1
|
Kamieniczna M, Stachowska E, Augustynowicz A, Woźniak T, Kurpisz MK. Human live spermatozoa morphology assessment using digital holographic microscopy. Sci Rep 2022; 12:4846. [PMID: 35318373 PMCID: PMC8940907 DOI: 10.1038/s41598-022-08798-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 02/11/2022] [Indexed: 11/23/2022] Open
Abstract
Digital holographic microscopy (DHM) was applied for the morphological assessment of live intact spermatozoa from fertile and infertile men directly after semen liquefaction. This method allowed us to study the sperm population directly from the sample droplet and not only from the focal plane of the microscope as in classical optical microscopy. The newly implemented 3-dimensional sperm morphological parameters (head height, acrosome/nucleus height, head/midpiece height) were included in morphological assessment of semen samples from fertile and infertile individuals. The values of the 3D parameters were less variable in fertile men than for infertile ones. DHM was also used to compare the morphological profiles of spermatozoa after applying the “swim-up” and gradient centrifugation techniques. During selection, the most statistically significant differences were observed after separation with a Percoll gradient of 90% and a 60-min “swim-up” procedure versus ‘native’ unfractionated samples. This shows that the developed methodology can be efficiently used for the selection of morphologically sound spermatozoa. The motility type for each spermatozoon was also assessed. The results indicate that the extension of the number of morphological parameters with new 3D parameters and the simultaneous assessment of sperm motility may be valuable addition to sperm examination.
Collapse
Affiliation(s)
| | - Ewa Stachowska
- Department of Metrology and Measurement Systems, Institute of Mechanical Technology, Faculty of Mechanical Engineering, Poznan University of Technology, Poznan, Poland
| | - Agata Augustynowicz
- Department of Metrology and Measurement Systems, Institute of Mechanical Technology, Faculty of Mechanical Engineering, Poznan University of Technology, Poznan, Poland
| | - Tomasz Woźniak
- Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland
| | - Maciej K Kurpisz
- Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland.
| |
Collapse
|
2
|
Wiland E, Olszewska M, Woźniak T, Kurpisz M. How much, if anything, do we know about sperm chromosomes of Robertsonian translocation carriers? Cell Mol Life Sci 2020; 77:4765-4785. [PMID: 32514588 PMCID: PMC7658086 DOI: 10.1007/s00018-020-03560-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 05/08/2020] [Accepted: 05/22/2020] [Indexed: 12/11/2022]
Abstract
In men with oligozoospermia, Robertsonian translocations (RobTs) are the most common type of autosomal aberrations. The most commonly occurring types are rob(13;14) and rob(14;21), and other types of RobTs are described as 'rare' cases. Based on molecular research, all RobTs can be broadly classified into Class 1 and Class 2. Class 1 translocations produce the same breakpoints within their RobT type, but Class 2 translocations are predicted to form during meiosis or mitosis through a variety of mechanisms, resulting in variation in the breakpoint locations. This review seeks to analyse the available data addressing the question of whether the molecular classification of RobTs into Classes 1 and 2 and/or the type of DD/GG/DG symmetry of the involved chromosomes is reflected in the efficiency of spermatogenesis. The lowest frequency value calculated for the rate of alternate segregants was found for rob(13;15) carriers (Class 2, symmetry DD) and the highest for rob(13;21) carriers (Class 2, DG symmetry). The aneuploidy values for the rare RobT (Class 2) and common rob(14;21) (Class 1) groups together exhibited similarities while differing from those for the common rob(13;14) (Class 1) group. Considering the division of RobT carriers into those with normozoospermia and those with oligoasthenozoospermia, it was found that the number of carriers with elevated levels of aneuploidy was unexpectedly quite similar and high (approx. 70%) in the two subgroups. The reason(s) that the same RobT does not always show a similar destructive effect on fertility was also pointed out.
Collapse
Affiliation(s)
- Ewa Wiland
- Institute of Human Genetics, Polish Academy of Sciences, ul. Strzeszynska 32, 60-479, Poznan, Poland
| | - Marta Olszewska
- Institute of Human Genetics, Polish Academy of Sciences, ul. Strzeszynska 32, 60-479, Poznan, Poland
| | - Tomasz Woźniak
- Institute of Human Genetics, Polish Academy of Sciences, ul. Strzeszynska 32, 60-479, Poznan, Poland
| | - Maciej Kurpisz
- Institute of Human Genetics, Polish Academy of Sciences, ul. Strzeszynska 32, 60-479, Poznan, Poland.
| |
Collapse
|
3
|
Olszewska M, Stokowy T, Pollock N, Huleyuk N, Georgiadis A, Yatsenko S, Zastavna D, Yatsenko AN, Kurpisz M. Familial Infertility (Azoospermia and Cryptozoospermia) in Two Brothers-Carriers of t(1;7) Complex Chromosomal Rearrangement (CCR): Molecular Cytogenetic Analysis. Int J Mol Sci 2020; 21:E4559. [PMID: 32604929 PMCID: PMC7349667 DOI: 10.3390/ijms21124559] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 06/23/2020] [Accepted: 06/24/2020] [Indexed: 12/30/2022] Open
Abstract
Structural aberrations involving more than two breakpoints on two or more chromosomes are known as complex chromosomal rearrangements (CCRs). They can reduce fertility through gametogenesis arrest developed due to disrupted chromosomal pairing in the pachytene stage. We present a familial case of two infertile brothers (with azoospermia and cryptozoospermia) and their mother, carriers of an exceptional type of CCR involving chromosomes 1 and 7 and three breakpoints. The aim was to identify whether meiotic disruption was caused by CCR and/or genomic mutations. Additionally, we performed a literature survey for male CCR carriers with reproductive failures. The characterization of the CCR chromosomes and potential genomic aberrations was performed using: G-banding using trypsin and Giemsa staining (GTG banding), fluorescent in situ hybridization (FISH) (including multicolor FISH (mFISH) and bacterial artificial chromosome (BAC)-FISH), and genome-wide array comparative genomic hybridization (aCGH). The CCR description was established as: der(1)(1qter->1q42.3::1p21->1q42.3::7p14.3->7pter), der(7)(1pter->1p2 1::7p14.3->7qter). aCGH revealed three rare genes variants: ASMT, GARNL3, and SESTD1, which were ruled out due to unlikely biological functions. The aCGH analysis of three breakpoint CCR regions did not reveal copy number variations (CNVs) with biologically plausible genes. Synaptonemal complex evaluation (brother-1; spermatocytes II/oligobiopsy; the silver staining technique) showed incomplete conjugation of the chromosomes. Associations between CCR and the sex chromosomes (by FISH) were not found. A meiotic segregation pattern (brother-2; ejaculated spermatozoa; FISH) revealed 29.21% genetically normal/balanced spermatozoa. The aCGH analysis could not detect smaller intergenic CNVs of few kb or smaller (indels of single exons or few nucleotides). Since chromosomal aberrations frequently do not affect the phenotype of the carrier, in contrast to the negative influence on spermatogenesis, there is an obvious need for genomic sequencing to investigate the point mutations that may be responsible for the differences between the azoospermic and cryptozoospermic phenotypes observed in a family. Progeny from the same parents provide a unique opportunity to discover a novel genomic background of male infertility.
Collapse
Affiliation(s)
- Marta Olszewska
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszynska 32, 60-479 Poznan, Poland;
| | - Tomasz Stokowy
- Department of Clinical Science, University of Bergen, Postboks 7804, 5020 Bergen, Norway;
| | - Nijole Pollock
- Department of OBGYN and Reproductive Science, Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, PA 15213, USA; (N.P.); (A.G.); (S.Y.); (A.N.Y.)
| | - Nataliya Huleyuk
- Institute of Hereditary Pathology, Ukrainian Academy of Medical Sciences, Lysenko Str. 31a, 79000 Lviv, Ukraine; (N.H.); (D.Z.)
| | - Andrew Georgiadis
- Department of OBGYN and Reproductive Science, Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, PA 15213, USA; (N.P.); (A.G.); (S.Y.); (A.N.Y.)
| | - Svetlana Yatsenko
- Department of OBGYN and Reproductive Science, Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, PA 15213, USA; (N.P.); (A.G.); (S.Y.); (A.N.Y.)
| | - Danuta Zastavna
- Institute of Hereditary Pathology, Ukrainian Academy of Medical Sciences, Lysenko Str. 31a, 79000 Lviv, Ukraine; (N.H.); (D.Z.)
- Department of Biotechnology and Bioinformatics, Faculty of Chemistry, Rzeszow University of Technology, Al. Powst. Warszawy 6, 35-959 Rzeszow, Poland
| | - Alexander N. Yatsenko
- Department of OBGYN and Reproductive Science, Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, PA 15213, USA; (N.P.); (A.G.); (S.Y.); (A.N.Y.)
| | - Maciej Kurpisz
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszynska 32, 60-479 Poznan, Poland;
| |
Collapse
|