1
|
Albaqami WF, Alshamrani AA, Almubarak AA, Alotaibi FE, Alotaibi BJ, Alanazi AM, Alotaibi MR, Alhoshani A, As Sobeai HM. Genetic and Epigenetic Biomarkers Associated with Early Relapse in Pediatric Acute Lymphoblastic Leukemia: A Focused Bioinformatics Study on DNA-Repair Genes. Biomedicines 2024; 12:1766. [PMID: 39200230 PMCID: PMC11351110 DOI: 10.3390/biomedicines12081766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/28/2024] [Accepted: 08/01/2024] [Indexed: 09/02/2024] Open
Abstract
Genomic instability is one of the main drivers of tumorigenesis and the development of hematological malignancies. Cancer cells can remedy chemotherapeutic-induced DNA damage by upregulating DNA-repair genes and ultimately inducing therapy resistance. Nevertheless, the association between the DNA-repair genes, drug resistance, and disease relapse has not been well characterized in acute lymphoblastic leukemia (ALL). This study aimed to explore the role of the DNA-repair machinery and the molecular mechanisms by which it is regulated in early- and late-relapsing pediatric ALL patients. We performed secondary data analysis on the Therapeutically Applicable Research to Generate Effective Treatments (TARGET)-ALL expansion phase II trial of 198 relapsed pediatric precursor B-cell ALL. Comprehensive genetic and epigenetic investigations of 147 DNA-repair genes were conducted in the study. Gene expression was assessed using Microarray and RNA-sequencing platforms. Genomic alternations, methylation status, and miRNA transcriptome were investigated for the candidate DNA-repair genes. We identified three DNA-repair genes, ALKBH3, NHEJ1, and PARP1, that were upregulated in early relapsers compared to late relapsers (p < 0.05). Such upregulation at diagnosis was significantly associated with disease-free survival and overall survival in precursor-B-ALL (p < 0.05). Moreover, PARP1 upregulation accompanied a significant downregulation of its targeting miRNA, miR-1301-3p (p = 0.0152), which was strongly linked with poorer disease-free and overall survivals. Upregulation of DNA-repair genes, PARP1 in particular, increases the likelihood of early relapse of precursor-B-ALL in children. The observation that PARP1 was upregulated in early relapsers relative to late relapsers might serve as a valid rationale for proposing alternative treatment approaches, such as using PARP inhibitors with chemotherapy.
Collapse
Affiliation(s)
- Walaa F. Albaqami
- Department of Science, Prince Sultan Military College of Health Sciences, Dhahran 31932, Saudi Arabia;
| | - Ali A. Alshamrani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (A.A.A.); (F.E.A.); (B.J.A.); (A.M.A.); (M.R.A.); (A.A.)
| | - Ali A. Almubarak
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (A.A.A.); (F.E.A.); (B.J.A.); (A.M.A.); (M.R.A.); (A.A.)
| | - Faris E. Alotaibi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (A.A.A.); (F.E.A.); (B.J.A.); (A.M.A.); (M.R.A.); (A.A.)
| | - Basil Jamal Alotaibi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (A.A.A.); (F.E.A.); (B.J.A.); (A.M.A.); (M.R.A.); (A.A.)
| | - Abdulrahman M. Alanazi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (A.A.A.); (F.E.A.); (B.J.A.); (A.M.A.); (M.R.A.); (A.A.)
- Pharmaceutical Care Division, King Faisal Specialist Hospital & Research Centre, Madinah 42523, Saudi Arabia
| | - Moureq R. Alotaibi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (A.A.A.); (F.E.A.); (B.J.A.); (A.M.A.); (M.R.A.); (A.A.)
| | - Ali Alhoshani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (A.A.A.); (F.E.A.); (B.J.A.); (A.M.A.); (M.R.A.); (A.A.)
| | - Homood M. As Sobeai
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (A.A.A.); (F.E.A.); (B.J.A.); (A.M.A.); (M.R.A.); (A.A.)
| |
Collapse
|
2
|
Pasqui A, Boddi A, Campanacci DA, Scoccianti G, Bernini A, Grasso D, Gambale E, Scolari F, Palchetti I, Palomba A, Fancelli S, Caliman E, Antonuzzo L, Pillozzi S. Alteration of the Nucleotide Excision Repair (NER) Pathway in Soft Tissue Sarcoma. Int J Mol Sci 2022; 23:ijms23158360. [PMID: 35955506 PMCID: PMC9369086 DOI: 10.3390/ijms23158360] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/23/2022] [Accepted: 07/25/2022] [Indexed: 02/02/2023] Open
Abstract
Clinical responses to anticancer therapies in advanced soft tissue sarcoma (STS) are unluckily restricted to a small subgroup of patients. Much of the inter-individual variability in treatment efficacy is as result of polymorphisms in genes encoding proteins involved in drug pharmacokinetics and pharmacodynamics. The nucleotide excision repair (NER) system is the main defense mechanism for repairing DNA damage caused by carcinogens and chemotherapy drugs. Single nucleotide polymorphisms (SNPs) of NER pathway key genes, altering mRNA expression or protein activity, can be significantly associated with response to chemotherapy, toxicities, tumor relapse or risk of developing cancer. In the present study, in a cohort of STS patients, we performed DNA extraction and genotyping by SNP assay, RNA extraction and quantitative real-time reverse transcription PCR (qPCR), a molecular dynamics simulation in order to characterize the NER pathway in STS. We observed a severe deregulation of the NER pathway and we describe for the first time the effect of SNP rs1047768 in the ERCC5 structure, suggesting a role in modulating single-stranded DNA (ssDNA) binding. Our results evidenced, for the first time, the correlation between a specific genotype profile of ERCC genes and proficiency of the NER pathway in STS.
Collapse
Affiliation(s)
- Adriano Pasqui
- Medical Oncology Unit, Careggi University Hospital, 50134 Florence, Italy; (A.P.); (L.A.); (S.P.)
| | - Anna Boddi
- Orthopaedic Oncology Unit, Careggi University Hospital, 50134 Florence, Italy; (A.B.); (D.A.C.); (G.S.); (F.S.)
| | - Domenico Andrea Campanacci
- Orthopaedic Oncology Unit, Careggi University Hospital, 50134 Florence, Italy; (A.B.); (D.A.C.); (G.S.); (F.S.)
- Orthopaedic Oncology Unit, Careggi University Hospital, Department of Health Sciences, University of Florence, 50134 Florence, Italy
| | - Guido Scoccianti
- Orthopaedic Oncology Unit, Careggi University Hospital, 50134 Florence, Italy; (A.B.); (D.A.C.); (G.S.); (F.S.)
| | - Andrea Bernini
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy;
- Correspondence:
| | - Daniela Grasso
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy;
| | - Elisabetta Gambale
- Clinical Oncology Unit, Careggi University Hospital, 50134 Florence, Italy;
| | - Federico Scolari
- Orthopaedic Oncology Unit, Careggi University Hospital, 50134 Florence, Italy; (A.B.); (D.A.C.); (G.S.); (F.S.)
| | - Ilaria Palchetti
- Department of Chemistry Ugo Schiff, University of Florence, 50019 Sesto Fiorentino, Italy;
| | - Annarita Palomba
- Histopathology and Molecular Diagnostic Unit, Careggi University Hospital, 50134 Florence, Italy;
| | - Sara Fancelli
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy; (S.F.); (E.C.)
| | - Enrico Caliman
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy; (S.F.); (E.C.)
| | - Lorenzo Antonuzzo
- Medical Oncology Unit, Careggi University Hospital, 50134 Florence, Italy; (A.P.); (L.A.); (S.P.)
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy;
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy; (S.F.); (E.C.)
| | - Serena Pillozzi
- Medical Oncology Unit, Careggi University Hospital, 50134 Florence, Italy; (A.P.); (L.A.); (S.P.)
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy; (S.F.); (E.C.)
| |
Collapse
|
3
|
Latimer JJ, Alhamed A, Sveiven S, Almutairy A, Klimas NG, Abreu M, Sullivan K, Grant SG. Preliminary Evidence for a Hormetic Effect on DNA Nucleotide Excision Repair in Veterans with Gulf War Illness. Mil Med 2021; 185:e47-e52. [PMID: 31334811 PMCID: PMC7353836 DOI: 10.1093/milmed/usz177] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 06/17/2019] [Accepted: 06/25/2019] [Indexed: 12/13/2022] Open
Abstract
Introduction Veterans of the 1991 Gulf War were potentially exposed to a mixture of stress, chemicals and radiation that may have contributed to the persistent symptoms of Gulf War Illness (GWI). The genotoxic effects of some of these exposures are mediated by the DNA nucleotide excision repair (NER) pathway. We hypothesized that individuals with relatively low DNA repair capacity would suffer greater damage from cumulative genotoxic exposures, some of which would persist, causing ongoing problems. Materials and Methods Blood samples were obtained from symptomatic Gulf War veterans and age-matched controls. The unscheduled DNA synthesis assay, a functional measurement of NER capacity, was performed on cultured lymphocytes, and lymphocyte mRNA was extracted and analyzed by sequencing. Results Despite our hypothesis that GWI would be associated with DNA repair deficiency, NER capacity in lymphocytes from affected GWI veterans actually exhibited a significantly elevated level of DNA repair (p = 0.016). Both total gene expression and NER gene expression successfully differentiated individuals with GWI from unaffected controls. The observed functional increase in DNA repair capacity was accompanied by an overexpression of genes in the NER pathway, as determined by RNA sequencing analysis. Conclusion We suggest that the observed elevations in DNA repair capacity and NER gene expression are indicative of a “hormetic,” i.e., induced or adaptive protective response to battlefield exposures. Normally such effects are short-term, but in these individuals this response has resulted in a long-term metabolic shift that may also be responsible for the persistent symptoms of GWI.
Collapse
Affiliation(s)
- Jean J Latimer
- Department of Pharmaceutical Sciences, Nova Southeastern University, 3200 South University Drive, Fort Lauderdale, FL 33328.,South University Drive, AutoNation Institute for Breast Cancer Research, 3321, Fort Lauderdale, FL 33328
| | - Abdullah Alhamed
- Department of Pharmaceutical Sciences, Nova Southeastern University, 3200 South University Drive, Fort Lauderdale, FL 33328.,South University Drive, AutoNation Institute for Breast Cancer Research, 3321, Fort Lauderdale, FL 33328
| | - Stefanie Sveiven
- South University Drive, AutoNation Institute for Breast Cancer Research, 3321, Fort Lauderdale, FL 33328
| | - Ali Almutairy
- Department of Pharmaceutical Sciences, Nova Southeastern University, 3200 South University Drive, Fort Lauderdale, FL 33328.,South University Drive, AutoNation Institute for Breast Cancer Research, 3321, Fort Lauderdale, FL 33328
| | - Nancy G Klimas
- Department of Clinical Immunology, Nova Southeastern University, 3200 South University Drive, Fort Lauderdale, FL 33328.,Department of Medicine, Miami VA Healthcare System, 1201 NW 16th St, Miami, FL 33313
| | - Maria Abreu
- Department of Clinical Immunology, Nova Southeastern University, 3200 South University Drive, Fort Lauderdale, FL 33328
| | - Kimberly Sullivan
- Department of Environmental Health, Boston University School of Public Health, 715 Albany St, Boston, MA 02118
| | - Stephen G Grant
- South University Drive, AutoNation Institute for Breast Cancer Research, 3321, Fort Lauderdale, FL 33328.,Department of Public Health, Nova Southeastern University, 3200 South University Drive, Fort Lauderdale, FL 33328
| |
Collapse
|
4
|
Huang Y, Li J, Chen Y, Jiang P, Wang L, Hu J. Identification of Early Recurrence Factors in Childhood and Adolescent B-Cell Acute Lymphoblastic Leukemia Based on Integrated Bioinformatics Analysis. Front Oncol 2020; 10:565455. [PMID: 33134167 PMCID: PMC7550668 DOI: 10.3389/fonc.2020.565455] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 09/04/2020] [Indexed: 11/13/2022] Open
Abstract
Over the past 50 years, great progress has been made in the diagnosis and treatment of acute lymphoblastic leukemia (ALL), especially in pediatric patients. However, early recurrence is still an important threat to the survival of patients. In this study, we used integrated bioinformatics analysis to look for biomarkers of early recurrence of B-cell ALL (B-ALL) in childhood and adolescent patients. Firstly, we obtained gene expression profiles from the Therapeutically Applicable Research to Generate Effective Treatments (TARGET) database and the Gene Expression Omnibus (GEO) database. Then, we identified differentially expressed genes (DEGs) based on whether the disease relapsed early. LASSO and Cox regression analysis were applied to identify a subset of four genes: HOXA7, S100A11, S100A10, and IFI44L. A genetic risk score model was constructed based on these four optimal prognostic genes. Time-dependent receiver operating characteristic (ROC) curves were used to evaluate the predictive value of this prognostic model (3-, 5-, and 10-year AUC values >0.7). The risk model was significantly associated with overall survival (OS) and event-free survival in B-ALL (all p < 0.0001). In addition, a high risk score was an independent poor prognostic risk factor for OS (p < 0.001; HR = 3.396; 95% CI: 2.387-4.832). Finally, the genetic risk model was successfully tested in B-ALL using an external validation set. The results suggested that this model could be a novel predictive tool for early recurrence and prognosis of B-ALL.
Collapse
Affiliation(s)
- Yan Huang
- Fujian Provincial Key Laboratory of Hematology, Fujian Institute of Hematology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Jiazheng Li
- Fujian Provincial Key Laboratory of Hematology, Fujian Institute of Hematology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Yanxin Chen
- Fujian Provincial Key Laboratory of Hematology, Fujian Institute of Hematology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Peifang Jiang
- Fujian Provincial Key Laboratory of Hematology, Fujian Institute of Hematology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Lingyan Wang
- Fujian Provincial Key Laboratory of Hematology, Fujian Institute of Hematology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Jianda Hu
- Fujian Provincial Key Laboratory of Hematology, Fujian Institute of Hematology, Fujian Medical University Union Hospital, Fuzhou, China
| |
Collapse
|
5
|
Zebian A, Shaito A, Mazurier F, Rezvani HR, Zibara K. XPC beyond nucleotide excision repair and skin cancers. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2019; 782:108286. [DOI: 10.1016/j.mrrev.2019.108286] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 05/23/2019] [Accepted: 07/05/2019] [Indexed: 12/17/2022]
|