev Biol 2021; 8:623450. [PMID: 33553162 PMCID: PMC7862570 DOI: 10.3389/fcell.2020.623450] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 12/01/2020] [Indexed: 01/11/2023] Open
Abstract
Some essential hypertension (EH) patients show maternal inheritance, which is the mode of mitochondrial DNA inheritance. This study examines the mechanisms by which mitochondrial mutations cause EH characterized by maternal inheritance. The study enrolled 115 volunteers, who were divided into maternally inherited EH (group A, n = 17), non-maternally inherited EH (group B, n = 65), and normal control (group C, n = 33) groups. A mitochondrial tRNA (15910 C>T) gene mutation was significantly correlated with EH and may play an important role in the pathogenesis of maternally inherited EH. Examining two families carrying the mitochondrial tRNA 15910 C>T mutation, which disrupted base pairing and may affect the stability and function of mitochondrial tRNAThr, we find that the overall incidence of EH was 59.3% in the maternal family members and 90% in males, significantly higher than in the general population in China (23.2%), and that the EH began at a younger age in those carrying mitochondrial tRNA 15910 C>T. To reveal the mechanism through which mitochondrial tRNA 15910 C>T causes maternally inherited EH, we cultured human peripheral blood mononuclear cells from family A2 in vitro. We find that cells carrying mitochondrial tRNA 15910 C>T were more viable and proliferative, and the increased ATP production resulted in raised intracellular reactive oxygen species (ROS). Moreover, the mitochondrial dysfunction resulted in reduced APN levels, causing hypoadiponectinemia, which promoted cell proliferation, and produced more ROS. This vicious cycle promoted the occurrence of EH with maternally inherited mitochondrial tRNA 15910 C>T. The mitochondrial tRNA 15910 C>T mutation may induce hypertension by changing the APN, AdipoR1, PGC-1α, and ERRα signaling pathways to elevate blood pressure. We discover a new mitochondrial mutation (tRNA 15910 C>T) related to EH, reveal part of the mechanism by which mitochondrial mutations lead to the occurrence and development of maternally inherited EH, and discuss the role of APN in it.
Collapse
Affiliation(s)
- Jing Bai
- Medical School of Chinese People's Liberation Army (PLA), Beijing, China.,Department of Cardiology, The Sixth Medical Center, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Qiang Ma
- Department of Cardiology, The Sixth Medical Center, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Yunfeng Lan
- Hainan LANBO Health Management Co. Ltd., Sanya, China
| | - Yating Chen
- Department of Cardiology, The Sixth Medical Center, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Shanshan Ma
- Department of Cardiology, The Sixth Medical Center, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Jiaxin Li
- Department of Cardiology, The Sixth Medical Center, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Chuanbin Liu
- Medical School of Chinese People's Liberation Army (PLA), Beijing, China.,Department of Cardiology, The Sixth Medical Center, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Zihao Fu
- Medical School of Chinese People's Liberation Army (PLA), Beijing, China.,Department of Cardiology, The Sixth Medical Center, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Xu Lu
- Medical School of Chinese People's Liberation Army (PLA), Beijing, China.,Department of Cardiology, The Sixth Medical Center, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Yun Huang
- Department of Gerontology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yang Li
- Department of Cardiology, The Sixth Medical Center, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| |
Collapse
|
8
|
Harvey NR, Voisin S, Lea RA, Yan X, Benton MC, Papadimitriou ID, Jacques M, Haupt LM, Ashton KJ, Eynon N, Griffiths LR. Investigating the influence of mtDNA and nuclear encoded mitochondrial variants on high intensity interval training outcomes. Sci Rep 2020; 10:11089. [PMID: 32632177 PMCID: PMC7338527 DOI: 10.1038/s41598-020-67870-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 05/26/2020] [Indexed: 02/08/2023] Open
Abstract
Mitochondria supply intracellular energy requirements during exercise. Specific mitochondrial haplogroups and mitochondrial genetic variants have been associated with athletic performance, and exercise responses. However, these associations were discovered using underpowered, candidate gene approaches, and consequently have not been replicated. Here, we used whole-mitochondrial genome sequencing, in conjunction with high-throughput genotyping arrays, to discover novel genetic variants associated with exercise responses in the Gene SMART (Skeletal Muscle Adaptive Response to Training) cohort (n = 62 completed). We performed a Principal Component Analysis of cohort aerobic fitness measures to build composite traits and test for variants associated with exercise outcomes. None of the mitochondrial genetic variants but eight nuclear encoded variants in seven separate genes were found to be associated with exercise responses (FDR < 0.05) (rs11061368: DIABLO, rs113400963: FAM185A, rs6062129 and rs6121949: MTG2, rs7231304: AFG3L2, rs2041840: NDUFAF7, rs7085433: TIMM23, rs1063271: SPTLC2). Additionally, we outline potential mechanisms by which these variants may be contributing to exercise phenotypes. Our data suggest novel nuclear-encoded SNPs and mitochondrial pathways associated with exercise response phenotypes. Future studies should focus on validating these variants across different cohorts and ethnicities.
Collapse
Affiliation(s)
- N R Harvey
- Health Sciences and Medicine Faculty, Bond University, Robina, QLD, 4226, Australia.,Genomics Research Centre, School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, 4059, Australia
| | - S Voisin
- Institute for Health and Sport (IHES), Victoria University, Footscray, VIC, 3011, Australia
| | - R A Lea
- Genomics Research Centre, School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, 4059, Australia
| | - X Yan
- Institute for Health and Sport (IHES), Victoria University, Footscray, VIC, 3011, Australia
| | - M C Benton
- Genomics Research Centre, School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, 4059, Australia
| | - I D Papadimitriou
- Institute for Health and Sport (IHES), Victoria University, Footscray, VIC, 3011, Australia
| | - M Jacques
- Institute for Health and Sport (IHES), Victoria University, Footscray, VIC, 3011, Australia
| | - L M Haupt
- Genomics Research Centre, School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, 4059, Australia
| | - K J Ashton
- Health Sciences and Medicine Faculty, Bond University, Robina, QLD, 4226, Australia
| | - N Eynon
- Institute for Health and Sport (IHES), Victoria University, Footscray, VIC, 3011, Australia
| | - L R Griffiths
- Genomics Research Centre, School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, 4059, Australia.
| |
Collapse
|
9
|
Poznyak AV, Ivanova EA, Sobenin IA, Yet SF, Orekhov AN. The Role of Mitochondria in Cardiovascular Diseases. BIOLOGY 2020; 9:biology9060137. [PMID: 32630516 PMCID: PMC7344641 DOI: 10.3390/biology9060137] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/22/2020] [Accepted: 06/23/2020] [Indexed: 12/16/2022]
Abstract
The role of mitochondria in cardiovascular diseases is receiving ever growing attention. As a central player in the regulation of cellular metabolism and a powerful controller of cellular fate, mitochondria appear to comprise an interesting potential therapeutic target. With the development of DNA sequencing methods, mutations in mitochondrial DNA (mtDNA) became a subject of intensive study, since many directly lead to mitochondrial dysfunction, oxidative stress, deficient energy production and, as a result, cell dysfunction and death. Many mtDNA mutations were found to be associated with chronic human diseases, including cardiovascular disorders. In particular, 17 mtDNA mutations were reported to be associated with ischemic heart disease in humans. In this review, we discuss the involvement of mitochondrial dysfunction in the pathogenesis of atherosclerosis and describe the mtDNA mutations identified so far that are associated with atherosclerosis and its risk factors.
Collapse
Affiliation(s)
- Anastasia V. Poznyak
- Department of Basic Research, Institute for Atherosclerosis Research, Skolkovo Innovative Center, 121609 Moscow, Russia; (A.V.P.); (E.A.I.)
| | - Ekaterina A. Ivanova
- Department of Basic Research, Institute for Atherosclerosis Research, Skolkovo Innovative Center, 121609 Moscow, Russia; (A.V.P.); (E.A.I.)
| | - Igor A. Sobenin
- Laboratory of Medical Genetics, National Medical Research Center of Cardiology, 15A 3-rd Cherepkovskaya Street, 121552 Moscow, Russia;
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System & Central Laboratory of Pathology, Institute of Human Morphology, 3 Tsyurupa Street, 117418 Moscow, Russia
| | - Shaw-Fang Yet
- Institute of Cellular and System Medicine, National Health Research Institutes, 35 Keyan Road, Zhunan Town, Miaoli County 35053, Taiwan;
| | - Alexander N. Orekhov
- Laboratory of Infection Pathology and Molecular Microecology, Institute of Human Morphology, 3 Tsyurupa Street, 117418 Moscow, Russia
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, 8 Baltiyskaya st., 125315 Moscow, Russia
- Correspondence: ; Tel./Fax: +7-(495)-415-9594
| |
Collapse
|
10
|
Zhu Y, You J, Xu C, Gu X. Associations of mitochondrial DNA 3777-4679 region mutations with maternally inherited essential hypertensive subjects in China. BMC MEDICAL GENETICS 2020; 21:105. [PMID: 32414374 PMCID: PMC7229621 DOI: 10.1186/s12881-020-01045-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 05/07/2020] [Indexed: 12/28/2022]
Abstract
Background Nuclear genome or family mitochondrial screening system has become the hot focus of studies into essential hypertension. The role of mitochondrial DNA (mtDNA) in sporadic Chinese patients with hypertension has not been fully understood. The study was to evaluate the associations of mtDNA mutations with maternally inherited essential hypertensive subjects in China. Methods From June 2009 to June 2016, a total of 800 gender-matched Chinese patients with maternally inherited essential hypertension (MIEH) and control group were 1:1 enrolled in this case-control study. Genomic DNA was extracted from each person’s peripheral blood cells. The main mtDNA locations for MIEH were screened with oligodeoxynucleotides 3777-4679 bp, analyzed and compared with the updated consensus Cambridge Sequence. Pathogenic mtDNA mutations were identified from the mitochondrial map. Results MIEH subjects presented significantly higher values than those of control group in abdominal circumference (AC), waist circumference (WC), body mass index (BMI), fasting blood glucose (FBG), triglyceride (TG), low-density lipoprotein cholesterol (LDL) and renal function (P < 0.05). MIEH subjects carried more amino acid changes and coding sequence variants (P < 0.01) than control group. The allele frequencies of the eight single nucleotide polymorphisms (SNPs) were significantly different between the two groups, including m.3970 C > T, m.4048G > A, m.4071C > T, m.4086C > T, m. 4164A > G and m.4248 T > C in ND1 gene, and m.4386 T > C and m.4394C > T in tRNAGln gene(P < 0.001). Fifty-five homoplasmic or heteroplasmic mutations were detected in 5 genes: ND1, tRNAIle, tRNAMet, tRNAGln and ND2 gene. The ND1 gene was the main mutation site, where the most mtDNA mutation was m.3970 C > T. Conclusions The mtDNA mutations were involved in the process of MIEH. We identified mitochondrial genetic characteristics in MIEH patients in China. The present research serves as a solid foundation for further detailed research on the association between MIEH and mitochondrial dysfunction, and their causal relationship in Chinese and other populations with a similar lifestyle.
Collapse
Affiliation(s)
- Ye Zhu
- Clinical Medical College, Yangzhou University, Yangzhou, 225001, Jiangsu, China. .,Department of Cardiology, Northern Jiangsu People's Hospital, Nantong West Road No.98, Yangzhou, 225001, Jiangsu, China.
| | - Jia You
- Department of Internal Medicine, Yangzhou Maternal and Child HealthCare Hospital, Yangzhou, 225001, Jiangsu, China
| | - Chao Xu
- Department of Biostatistics and Epidemiology, University of Oklahoma Health Science Center, Oklahoma City, OK, 73104, USA
| | - Xiang Gu
- Clinical Medical College, Yangzhou University, Yangzhou, 225001, Jiangsu, China.,Department of Cardiology, Northern Jiangsu People's Hospital, Nantong West Road No.98, Yangzhou, 225001, Jiangsu, China
| |
Collapse
|
11
|
Lin L, Cui P, Qiu Z, Wang M, Yu Y, Wang J, Sun Q, Zhao H. The mitochondrial tRNA Ala 5587T>C and tRNA Leu(CUN) 12280A>G mutations may be associated with hypertension in a Chinese family. Exp Ther Med 2018; 17:1855-1862. [PMID: 30783460 DOI: 10.3892/etm.2018.7143] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Accepted: 12/06/2018] [Indexed: 02/07/2023] Open
Abstract
Hypertension is a very common cardiovascular disorder, however, the molecular mechanism underlying this disease remains poorly understood. Recently, an increasing number of studies have demonstrated that mitochondrial (mt)DNA mutations serve important roles in the pathogenesis of hypertension. The current study reported the clinical and molecular characterization of a Chinese family with maternally inherited hypertension (the penetrance of hypertension was 71.4%). In addition, the entire mitochondrial transfer (mt-t)RNA genomes was amplified using a polymerase chain reaction (PCR) and identified through direct Sanger sequencing. Additionally, the mtDNA copy number in matrilineal relatives in this family was evaluated using quantitative PCR. The sequence analysis of the 22 mt-tRNA genes led to the identification of tRNAAla 5587T>C (thymine to cytosine) and tRNALeu(CUN) 12280A>G (adenine to guanine) mutations. Notably, the heteroplasmic 5587T>C mutation was located at the 3' end of tRNAAla (position 73), which is highly conserved from bacteria to human mitochondria. In addition, the 12280A>G mutation was revealed to occurs at the dihydrouridine loop of tRNALeu(CUN) (position 15) and may decrease the steady-state level of mt-tRNA. As a result, 5587T>C and 12280A>G mutations may lead to the failure of tRNAs metabolism and subsequently cause mitochondrial protein synthesis defects. Molecular analysis revealed that patients carrying the 5587T>C and 12280A>G mutations had a lower copy number of mtDNA compared with a control with hypertension, but without the mutations, suggesting that these mutations may cause mitochondrial dysfunctions that are responsible for hypertension. Therefore, mt-tRNAAla 5587T>C and tRNALeu(CUN) 12280A>G mutations may be involved in the pathogenesis of hypertension in this family.
Collapse
Affiliation(s)
- Lin Lin
- Health Examination Department, Affiliated Qingdao Hiser Hospital of Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Peng Cui
- Multidisciplinary Consultation Center, Affiliated Qingdao Hiser Hospital of Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Zhipeng Qiu
- Emergency Department, Affiliated Qingdao Hiser Hospital of Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Min Wang
- Emergency Department, Affiliated Qingdao Hiser Hospital of Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Yingchao Yu
- Emergency Department, Affiliated Qingdao Hiser Hospital of Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Jing Wang
- Department of Joint Surgery, Affiliated Qingdao Hiser Hospital of Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Qian Sun
- Department of Joint Surgery, Affiliated Qingdao Hiser Hospital of Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Hairong Zhao
- Department of General Medicine, Affiliated Qingdao Hiser Hospital of Qingdao University, Qingdao, Shandong 266000, P.R. China
| |
Collapse
|