1
|
Suarez-Pajes E, Marcelino-Rodriguez I, Hernández Brito E, Gonzalez-Barbuzano S, Ramirez-Falcon M, Tosco-Herrera E, Rubio-Rodríguez LA, Briones ML, Rajas O, Borderías L, Ferreres J, Payeras A, Lorente L, Aspa J, Lorenzo Salazar JM, Valencia-Gallardo JM, Carbonell N, Freixinet JL, Rodríguez de Castro F, Solé Violán J, Flores C, Rodríguez-Gallego C. A genome-wide association study of adults with community-acquired pneumonia. Respir Res 2024; 25:374. [PMID: 39415140 PMCID: PMC11484206 DOI: 10.1186/s12931-024-03009-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 10/08/2024] [Indexed: 10/18/2024] Open
Abstract
BACKGROUND Community-acquired pneumonia (CAP) is associated with high morbidity and hospitalization rate. In infectious diseases, host genetics plays a critical role in susceptibility and immune response, and the immune pathways involved are highly dependent on the microorganism and its route of infection. Here we aimed to identify genetic risk loci for CAP using a case-control genome-wide association study (GWAS). METHODS We performed a GWAS on 3,765 Spanish individuals, including 257 adult patients hospitalized with CAP and 3,508 population controls. Pneumococcal CAP was documented in 30% of patients; the remaining 70% were selected among patients with unidentified microbiological etiology. We tested 7,6 million imputed genotypes using logistic regressions. UK Biobank GWAS of bacterial pneumonia were used for results validation. Subsequently, we prioritized genes and likely causal variants based on Bayesian fine mapping and functional evidence. Imputation and association of classical HLA alleles and amino acids were also conducted. RESULTS Six independent sentinel variants reached the genome-wide significance (p < 5 × 10-8), three on chromosome 6p21.32, and one for each of the chromosomes 4q28.2, 11p12, and 20q11.22. Only one variant at 6p21.32 was validated in independent GWAS of bacterial and pneumococcal pneumonia. Our analyses prioritized C4orf33 on 4q28.2, TAPBP on 6p21.32, and ZNF341 on 20q11.22. Interestingly, genetic defects of TAPBP and ZNF341 are previously known inborn errors of immunity predisposing to bacterial pneumonia, including pneumococcus and Haemophilus influenzae. Associations were all non-significant for the classical HLA alleles. CONCLUSIONS We completed a GWAS of CAP and identified four novel risk loci involved in CAP susceptibility.
Collapse
Affiliation(s)
- Eva Suarez-Pajes
- Research Unit, Hospital Universitario Nuestra Señora de Candelaria, Instituto de Investigación Sanitaria de Canarias (IISC), Santa Cruz de Tenerife, Spain
| | - Itahisa Marcelino-Rodriguez
- Research Unit, Hospital Universitario Nuestra Señora de Candelaria, Instituto de Investigación Sanitaria de Canarias (IISC), Santa Cruz de Tenerife, Spain
- Area of Preventive Medicine and Public Health, Universidad de La Laguna, Santa Cruz de Tenerife, Spain
| | - Elisa Hernández Brito
- Department of Immunology, Hospital Universitario de Gran Canaria Dr. Negrín, Las Palmas de Gran Canaria, Spain
| | - Silvia Gonzalez-Barbuzano
- Research Unit, Hospital Universitario Nuestra Señora de Candelaria, Instituto de Investigación Sanitaria de Canarias (IISC), Santa Cruz de Tenerife, Spain
| | - Melody Ramirez-Falcon
- Research Unit, Hospital Universitario Nuestra Señora de Candelaria, Instituto de Investigación Sanitaria de Canarias (IISC), Santa Cruz de Tenerife, Spain
| | - Eva Tosco-Herrera
- Research Unit, Hospital Universitario Nuestra Señora de Candelaria, Instituto de Investigación Sanitaria de Canarias (IISC), Santa Cruz de Tenerife, Spain
| | - Luis A Rubio-Rodríguez
- Genomics Division, Instituto Tecnológico y de Energías Renovables (ITER), Santa Cruz de Tenerife, Spain
| | - María Luisa Briones
- Department of Respiratory Diseases, Hospital Clínico y Universitario de Valencia, Valencia, Spain
| | - Olga Rajas
- Department of Respiratory Diseases, Hospital Universitario de la Princesa, Madrid, Spain
| | - Luis Borderías
- Department of Respiratory Diseases, Hospital Universitario San Jorge, Huesca, Spain
| | - Jose Ferreres
- Intensive Care Unit, Hospital Clínico de Valencia, Valencia, Spain
- INCLIVA Biomedical Research Institute, Valencia, Spain
| | - Antoni Payeras
- Department of Internal Medicine, Hospital Son Llatzer, Palma de Mallorca, Spain
| | - Leonardo Lorente
- Intensive Care Unit, Hospital Universitario de Canarias, San Cristóbal de La Laguna, Spain
| | - Javier Aspa
- Department of Respiratory Diseases, Hospital Universitario de la Princesa, Madrid, Spain
| | - Jose M Lorenzo Salazar
- Genomics Division, Instituto Tecnológico y de Energías Renovables (ITER), Santa Cruz de Tenerife, Spain
| | - José Manuel Valencia-Gallardo
- Department of Respiratory Diseases, Hospital Universitario de Gran Canaria Dr. Negrín, Las Palmas de Gran Canaria, Spain
| | - Nieves Carbonell
- Intensive Care Unit, Hospital Clínico de Valencia, Valencia, Spain
- INCLIVA Biomedical Research Institute, Valencia, Spain
| | - Jorge L Freixinet
- Instituto Universitario de Investigaciones Biomédicas y Sanitarias, Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Felipe Rodríguez de Castro
- Department of Respiratory Diseases, Hospital Universitario de Gran Canaria Dr. Negrín, Las Palmas de Gran Canaria, Spain
- Department of Medical and Surgical Sciences, School of Medicine, Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Jordi Solé Violán
- Department of Clinical Sciences, University Fernando Pessoa Canarias, Las Palmas de Gran Canaria, Spain
- Critical Care Unit, Hospital Universitario de Gran Canaria Dr. Negrín, Las Palmas de Gran Canaria, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| | - Carlos Flores
- Research Unit, Hospital Universitario Nuestra Señora de Candelaria, Instituto de Investigación Sanitaria de Canarias (IISC), Santa Cruz de Tenerife, Spain.
- Genomics Division, Instituto Tecnológico y de Energías Renovables (ITER), Santa Cruz de Tenerife, Spain.
- Department of Clinical Sciences, University Fernando Pessoa Canarias, Las Palmas de Gran Canaria, Spain.
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain.
| | - Carlos Rodríguez-Gallego
- Department of Immunology, Hospital Universitario de Gran Canaria Dr. Negrín, Las Palmas de Gran Canaria, Spain.
- Department of Medical and Surgical Sciences, School of Medicine, Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain.
- Department of Clinical Sciences, University Fernando Pessoa Canarias, Las Palmas de Gran Canaria, Spain.
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
2
|
Darkwah S, Kotey FCN, Ahenkorah J, Adutwum-Ofosu KK, Donkor ES. Sepsis-Related Lung Injury and the Complication of Extrapulmonary Pneumococcal Pneumonia. Diseases 2024; 12:72. [PMID: 38667530 PMCID: PMC11049144 DOI: 10.3390/diseases12040072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/18/2023] [Accepted: 11/26/2023] [Indexed: 04/28/2024] Open
Abstract
Globally, sepsis and pneumonia account for significant mortality and morbidity. A complex interplay of immune-molecular pathways underlies both sepsis and pneumonia, resulting in similar and overlapping disease characteristics. Sepsis could result from unmanaged pneumonia. Similarly, sepsis patients have pneumonia as a common complication in the intensive care unit. A significant percentage of pneumonia is misdiagnosed as septic shock. Therefore, our knowledge of the clinical relationship between pneumonia and sepsis is imperative to the proper management of these syndromes. Regarding pathogenesis and etiology, pneumococcus is one of the leading pathogens implicated in both pneumonia and sepsis syndromes. Growing evidence suggests that pneumococcal pneumonia can potentially disseminate and consequently induce systemic inflammation and severe sepsis. Streptococcus pneumoniae could potentially exploit the function of dendritic cells (DCs) to facilitate bacterial dissemination. This highlights the importance of pathogen-immune cell crosstalk in the pathophysiology of sepsis and pneumonia. The role of DCs in pneumococcal infections and sepsis is not well understood. Therefore, studying the immunologic crosstalk between pneumococcus and host immune mediators is crucial to elucidating the pathophysiology of pneumonia-induced lung injury and sepsis. This knowledge would help mitigate clinical diagnosis and management challenges.
Collapse
Affiliation(s)
- Samuel Darkwah
- Department of Medical Microbiology, University of Ghana Medical School, Accra P.O. Box KB 4236, Ghana; (F.C.N.K.); (E.S.D.)
| | - Fleischer C. N. Kotey
- Department of Medical Microbiology, University of Ghana Medical School, Accra P.O. Box KB 4236, Ghana; (F.C.N.K.); (E.S.D.)
| | - John Ahenkorah
- Department of Anatomy, University of Ghana Medical School, Accra P.O. Box KB 4236, Ghana; (J.A.); (K.K.A.-O.)
| | - Kevin Kofi Adutwum-Ofosu
- Department of Anatomy, University of Ghana Medical School, Accra P.O. Box KB 4236, Ghana; (J.A.); (K.K.A.-O.)
| | - Eric S. Donkor
- Department of Medical Microbiology, University of Ghana Medical School, Accra P.O. Box KB 4236, Ghana; (F.C.N.K.); (E.S.D.)
| |
Collapse
|
3
|
Boix-Palop L, Arranz MJ, Sangil A, Dietl B, Xercavins M, Pérez J, Calbo E. Host genetic variants associated with susceptibility and severity of pneumococcal pneumonia in adult patients. Pneumonia (Nathan) 2023; 15:18. [PMID: 38143267 PMCID: PMC10749500 DOI: 10.1186/s41479-023-00120-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/24/2023] [Indexed: 12/26/2023] Open
Abstract
BACKGROUND Pneumococcal community-acquired pneumonia (P-CAP) is a major cause of morbidity and hospitalization. Several host genetics factors influencing risk of pneumococcal disease have been identified, with less information about its association with P-CAP. The aim of the study was to assess the influence of single nucleotide polymorphisms (SNP) within key genes involved in the innate immune response on the susceptibility to P-CAP and to study whether these polymorphic variants were associated with the severity and outcome of the episodes in a cohort of adult Caucasian patients. METHODS Seventeen SNPs from 7 genes (IL-R1, IL-4, IL-10, IL-12B, NFKBIA, NFKBIE, NFKBIZ) were analyzed. For susceptibility, a case-control study including a cohort of 57 adult with P-CAP, and 280 ethnically matched controls was performed. Genetic influence on clinical severity and outcome was evaluated in a prospective observational study including all consecutive adult P-CAP patients from November 2015 to May 2017. RESULTS The NFKBIA polymorphism rs696 and a haplotype combination were associated with susceptibility to P-CAP (OR = 0.62, p = 0.005 and OR = 0.63, p = 0.008, respectively). The SNP IL4 rs2227284 was associated with severe P-CAP (OR = 2.17, p = 0.04). IL-R1 (rs3917267) and IL-10 (rs3024509) variants were related with respiratory failure (OR = 3.31, p = 0.001 and OR = 0.18, p = 0.003, respectively) as well as several haplotype combinations in NFKBIA, NFKBIZ, IL-R1 and IL-10 (p = 0,02, p = 0,01, p = 0,001, p = 0,03, respectively). CURB-65 values were associated with the IL-10 rs3024509 variant (beta = - 0.4, p = 0.04), and with haplotype combinations of NFKBIZ and IL-10 (p = 0.05, p = 0.04, respectively). Genetic variants in IL-10 (rs3024509) and in IL-12B (rs730691) were associated with PSI values (beta = - 0.54, p = 0.01, and beta = - 0.28, p = 0.04, respectively), as were allelic combinations in IL-R1 (p = 0.02) and IL-10 (p = 0.01). Finally, several polymorphisms in the IL-R1 gene (rs13020778, rs2160227, & rs3917267) were associated with the time elapsed until clinical stability (beta = - 0.83, p = 0.03; beta = - 1, p = 0.02 and beta = 1.07, p = 0.008, respectively). CONCLUSIONS A genetic variant in NFKBIA was associated with susceptibility to P-CAP in adult Caucasian patients and genetic variants from key cytokines of the innate immune response (Il-4, IL-10, IL-R1 and IL-12B) and NF-κB inhibitors were associated with different phenotypes of severe P-CAP. If validated, these SNPs may help to identify people at risk of P-CAP or severe P-CAP on which preventive measures could be applied.
Collapse
Affiliation(s)
- Lucía Boix-Palop
- Infectious Diseases Department, Hospital Universitari Mútua de Terrassa, Barcelona, Spain.
- Universitat Internacional de Catalunya, Barcelona, Spain.
- Universitat de Barcelona, Barcelona, Spain.
| | - María J Arranz
- Fundació Docència i Recerca Mútua Terrassa, Barcelona, Spain
| | - Anna Sangil
- Internal Medicine Department, Hospital Universitari Mútua de Terrassa, Barcelona, Spain
| | - Beatriz Dietl
- Infectious Diseases Department, Hospital Universitari Mútua de Terrassa, Barcelona, Spain
| | | | - Josefa Pérez
- Microbiology Department, CatLab, Barcelona, Spain
| | - Esther Calbo
- Infectious Diseases Department, Hospital Universitari Mútua de Terrassa, Barcelona, Spain.
- Universitat Internacional de Catalunya, Barcelona, Spain.
| |
Collapse
|
4
|
Karnaushkina MA, Sviridov PS, Korchagin VI, Salamaikina SA, Vasilyeva IS, Litvinova MM, Vatsik-Gorodetskaya MV. Genetic factors contributing to a severe course of pneumonia: a systematic review. BULLETIN OF SIBERIAN MEDICINE 2023. [DOI: 10.20538/1682-0363-2022-4-160-169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The article presents a systematic review of publications devoted to the study of genetic markers of severe pneumonia.The aim of the study was to compile a list of genetic markers that contribute to a severe course of pneumonia on the basis of the published data.In the current study, we searched for and analyzed articles published between January 2000 and April 2021. Following the search for and subsequent selection of articles, a list of 10 publications was compiled, which demonstrated a clear association of certain gene variants with severe and complicated pneumonia. Finally, we made a list of genetic markers of severe pneumonia consisting of 16 polymorphisms in 12 genes (CD86, IL6, IL10, PAI1, TNFα, HMGB1, ATG16L1, AGTR1, GCLC, CAT, IFNγ, FCGR2A).These genetic markers of severe and complicated pneumonia are responsible for various innate immune responses. The odds ratio for complicated pneumonia with a risk allele in the polymorphisms in the mentioned genes ranges from 1.39 to 4.28. To understand molecular and genetic mechanisms of severe pneumonia, further investigation of the effect of these genetic factors on the outcomes of pneumonia in different groups of patients with a simultaneous assessment of the cumulative effect of genetic variants and genetic interactions is required.
Collapse
Affiliation(s)
| | - P. S. Sviridov
- Peoples' Friendship University of Russia (RUDN University);
Research Centre for Medical Genetics
| | | | | | - I. S. Vasilyeva
- I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University)
| | - M. M. Litvinova
- The Loginov Moscow Clinical Scientific Center;
I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University)
| | | |
Collapse
|
5
|
Characterization of the innate immune response to Streptococcus pneumoniae infection in zebrafish. PLoS Genet 2023; 19:e1010586. [PMID: 36622851 PMCID: PMC9858863 DOI: 10.1371/journal.pgen.1010586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 01/20/2023] [Accepted: 12/20/2022] [Indexed: 01/10/2023] Open
Abstract
Streptococcus pneumoniae (pneumococcus) is one of the most frequent causes of pneumonia, sepsis and meningitis in humans, and an important cause of mortality among children and the elderly. We have previously reported the suitability of the zebrafish (Danio rerio) larval model for the study of the host-pathogen interactions in pneumococcal infection. In the present study, we characterized the zebrafish innate immune response to pneumococcus in detail through a whole-genome level transcriptome analysis and revealed a well-conserved response to this human pathogen in challenged larvae. In addition, to gain understanding of the genetic factors associated with the increased risk for severe pneumococcal infection in humans, we carried out a medium-scale forward genetic screen in zebrafish. In the screen, we identified a mutant fish line which showed compromised resistance to pneumococcus in the septic larval infection model. The transcriptome analysis of the mutant zebrafish larvae revealed deficient expression of a gene homologous for human C-reactive protein (CRP). Furthermore, knockout of one of the six zebrafish crp genes by CRISPR-Cas9 mutagenesis predisposed zebrafish larvae to a more severe pneumococcal infection, and the phenotype was further augmented by concomitant knockdown of a gene for another Crp isoform. This suggests a conserved function of C-reactive protein in anti-pneumococcal immunity in zebrafish. Altogether, this study highlights the similarity of the host response to pneumococcus in zebrafish and humans, gives evidence of the conserved role of C-reactive protein in the defense against pneumococcus, and suggests novel host genes associated with pneumococcal infection.
Collapse
|
6
|
Pletz MW, Jensen AV, Bahrs C, Davenport C, Rupp J, Witzenrath M, Barten-Neiner G, Kolditz M, Dettmer S, Chalmers JD, Stolz D, Suttorp N, Aliberti S, Kuebler WM, Rohde G. Unmet needs in pneumonia research: a comprehensive approach by the CAPNETZ study group. Respir Res 2022; 23:239. [PMID: 36088316 PMCID: PMC9463667 DOI: 10.1186/s12931-022-02117-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 07/15/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Introduction
Despite improvements in medical science and public health, mortality of community-acquired pneumonia (CAP) has barely changed throughout the last 15 years. The current SARS-CoV-2 pandemic has once again highlighted the central importance of acute respiratory infections to human health. The “network of excellence on Community Acquired Pneumonia” (CAPNETZ) hosts the most comprehensive CAP database worldwide including more than 12,000 patients. CAPNETZ connects physicians, microbiologists, virologists, epidemiologists, and computer scientists throughout Europe. Our aim was to summarize the current situation in CAP research and identify the most pressing unmet needs in CAP research.
Methods
To identify areas of future CAP research, CAPNETZ followed a multiple-step procedure. First, research members of CAPNETZ were individually asked to identify unmet needs. Second, the top 100 experts in the field of CAP research were asked for their insights about the unmet needs in CAP (Delphi approach). Third, internal and external experts discussed unmet needs in CAP at a scientific retreat.
Results
Eleven topics for future CAP research were identified: detection of causative pathogens, next generation sequencing for antimicrobial treatment guidance, imaging diagnostics, biomarkers, risk stratification, antiviral and antibiotic treatment, adjunctive therapy, vaccines and prevention, systemic and local immune response, comorbidities, and long-term cardio-vascular complications.
Conclusion
Pneumonia is a complex disease where the interplay between pathogens, immune system and comorbidities not only impose an immediate risk of mortality but also affect the patients’ risk of developing comorbidities as well as mortality for up to a decade after pneumonia has resolved. Our review of unmet needs in CAP research has shown that there are still major shortcomings in our knowledge of CAP.
Collapse
|
7
|
Evaluation of Multiplex Real-time PCR and WHO Criteria for Diagnosing Childhood Bacterial Meningitis in a Tertiary Referral Hospital in Iran. ARCHIVES OF PEDIATRIC INFECTIOUS DISEASES 2022. [DOI: 10.5812/pedinfect.101822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background: Childhood bacterial meningitis (BM) requires prompt and precise diagnosis to provide proper treatment and decline mortality and morbidity. Objectives: We aimed to evaluate the World Health Organization (WHO) criteria and polymerase chain reaction (PCR) for diagnosing BM in children admitted to a tertiary referral hospital in Shiraz, southern Iran. Materials: We included all 492 children aged one month to 17 years suspected of meningitis who had cerebrospinal fluid (CSF) leukocytosis admitted to Nemazi Hospital from August 2016 to September 2017. The CSF specimens were examined for routine analysis, Gram staining, and culture. A multiplex real-time PCR was used to identify Streptococcus pneumoniae, Haemophilus influenzae type b (Hib), and Neisseria meningitidis in the CSF samples. Seven viruses were also investigated using real-time PCR. The sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) were calculated using the WHO criteria and the multiplex real-time PCR results. Results: Seventy-four CSF samples had leukocytosis. Nineteen (22.9%) patients had BM caused by S. pneumoniae (n = 14), Hib (n = 2), Salmonella enterica (n = 2), and N. meningitidis (n = 1). The PCR test detected all cases, except for two with Salmonella meningitis (sensitivity 89.4%, specificity 100%, PPV 100%, and NPV 96%). The WHO criteria detected all cases, except three who received antibiotics at least four days before performing lumbar puncture (sensitivity 84.2%, specificity 98.2%, PPV 94.1%, and NPV 94.7%). Enterovirus was the most common viral etiology (6.75%). Conclusions: The WHO criteria and the multiplex real-time PCR had high accuracy in our setting, and their use could decrease the antibiotic over-prescription in febrile children suspected of meningitis.
Collapse
|
8
|
Karnaushkina MA, Guryev AS, Mironov KO, Dunaeva EA, Korchagin VI, Bobkova OY, Vasilyeva IS, Kassina DV, Litvinova MM. Associations of Toll-like Receptor Gene Polymorphisms with NETosis Activity as Prognostic Criteria for the Severity of Pneumonia. Sovrem Tekhnologii Med 2021; 13:47-53. [PMID: 34603755 PMCID: PMC8482823 DOI: 10.17691/stm2021.13.3.06] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Indexed: 12/02/2022] Open
Abstract
The aim of the study was to determine the molecular genetic prognostic criteria for the severity of the course pneumonia based on the analysis of the association of genetic polymorphism in toll-like receptors with the severity of NETosis.
Collapse
Affiliation(s)
- M A Karnaushkina
- Professor, Department of Internal Diseases with a Course of Cardiology and Functional Diagnostics named after Academician V.S. Moiseev; Peoples' Friendship University of Russia, 6 Miklukho-Maklaya St., Moscow, 117198, Russia
| | - A S Guryev
- Senior Researcher, Research Laboratory; Moscow Regional Research Clinical Institute named after M.F. Vladimirsky, 61/2-1 Schepkina St., Moscow, 129110, Russia
| | - K O Mironov
- Head of the Research Group for the Development of New Methods for Identifying Genetic Polymorphisms; Central Research Institute of Epidemiology of the Federal Service on Consumer Rights Protection and Human Wellbeing (Rospotrebnadzor), 3а Novogireevskaya St., Moscow, 111123, Russia
| | - E A Dunaeva
- Researcher, Research Group for the Development of New Methods for Identifying Genetic Polymorphisms; Central Research Institute of Epidemiology of the Federal Service on Consumer Rights Protection and Human Wellbeing (Rospotrebnadzor), 3а Novogireevskaya St., Moscow, 111123, Russia
| | - V I Korchagin
- Researcher, Research Group for the Development of New Methods for Identifying Genetic Polymorphisms; Central Research Institute of Epidemiology of the Federal Service on Consumer Rights Protection and Human Wellbeing (Rospotrebnadzor), 3а Novogireevskaya St., Moscow, 111123, Russia
| | - O Yu Bobkova
- PhD Student, Department of Hospital Therapy No.2; I.M. Sechenov First Moscow State Medical University (Sechenov University), 8/2 Trubetskaya St., Moscow, 119991, Russia
| | - I S Vasilyeva
- Assistant, Department of Hospital Therapy No.2; I.M. Sechenov First Moscow State Medical University (Sechenov University), 8/2 Trubetskaya St., Moscow, 119991, Russia
| | - D V Kassina
- Researcher, Research Laboratory; Moscow Regional Research Clinical Institute named after M.F. Vladimirsky, 61/2-1 Schepkina St., Moscow, 129110, Russia
| | - M M Litvinova
- Associate Professor, Department of Medical Genetics; I.M. Sechenov First Moscow State Medical University (Sechenov University), 8/2 Trubetskaya St., Moscow, 119991, Russia; Geneticist, Center for Personalized Medicine; Moscow Clinical Scientific Center named after A.S. Loginov, Moscow Healthcare Department, 86 Shosse Entuziastov, Moscow, 111123, Russia
| |
Collapse
|
9
|
Maurya R, Kanakan A, Vasudevan JS, Chattopadhyay P, Pandey R. Infection outcome needs two to tango: human host and the pathogen. Brief Funct Genomics 2021; 21:90-102. [PMID: 34402498 PMCID: PMC8385967 DOI: 10.1093/bfgp/elab037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/15/2021] [Accepted: 07/21/2021] [Indexed: 12/15/2022] Open
Abstract
Infectious diseases are potential drivers for human evolution, through a complex, continuous and dynamic interaction between the host and the pathogen/s. It is this dynamic interaction that contributes toward the clinical outcome of a pathogenic disease. These are modulated by contributions from the human genetic variants, transcriptional response (including noncoding RNA) and the pathogen’s genome architecture. Modern genomic tools and techniques have been crucial for the detection and genomic characterization of pathogens with respect to the emerging infectious diseases. Aided by next-generation sequencing (NGS), risk stratification of host population/s allows for the identification of susceptible subgroups and better disease management. Nevertheless, many challenges to a general understanding of host–pathogen interactions remain. In this review, we elucidate how a better understanding of the human host-pathogen interplay can substantially enhance, and in turn benefit from, current and future applications of multi-omics based approaches in infectious and rare diseases. This includes the RNA-level response, which modulates the disease severity and outcome. The need to understand the role of human genetic variants in disease severity and clinical outcome has been further highlighted during the Coronavirus disease 2019 (COVID-19) pandemic. This would enhance and contribute toward our future pandemic preparedness.
Collapse
Affiliation(s)
- Ranjeet Maurya
- INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Mall Road, Delhi-110007, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Akshay Kanakan
- INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Mall Road, Delhi-110007, India
| | - Janani Srinivasa Vasudevan
- INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Mall Road, Delhi-110007, India
| | - Partha Chattopadhyay
- INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Mall Road, Delhi-110007, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Rajesh Pandey
- INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Mall Road, Delhi-110007, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| |
Collapse
|
10
|
Dietl B, Henares D, Boix-Palop L, Muñoz-Almagro C, Garau J, Calbo E. Related Factors to Streptococcus pneumoniae Invasive Infection and Clinical Manifestations: The Potential Role of Nasopharyngeal Microbiome. Front Med (Lausanne) 2021; 8:650271. [PMID: 33996857 PMCID: PMC8117960 DOI: 10.3389/fmed.2021.650271] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 03/22/2021] [Indexed: 12/15/2022] Open
Abstract
Infections of the lower respiratory tract, such as pneumonia, are one of the leading causes of death worldwide. Streptococcus pneumoniae might colonize the upper respiratory tract and is the main aetiological agent of community-acquired pneumonia (CAP). In the last decades, several factors related to the host, the microorganism and the antibiotic therapy have been investigated to identify risk factors associated with the development of invasive pneumococcal disease (IPD). Nevertheless, these factors themselves do not explain the risk of developing disease or its severity. Recently, some studies have focused on the importance of nasopharyngeal (NP) microbiome and its relation to respiratory health. This review presents existing evidence of the potential role of NP microbiome in the development of IPD.
Collapse
Affiliation(s)
- Beatriz Dietl
- Infectious Diseases Unit, Hospital Universitari Mútua Terrassa, Terrassa, Spain.,Department of Medicine, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Desirée Henares
- Institut de Recerca Sant Joan de Déu, Hospital Sant Joan de Déu, Barcelona, Spain.,Center for Epidemiology and Public Health, CIBERESP, Instituto de Salud Carlos III, Madrid, Spain
| | - Lucía Boix-Palop
- Infectious Diseases Unit, Hospital Universitari Mútua Terrassa, Terrassa, Spain.,Department of Medicine, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Carmen Muñoz-Almagro
- Department of Medicine, Universitat Internacional de Catalunya, Barcelona, Spain.,Institut de Recerca Sant Joan de Déu, Hospital Sant Joan de Déu, Barcelona, Spain.,Center for Epidemiology and Public Health, CIBERESP, Instituto de Salud Carlos III, Madrid, Spain
| | - Javier Garau
- Internal Medicine Department, Clínica Rotger, Palma de Mallorca, Spain
| | - Esther Calbo
- Infectious Diseases Unit, Hospital Universitari Mútua Terrassa, Terrassa, Spain.,Department of Medicine, Universitat Internacional de Catalunya, Barcelona, Spain
| |
Collapse
|
11
|
Bertrams W, Jung AL, Maxheim M, Schmeck B. [Role of genetic factors in pneumonia and COVID-19]. PNEUMOLOGE 2021; 18:212-217. [PMID: 33716601 PMCID: PMC7934978 DOI: 10.1007/s10405-021-00385-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 02/03/2021] [Indexed: 11/25/2022]
Abstract
Die Pneumonie ist die Infektionskrankheit mit der weltweit höchsten Mortalität. Die häufigsten Erreger sind Bakterien, es gibt jedoch auch epidemisch oder pandemisch auftretende virale Lungenentzündungen durch Influenza- oder Coronaviren, wie die aktuelle Pandemie durch das SARS Coronavirus 3766 Fälle (SARS-CoV-2). Wichtige Herausforderungen liegen neben dem Auftreten von Antibiotikaresistenzen und Immunpathologien etwa in der Sepsis in der Betrachtung der Suszeptibilität individueller Patienten: Hier werden vor allen Dingen das Lebensalter, Medikamente und Komorbiditäten betrachtet. Es gibt jedoch auch klare Hinweise für genetische Einflüsse auf das individuelle Risiko, an einer Pneumonie zu erkranken oder einen schweren Verlauf der Erkrankung zu entwickeln. In diesem Beitrag wollen wir die genetischen Einflüsse auf die Pneumonie und ihre klinische Bedeutung darstellen.
Collapse
Affiliation(s)
- Wilhelm Bertrams
- Institut für Lungenforschung, Universities of Gießen and Marburg Lung Center (UGMLC), Philipps-Universität Marburg, Hans-Meerwein-Str. 2, 35043 Marburg, Deutschland
| | - Anna Lena Jung
- Institut für Lungenforschung, Universities of Gießen and Marburg Lung Center (UGMLC), Philipps-Universität Marburg, Hans-Meerwein-Str. 2, 35043 Marburg, Deutschland
| | - Michael Maxheim
- Klinik für Innere Medizin mit Schwerpunkt Pneumologie, Universitätsklinikum Marburg, Philipps-Universität Marburg, Marburg, Deutschland
| | - Bernd Schmeck
- Institut für Lungenforschung, Universities of Gießen and Marburg Lung Center (UGMLC), Philipps-Universität Marburg, Hans-Meerwein-Str. 2, 35043 Marburg, Deutschland
- Klinik für Innere Medizin mit Schwerpunkt Pneumologie, Universitätsklinikum Marburg, Philipps-Universität Marburg, Marburg, Deutschland
| |
Collapse
|