1
|
Zhang R, Wang L, Li Y, Liu Y, Dong K, Pei Y, Zhao J, Liu G, Li J, Zhang X, Cui T, Gao Y, Wang W, Wang Y, Gui C, Zhou G. CYTOR-NFAT1 feedback loop regulates epithelial-mesenchymal transition of retinal pigment epithelial cells. Hum Cell 2024; 37:1056-1069. [PMID: 38744794 DOI: 10.1007/s13577-024-01075-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 05/03/2024] [Indexed: 05/16/2024]
Abstract
Epithelial mesenchymal transition (EMT) occurring in retinal pigment epithelial cells (RPE) is a crucial mechanism that contributes to the development of age-related macular degeneration (AMD), a pivotal factor leading to permanent vision impairment. Long non-coding RNAs (lncRNAs) have emerged as critical regulators orchestrating EMT in RPE cells. In this study, we explored the function of the lncRNA CYTOR (cytoskeleton regulator RNA) in EMT of RPE cells and its underlying mechanisms. Through weighted correlation network analysis, we identified CYTOR as an EMT-related lncRNA associated with AMD. Experimental validation revealed that CYTOR orchestrates TGF-β1-induced EMT, as well as proliferation and migration of ARPE-19 cells. Further investigation demonstrated the involvement of CYTOR in regulating the WNT5A/NFAT1 pathway and NFAT1 intranuclear translocation in the ARPE-19 cell EMT model. Mechanistically, CHIP, EMSA and dual luciferase reporter assays confirmed NFAT1's direct binding to CYTOR's promoter, promoting transcription. Reciprocally, CYTOR overexpression promoted NFAT1 expression, while NFAT1 overexpression increased CYTOR transcription. These findings highlight a mutual promotion between CYTOR and NFAT1, forming a positive feedback loop that triggers the EMT phenotype in ARPE-19 cells. These discoveries provide valuable insights into the molecular mechanisms of EMT and its association with AMD, offering potential avenues for targeted therapies in EMT-related conditions, including AMD.
Collapse
Affiliation(s)
- Rong Zhang
- Department of Ophthalmology, Shanxi Eye Hospital Affiliated to Shanxi Medical University, Taiyuan, 030002, Shanxi, China
| | - Lin Wang
- Department of Ophthalmology, Shanxi Eye Hospital Affiliated to Shanxi Medical University, Taiyuan, 030002, Shanxi, China
| | - Yang Li
- Department of Ophthalmology, Yuncheng Central Hospital, Yuncheng, 044000, Shanxi, China
| | - Yan Liu
- Shanxi Province Cancer Hospital/ Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, 030013, Shanxi, China
| | - Kui Dong
- Department of Ophthalmology, Shanxi Eye Hospital Affiliated to Shanxi Medical University, Taiyuan, 030002, Shanxi, China
| | - Yajing Pei
- Department of Ophthalmology, Shanxi Eye Hospital Affiliated to Shanxi Medical University, Taiyuan, 030002, Shanxi, China
| | - Junmei Zhao
- Department of Ophthalmology, Shanxi Eye Hospital Affiliated to Shanxi Medical University, Taiyuan, 030002, Shanxi, China
| | - Gang Liu
- Department of Ophthalmology, Shanxi Eye Hospital Affiliated to Shanxi Medical University, Taiyuan, 030002, Shanxi, China
| | - Jing Li
- Department of Ophthalmology, Shanxi Eye Hospital Affiliated to Shanxi Medical University, Taiyuan, 030002, Shanxi, China
| | - Xiaodan Zhang
- Department of Ophthalmology, Shanxi Eye Hospital Affiliated to Shanxi Medical University, Taiyuan, 030002, Shanxi, China
| | - Tong Cui
- Department of Ophthalmology, Shanxi Eye Hospital Affiliated to Shanxi Medical University, Taiyuan, 030002, Shanxi, China
| | - Yan Gao
- Department of Ophthalmology, Shanxi Eye Hospital Affiliated to Shanxi Medical University, Taiyuan, 030002, Shanxi, China
| | - Wenjuan Wang
- Department of Ophthalmology, Shanxi Eye Hospital Affiliated to Shanxi Medical University, Taiyuan, 030002, Shanxi, China
| | - Yongrui Wang
- Department of Ophthalmology, Shanxi Eye Hospital Affiliated to Shanxi Medical University, Taiyuan, 030002, Shanxi, China
| | - Chenwei Gui
- Department of Ophthalmology, Shanxi Eye Hospital Affiliated to Shanxi Medical University, Taiyuan, 030002, Shanxi, China
| | - Guohong Zhou
- Department of Ophthalmology, Shanxi Eye Hospital Affiliated to Shanxi Medical University, Taiyuan, 030002, Shanxi, China.
| |
Collapse
|
2
|
Xu W, Li H, Wang Z, Kang Y, Zheng L, Liu Y, Xu P, Li Z. LINC00152: Potential driver oncogene in pan-cancer. WILEY INTERDISCIPLINARY REVIEWS. RNA 2024; 15:e1851. [PMID: 38702938 DOI: 10.1002/wrna.1851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/26/2024] [Accepted: 04/02/2024] [Indexed: 05/06/2024]
Abstract
Long noncoding RNAs (lncRNA) are a class of non-coding RNAs greater than 200 bp in length with limited peptide-coding function. The transcription of LINC00152 is derived from chromosome 2p11.2. Many studies prove that LINC00152 influences the progression of various tumors via promoting the tumor cells malignant phenotype, chemoresistance, and immune escape. LINC00152 is regulated by multiple transcription factors and DNA hypomethylation. In addition, LINC00152 participates in the regulation of complex molecular signaling networks through epigenetic regulation, protein interactions, and competitive endogenous RNA (ceRNA). Here, we provide a systematic review of the upstream regulatory factors of LINC00152 expression level in different types of tumors. In addition, we revisit the main functions and mechanisms of LINC00152 as driver oncogene and biomarker in pan-cancer. This article is categorized under: RNA in Disease and Development > RNA in Disease RNA Methods > RNA Analyses in Cells RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes.
Collapse
Affiliation(s)
- Wei Xu
- NHC Key Laboratory of Carcinogenesis, National Clinical Research Center for Geriatric Disorders, Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Department of oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Huiting Li
- NHC Key Laboratory of Carcinogenesis, National Clinical Research Center for Geriatric Disorders, Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Department of oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Ziyao Wang
- Department of Thoracic Surgery, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Yan Kang
- NHC Key Laboratory of Carcinogenesis, National Clinical Research Center for Geriatric Disorders, Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Department of oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Luojie Zheng
- NHC Key Laboratory of Carcinogenesis, National Clinical Research Center for Geriatric Disorders, Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Department of oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Yiping Liu
- NHC Key Laboratory of Carcinogenesis, National Clinical Research Center for Geriatric Disorders, Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Department of oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ping Xu
- Department of Respiratory and Critical Care Medicine, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Zheng Li
- NHC Key Laboratory of Carcinogenesis, National Clinical Research Center for Geriatric Disorders, Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Department of oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| |
Collapse
|
3
|
Park SG, Kim WJ, Moon JI, Kim KT, Ryoo HM. MESIA: multi-epigenome sample integration approach for precise peak calling. Sci Rep 2023; 13:20859. [PMID: 38012291 PMCID: PMC10681995 DOI: 10.1038/s41598-023-47948-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 11/20/2023] [Indexed: 11/29/2023] Open
Abstract
The assay for transposase-accessible chromatin with sequencing (ATAC-seq) is the most widely used method for measuring chromatin accessibility. Researchers have included multi-sample replication in ATAC-seq experimental designs. In epigenomic analysis, researchers should measure subtle changes in the peak by considering the read depth of individual samples. It is important to determine whether the peaks of each replication have an integrative meaning for the region of interest observed during multi-sample integration. We developed multi-epigenome sample integration approach for precise peak calling (MESIA), which integrates replication with high representativeness and reproducibility in multi-sample replication and determines the optimal peak. After identifying the reproducibility between all replications, our method integrated multiple samples determined as representative replicates. MESIA detected 6.06 times more peaks, and the value of the peaks was 1.32 times higher than the previously used method. MESIA is a shell-script-based open-source code that provides researchers involved in the epigenome with comprehensive insights.
Collapse
Grants
- RS-2023-00207971, 2020R1A4A1019423, 2022R1I1A1A01062894 and 2021R1C1C2095130 Korean government (MSIT)
- RS-2023-00207971, 2020R1A4A1019423, 2022R1I1A1A01062894 and 2021R1C1C2095130 Korean government (MSIT)
- RS-2023-00207971, 2020R1A4A1019423, 2022R1I1A1A01062894 and 2021R1C1C2095130 Korean government (MSIT)
- RS-2023-00207971, 2020R1A4A1019423, 2022R1I1A1A01062894 and 2021R1C1C2095130 Korean government (MSIT)
- RS-2023-00207971, 2020R1A4A1019423, 2022R1I1A1A01062894 and 2021R1C1C2095130 Korean government (MSIT)
- RS-2023-00207971, 2020R1A4A1019423, 2022R1I1A1A01062894 and 2021R1C1C2095130 National Research Foundation of Korea (NRF)
- RS-2023-00207971, 2020R1A4A1019423, 2022R1I1A1A01062894 and 2021R1C1C2095130 National Research Foundation of Korea (NRF)
- RS-2023-00207971, 2020R1A4A1019423, 2022R1I1A1A01062894 and 2021R1C1C2095130 National Research Foundation of Korea (NRF)
- RS-2023-00207971, 2020R1A4A1019423, 2022R1I1A1A01062894 and 2021R1C1C2095130 National Research Foundation of Korea (NRF)
- RS-2023-00207971, 2020R1A4A1019423, 2022R1I1A1A01062894 and 2021R1C1C2095130 National Research Foundation of Korea (NRF)
Collapse
Affiliation(s)
- Seung Gwa Park
- Department of Molecular Genetics & Dental Pharmacology, School of Dentistry and Dental Multiomics Center, Dental Research Institute, Seoul National University, Seoul, South Korea
- Epigenetic Regulation of Aged Skeleto-Muscular System Laboratory, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, South Korea
| | - Woo-Jin Kim
- Department of Molecular Genetics & Dental Pharmacology, School of Dentistry and Dental Multiomics Center, Dental Research Institute, Seoul National University, Seoul, South Korea
- Epigenetic Regulation of Aged Skeleto-Muscular System Laboratory, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, South Korea
| | - Jae-I Moon
- Department of Molecular Genetics & Dental Pharmacology, School of Dentistry and Dental Multiomics Center, Dental Research Institute, Seoul National University, Seoul, South Korea
- Epigenetic Regulation of Aged Skeleto-Muscular System Laboratory, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, South Korea
| | - Ki-Tae Kim
- Department of Molecular Genetics & Dental Pharmacology, School of Dentistry and Dental Multiomics Center, Dental Research Institute, Seoul National University, Seoul, South Korea.
- Epigenetic Regulation of Aged Skeleto-Muscular System Laboratory, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, South Korea.
| | - Hyun-Mo Ryoo
- Department of Molecular Genetics & Dental Pharmacology, School of Dentistry and Dental Multiomics Center, Dental Research Institute, Seoul National University, Seoul, South Korea.
- Epigenetic Regulation of Aged Skeleto-Muscular System Laboratory, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, South Korea.
| |
Collapse
|
4
|
Chen X, Zhang L. Integrative Analysis Revealed LINC00847 as a Potential Target of Tumor Immunotherapy. Appl Biochem Biotechnol 2023; 195:6345-6358. [PMID: 36864364 PMCID: PMC10511587 DOI: 10.1007/s12010-023-04387-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/17/2023] [Indexed: 03/04/2023]
Abstract
Lung cancer is the second most commonly diagnosed cancer and the leading cause of cancer-related death. Lung adenocarcinoma (LUAD) is the most common form of lung cancer and has a low 5-year survival rate. Therefore, much more research is needed to identify cancer biomarkers, promote biomarker-driven therapy and improve treatment outcomes. LncRNAs have been reported to participate in various physiological and pathological processes, especially in cancer, and thus have attracted much attention. In this study, lncRNAs were screened from the single-cell RNA-seq dataset CancerSEA. Among them, four lncRNAs (HCG18, NNT-AS1 and LINC00847 and CYTOR) were closely associated with the prognosis of LUAD patients according to Kaplan-Meier analysis. Further study explored the correlations between these four lncRNAs and immune cell infiltration in cancer. In LUAD, LINC00847 was positively correlated with the immune infiltration of B cells, CD8 T cells, and dendritic cells. LINC00847 decreased the expression of PD-L1, immune checkpoint blockade (ICB) immunotherapy-related gene, which suggests that LINC00847 is a potential new target for tumor immunotherapy.
Collapse
Affiliation(s)
- Xiujuan Chen
- Center for Reproductive Medicine, The Affiliated Hospital of Inner Mongolia Medical University, 1 Tong Dao Street, Huimin District, 010050, Hohhot, Inner Mongolia, China.
| | - Le Zhang
- Center for Reproductive Medicine, The Affiliated Hospital of Inner Mongolia Medical University, 1 Tong Dao Street, Huimin District, 010050, Hohhot, Inner Mongolia, China.
| |
Collapse
|
5
|
Li S, Yao W, Liu R, Gao L, Lu Y, Zhang H, Liang X. Long non-coding RNA LINC00152 in cancer: Roles, mechanisms, and chemotherapy and radiotherapy resistance. Front Oncol 2022; 12:960193. [PMID: 36033524 PMCID: PMC9399773 DOI: 10.3389/fonc.2022.960193] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 07/20/2022] [Indexed: 11/13/2022] Open
Abstract
Long non-coding RNA LINC00152 (cytoskeleton regulator, or LINC00152) is an 828-bp lncRNA located on chromosome 2p11.2. LINC00152 was originally discovered during research on hepatocarcinogenesis and has since been regarded as a crucial oncogene that regulates gene expression in many cancer types. LINC00152 is aberrantly expressed in various cancers, including gastric, breast, ovarian, colorectal, hepatocellular, and lung cancer, and glioma. Several studies have indicated that LINC00152 is correlated with cell proliferation, apoptosis, migration, invasion, cell cycle, epithelial-mesenchymal transition (EMT), chemotherapy and radiotherapy resistance, and tumor growth and metastasis. High LINC00152 expression in most tumors is significantly associated with poor patient prognosis. Mechanistic analysis has demonstrated that LINC00152 can serve as a competing endogenous RNA (ceRNA) by sponging miRNA, regulating the abundance of the protein encoded by a particular gene, or modulating gene expression at the epigenetic level. LINC00152 can serve as a diagnostic or prognostic biomarker, as well as a therapeutic target for most cancer types. In the present review, we discuss the roles and mechanisms of LINC00152 in human cancer, focusing on its functions in chemotherapy and radiotherapy resistance.
Collapse
Affiliation(s)
- Shuang Li
- Cancer Center, Department of Affiliated People’ Radiation Oncology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
- Graduate Department, Jinzhou Medical University, Jinzhou, China
| | - Weiping Yao
- Cancer Center, Department of Affiliated People’ Radiation Oncology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
- Graduate Department, Bengbu Medical College, Bengbu, China
| | - Ruiqi Liu
- Cancer Center, Department of Affiliated People’ Radiation Oncology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
- Graduate Department, Bengbu Medical College, Bengbu, China
| | - Liang Gao
- Cancer Center, Department of Medical Oncology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
| | - Yanwei Lu
- Cancer Center, Department of Affiliated People’ Radiation Oncology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
| | - Haibo Zhang
- Cancer Center, Department of Affiliated People’ Radiation Oncology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
- *Correspondence: Xiaodong Liang, ; Haibo Zhang,
| | - Xiaodong Liang
- Cancer Center, Department of Affiliated People’ Radiation Oncology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
- Graduate Department, Jinzhou Medical University, Jinzhou, China
- *Correspondence: Xiaodong Liang, ; Haibo Zhang,
| |
Collapse
|
6
|
Zhang M, Yu X, Zhang Q, Sun Z, He Y, Guo W. MIR4435-2HG: A newly proposed lncRNA in human cancer. Biomed Pharmacother 2022; 150:112971. [PMID: 35447550 DOI: 10.1016/j.biopha.2022.112971] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 04/08/2022] [Accepted: 04/12/2022] [Indexed: 12/24/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) play important roles in the occurrence and progression of tumors. Extensive research has contributed to the current understanding of the critical roles played by lncRNAs in various cancers. LncRNA MIR4435-2HG has been found to be crucial in many cancers, such as breast, cervical, colorectal, and gastric cancer. Expression of MIR4435-2HG is generally upregulated in cancers and MIR4435-2HG participates in many biological functions through molecular mechanism of competitive endogenous RNA networks. This review profiles recent research findings on the expression, functions, mechanism, and clinical value of MIR4435-2HG in cancer, and serves as a reference for further MIR4435-2HG-related research and clinical trials.
Collapse
Affiliation(s)
- Menggang Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou 450052, China; Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou 450052, China
| | - Xiao Yu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou 450052, China; Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou 450052, China
| | - Qiyao Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou 450052, China; Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou 450052, China
| | - Zongzong Sun
- Department of Obstetrics and Gynaecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan, China
| | - Yuting He
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou 450052, China; Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou 450052, China.
| | - Wenzhi Guo
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou 450052, China; Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou 450052, China.
| |
Collapse
|
7
|
Alvarado-Hernandez B, Ma Y, Sharma NR, Majerciak V, Lobanov A, Cam M, Zhu J, Zheng ZM. Protein-RNA Interactome Analysis Reveals Wide Association of Kaposi's Sarcoma-Associated Herpesvirus ORF57 with Host Noncoding RNAs and Polysomes. J Virol 2022; 96:e0178221. [PMID: 34787459 PMCID: PMC8826805 DOI: 10.1128/jvi.01782-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 11/07/2021] [Indexed: 12/15/2022] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) ORF57 is an RNA-binding posttranscriptional regulator. We recently applied an affinity-purified anti-ORF57 antibody to conduct ORF57 cross-linking immunoprecipitation (CLIP) in combination with RNA-sequencing (CLIP-seq) and analyzed the genome-wide host RNA transcripts in association with ORF57 in BCBL-1 cells with lytic KSHV infection. Mapping of the CLIP RNA reads to the human genome (GRCh37) revealed that most of the ORF57-associated RNA reads were from rRNAs. The remaining RNA reads mapped to several classes of host noncoding and protein-coding mRNAs. We found that ORF57 binds and regulates expression of a subset of host long noncoding RNAs (lncRNAs), including LINC00324, LINC00355, and LINC00839, which are involved in cell growth. ORF57 binds small nucleolar RNAs (snoRNAs) responsible for 18S and 28S rRNA modifications but does not interact with fibrillarin or NOP58. We validated ORF57 interactions with 67 snoRNAs by ORF57 RNA immunoprecipitation (RIP)-snoRNA array assays. Most of the identified ORF57 rRNA binding sites (BS) overlap the sites binding snoRNAs. We confirmed ORF57-snoRA71B RNA interaction in BCBL-1 cells by ORF57 RIP and Northern blot analyses using a 32P-labeled oligonucleotide probe from the 18S rRNA region complementary to snoRA71B. Using RNA oligonucleotides from the rRNA regions that ORF57 binds for oligonucleotide pulldown-Western blot assays, we selectively verified ORF57 interactions with 5.8S and 18S rRNAs. Polysome profiling revealed that ORF57 associates with both monosomes and polysomes and that its association with polysomes increases PABPC1 binding to polysomes but prevents Ago2 association with polysomes. Our data indicate a functional correlation with ORF57 binding and suppression of Ago2 activities for ORF57 promotion of gene expression. IMPORTANCE As an RNA-binding protein, KSHV ORF57 regulates RNA splicing, stability, and translation and inhibits host innate immunity by blocking the formation of RNA granules in virus-infected cells. In this study, ORF57 was found to interact with many host noncoding RNAs, including lncRNAs, snoRNAs, and rRNAs, to carry out additional unknown functions. ORF57 binds a group of lncRNAs via the RNA motifs identified by ORF57 CLIP-seq to regulate their expression. ORF57 associates with snoRNAs independently of fibrillarin and NOP58 proteins and with rRNA in the regions that commonly bind snoRNAs. Knockdown of fibrillarin expression decreases the expression of snoRNAs and CDK4 but does not affect viral gene expression. More importantly, we found that ORF57 binds translationally active polysomes and enhances PABPC1 but prevents Ago2 association with polysomes. Data provide compelling evidence on how ORF57 in KSHV-infected cells might regulate protein synthesis by blocking Ago2's hostile activities on translation.
Collapse
Affiliation(s)
- Beatriz Alvarado-Hernandez
- Tumor Virus RNA Biology Section, HIV Dynamics and Replication Program, Center for Cancer Research, NCI/NIH, Frederick, Maryland, USA
| | - Yanping Ma
- Tumor Virus RNA Biology Section, HIV Dynamics and Replication Program, Center for Cancer Research, NCI/NIH, Frederick, Maryland, USA
| | - Nishi R. Sharma
- Tumor Virus RNA Biology Section, HIV Dynamics and Replication Program, Center for Cancer Research, NCI/NIH, Frederick, Maryland, USA
| | - Vladimir Majerciak
- Tumor Virus RNA Biology Section, HIV Dynamics and Replication Program, Center for Cancer Research, NCI/NIH, Frederick, Maryland, USA
| | - Alexei Lobanov
- CCR Collaborative Bioinformatics Resource, Center for Cancer Research, NCI/NIH, Bethesda, Maryland, USA
| | - Maggie Cam
- CCR Collaborative Bioinformatics Resource, Center for Cancer Research, NCI/NIH, Bethesda, Maryland, USA
| | - Jun Zhu
- Genome Technology Laboratory, System Biology Center, NHLBI/NIH, Bethesda, Maryland, USA
| | - Zhi-Ming Zheng
- Tumor Virus RNA Biology Section, HIV Dynamics and Replication Program, Center for Cancer Research, NCI/NIH, Frederick, Maryland, USA
| |
Collapse
|
8
|
Dey S, Misra A, Selvi Bharathavikru R. Long Non-coding RNAs, Lnc (ing) RNA Metabolism to Cancer Biology. Subcell Biochem 2022; 100:175-199. [PMID: 36301495 DOI: 10.1007/978-3-031-07634-3_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The eukaryotic genome is represented by a vast proportion of non-coding regions, which in recent years have been attributed to have important functional roles in gene regulation through a myriad of processes, ranging from proper localization, correct folding and, most importantly, spatial and temporally regulated expression of genes. One of the major contributing factors in these processes is ribonucleic acid (RNA) metabolism, which comprises the RNA-nucleoprotein (RNP) complexes that interact with and instruct the genome to function. Long non-coding RNAs are an integral component of several RNPs, and herein we provide an overview of the understanding of the long non-coding RNAs, their characteristics, their function and their balancing act as dual modulators in cancer manifestation and progression.
Collapse
Affiliation(s)
- Sourav Dey
- RNP Biology Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER)-Berhampur, Transit Campus, Govt ITI Building, Engineering School Junction, Berhampur, Ganjam, Odisha, India
| | - Arushi Misra
- RNP Biology Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER)-Berhampur, Transit Campus, Govt ITI Building, Engineering School Junction, Berhampur, Ganjam, Odisha, India
| | - R Selvi Bharathavikru
- RNP Biology Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER)-Berhampur, Transit Campus, Govt ITI Building, Engineering School Junction, Berhampur, Ganjam, Odisha, India.
| |
Collapse
|
9
|
Matis S, Rossi M, Brondolo L, Cardillo M, Reverberi D, Massara R, Colombo M, Ibatici A, Angelucci E, Vaisitti T, Bruno S, Fabris S, Neri A, Gentile M, Morabito F, Cutrona G, Briata P, Gherzi R, Fais F. LINC00152 expression in normal and Chronic Lymphocytic Leukemia B cells. Hematol Oncol 2021; 40:40-47. [PMID: 34679195 PMCID: PMC9297877 DOI: 10.1002/hon.2938] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/18/2021] [Accepted: 10/19/2021] [Indexed: 11/25/2022]
Abstract
Long non‐coding RNAs are emerging as essential regulators of gene expression, but their role in normal and neoplastic B cells is still largely uncharacterized. Here, we report on the expression pattern of the LINC00152 in normal B cells and Chronic Lymphocytic Leukemia B cell clones. Higher LINC00152 levels were consistently observed in memory B cell populations when compared to naïve B cells in the normal tissues analyzed [peripheral blood (PB), tonsils, and spleen]. In addition, independent stimulation via Immunoglobulins (IG), CD40, or Toll‐like Receptor 9 (TLR9) upregulated LINC00152 in PB B cells. The expression of LINC00152 in a cohort of 107 early stage Binet A CLL patients was highly variable and did not correlate with known prognostic markers or clinical evolution. TLR9 stimulation, but not CD40 or IG challenge, was able to upregulate LINC00152 expression in CLL cells. In addition, LINC00152 silencing in CLL cell lines expressing LINC00152 failed to induce significant cell survival or apoptosis changes. These data suggest that, in normal B cells, the expression of LINC00152 is regulated by immunomodulatory signals, which are only partially effective in CLL cells. However, LINC00152 does not appear to contribute to CLL cell expansion and/or survival in a cohort of newly diagnosed CLL patients.
Collapse
Affiliation(s)
- Serena Matis
- Molecular Pathology Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Martina Rossi
- Gene Expression Regulation Laboratory, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Lorenzo Brondolo
- Gene Expression Regulation Laboratory, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Martina Cardillo
- Molecular Pathology Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Daniele Reverberi
- Molecular Pathology Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Rosanna Massara
- Molecular Pathology Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Monica Colombo
- Molecular Pathology Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Adalberto Ibatici
- Hematology Unit and Transplant Center, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Emanuele Angelucci
- Hematology Unit and Transplant Center, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Tiziana Vaisitti
- Department of Medical Sciences, University of Torino, Torino, Italy
| | - Silvia Bruno
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
| | - Sonia Fabris
- Fondazione Cà Granda IRCCS, Hematology Ospedale Maggiore Policlinico Milano, Milan, Italy
| | - Antonino Neri
- Fondazione Cà Granda IRCCS, Hematology Ospedale Maggiore Policlinico Milano, Milan, Italy.,Department of Oncology and Hemato-oncology, University of Milan, Milan, Italy
| | | | - Fortunato Morabito
- Biotechnology Research Unit, AO, Cosenza, Italy.,Hematology and Bone Marrow Transplant Unit, Hemato-Oncology Department, Augusta Victoria Hospital, East Jerusalem, Israel
| | - Giovanna Cutrona
- Molecular Pathology Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Paola Briata
- Gene Expression Regulation Laboratory, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Roberto Gherzi
- Gene Expression Regulation Laboratory, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Franco Fais
- Molecular Pathology Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy.,Department of Experimental Medicine, University of Genoa, Genoa, Italy
| |
Collapse
|
10
|
Binder S, Zipfel I, Müller C, Wiedemann K, Schimmelpfennig C, Pfeifer G, Reiche K, Hauschildt S, Lehmann J, Köhl U, Horn F, Friedrich M. The noncoding RNA LINC00152 conveys contradicting effects in different glioblastoma cells. Sci Rep 2021; 11:18499. [PMID: 34531451 PMCID: PMC8446032 DOI: 10.1038/s41598-021-97533-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 08/25/2021] [Indexed: 12/18/2022] Open
Abstract
Glioblastoma multiforme (GBM) is an extremely aggressive brain tumor, characterized by its high genetic heterogeneity. In search of novel putative therapeutic RNA targets we investigated the role of the oncogenic long noncoding RNA LINC00152 (CYTOR, and STAiR18) in A172 glioblastoma cells. Here, we are the first to describe, that LINC00152 unexpectedly acts in a tumor suppressive manner in this cell line. SiRNA-based knockdown of LINC00152 enhanced malignant tumor behaviors including proliferation, cell cycle entry, migration, and invasion, contradicting previous studies using U87-MG and LN229 glioblastoma cells. Furthermore, LINC00152 knockdown had no influence on survival of A172 glioblastoma cells. In a genome wide transcription analysis of A172 and U87-MG glioblastoma cells, we identified 70 LINC00152 target genes involved in locomotion, cell migration, and motility in A172 cells, whereas in U87-MG cells only 40 target genes were detected. The LINC00152-regulated genes found in A172 differed from those identified in U87-MG glioblastoma cells, none of them being regulated in both cell lines. These findings underline the strong genetic heterogeneity of glioblastoma and point to a potential, yet unknown risk addressing LINC00152 lncRNA as a prospective therapeutic target in GBM.
Collapse
Affiliation(s)
- Stefanie Binder
- Institute of Clinical Immunology, University of Leipzig, Leipzig, Germany. .,Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany.
| | - Ivonne Zipfel
- Institute of Clinical Immunology, University of Leipzig, Leipzig, Germany
| | - Claudia Müller
- Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| | - Karolin Wiedemann
- Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| | | | - Gabriele Pfeifer
- Institute of Clinical Immunology, University of Leipzig, Leipzig, Germany
| | - Kristin Reiche
- Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| | - Sunna Hauschildt
- Institute of Clinical Immunology, University of Leipzig, Leipzig, Germany
| | - Jörg Lehmann
- Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| | - Ulrike Köhl
- Institute of Clinical Immunology, University of Leipzig, Leipzig, Germany.,Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| | - Friedemann Horn
- Institute of Clinical Immunology, University of Leipzig, Leipzig, Germany.,Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| | - Maik Friedrich
- Institute of Clinical Immunology, University of Leipzig, Leipzig, Germany.,Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| |
Collapse
|
11
|
Sritharan D, Wang S, Hormoz S. Computing the Riemannian curvature of image patch and single-cell RNA sequencing data manifolds using extrinsic differential geometry. Proc Natl Acad Sci U S A 2021; 118:e2100473118. [PMID: 34272279 PMCID: PMC8307776 DOI: 10.1073/pnas.2100473118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Most high-dimensional datasets are thought to be inherently low-dimensional-that is, data points are constrained to lie on a low-dimensional manifold embedded in a high-dimensional ambient space. Here, we study the viability of two approaches from differential geometry to estimate the Riemannian curvature of these low-dimensional manifolds. The intrinsic approach relates curvature to the Laplace-Beltrami operator using the heat-trace expansion and is agnostic to how a manifold is embedded in a high-dimensional space. The extrinsic approach relates the ambient coordinates of a manifold's embedding to its curvature using the Second Fundamental Form and the Gauss-Codazzi equation. We found that the intrinsic approach fails to accurately estimate the curvature of even a two-dimensional constant-curvature manifold, whereas the extrinsic approach was able to handle more complex toy models, even when confounded by practical constraints like small sample sizes and measurement noise. To test the applicability of the extrinsic approach to real-world data, we computed the curvature of a well-studied manifold of image patches and recapitulated its topological classification as a Klein bottle. Lastly, we applied the extrinsic approach to study single-cell transcriptomic sequencing (scRNAseq) datasets of blood, gastrulation, and brain cells to quantify the Riemannian curvature of scRNAseq manifolds.
Collapse
Affiliation(s)
- Duluxan Sritharan
- Harvard Graduate Program in Biophysics, Harvard University, Boston, MA 02115
- Department of Data Sciences, Dana-Farber Cancer Institute, Boston, MA 02215
| | - Shu Wang
- Harvard Graduate Program in Biophysics, Harvard University, Boston, MA 02115
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA 02115
| | - Sahand Hormoz
- Department of Data Sciences, Dana-Farber Cancer Institute, Boston, MA 02215;
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115
- Broad Institute of MIT and Harvard, Cambridge, MA 02142
| |
Collapse
|
12
|
Wu D, Jia H, Zhang Z, Li S. STAT3-induced HLA-F-AS1 promotes cell proliferation and stemness characteristics in triple negative breast cancer cells by upregulating TRABD. Bioorg Chem 2021; 109:104722. [PMID: 33618253 DOI: 10.1016/j.bioorg.2021.104722] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 11/03/2020] [Accepted: 02/02/2021] [Indexed: 02/06/2023]
Abstract
Breast cancer (BC) is one of the most common malignances and is a leading cause of cancer-related deaths in women globally. Triple negative breast cancer (TNBC) is a common subtype of BC. Emerging evidence has indicated the crucial roles of long noncoding RNAs (lncRNAs) in the tumorigenesis of TNBC. Our aim was to explore the role and regulatory mechanism of lncRNA HLA-F antisense RNA 1 (HLA-F-AS1) in TNBC cells. Cell counting kit-8 (CCK-8) assay, colony formation assay, flow cytometry analysis and western blot analysis were used to measure HLA-F-AS1-mediated cellular behaviors in TNBC. Xenograft tumor assay was applied to assess biological function of HLA-F-AS1 in vivo. Luciferase reporter assay and RNA pull down assay were used to verify the binding ability between molecules. Our findings demonstrated that HLA-F-AS1 expression was significantly upregulated in TNBC tissues and cells, and high level of HLA-F-AS1 indicated the poor prognosis of patients with TNBC. HLA-F-AS1 promoted TNBC progression by facilitating cell proliferation and stemness maintenance and inhibiting cell cycle arrest at G0/G1 stage and apoptosis in vitro as well as inducing tumor growth in vivo. HLA-F-AS1. In addition, signal transducer and activator of transcription 3 (STAT3) transcriptionally induced HLA-F-AS1 upregulation in TNBC cells via interacting with HLA-F-AS1 promoter. Moreover, HLA-F-AS1 acted as the molecular sponge of microRNA 541-3p (miR-541-3p) to elevate TRABD (TraB domain containing) expression in TNBC cells. Rescue experiments confirmed that the decrease of cell proliferation and stemness characteristics under silenced HLA-F-AS1 was rescued by TRABD overexpression in TNBC cells. In conclusion, STAT3-induced HLA-F-AS1 facilitates cell proliferation and stemness characteristics in TNBC by miR-541-3p-dependent upregulation of TRABD, which might provide a potential novel direction for the treatment of TNBC.
Collapse
Affiliation(s)
- Di Wu
- Department of Breast Surgery, The First Hospital of Jilin University, Changchun 130021, Jilin, China
| | - Hongyao Jia
- Department of Breast Surgery, The First Hospital of Jilin University, Changchun 130021, Jilin, China
| | - Zhiru Zhang
- Department of Breast Surgery, The First Hospital of Jilin University, Changchun 130021, Jilin, China
| | - Sijie Li
- Department of Breast Surgery, The First Hospital of Jilin University, Changchun 130021, Jilin, China.
| |
Collapse
|
13
|
Zhong L, Jin X, Xu Z, Zeng M, Chen D, He Y, Zhang J, Jiang T, Chen J. Circulating miR-451a levels as a potential biomarker to predict the prognosis of patients with multiple myeloma. Oncol Lett 2020; 20:263. [PMID: 32989397 PMCID: PMC7517596 DOI: 10.3892/ol.2020.12126] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 07/22/2020] [Indexed: 12/26/2022] Open
Abstract
The natural course of multiple myeloma (MM) varies greatly between patients. The Revised MM International Staging System (R-ISS) identifies high-risk patients, but it is unsuitable for assessing minimal residual disease (MRD). Furthermore, the focal location of myeloma cells and clonal evolution often produce false negative results in flow cytometry. Extracellular microRNA (miRNA/miR) expression levels are stable in bodily fluids, and are retrievable and measurable from fresh or archived serum or plasma samples. Therefore, the present study aimed to investigate the clinical utility of circulating miRNA levels in patients with MM, particularly miR-451a, which is commonly downregulated in MM, and whether it could predict the prognosis and relapse of patients with MM. In total, 66 patients with MM, stratified using the R-ISS criteria, were recruited, while 10 healthy subjects (transplantation donors) were enrolled as controls. Reverse transcription-quantitative PCR was used to evaluate miR-451a expression in bone marrow (BM) and in the circulation. IL-6 levels were measured using ELISA, while western blotting was conducted to analyze the protein expression levels of the IL-6 receptor (IL-6R). During follow-up, MRD was assessed via multiparameter flow cytometry (MFC). miR-451a was identified to target IL-6R using a dual-luciferase reporter assay. Circulating miR-451a levels were low in patients with MM, and was found to be 0.39 times that of the control group (U=4.00; P<0.001). Among the 66 patients with MM, the median level of miR-451a was 0.73 and 0.41 times that of the control group in R-ISS stage I MM (15 patients) and R-ISS stage II stage (17 patients), respectively; patients with R-ISS stage III MM (34 patients) had the lowest level, at 0.24 times the value of the control group. Circulating miR-451a levels had a strong positive correlation with miR-451a levels in BM, but negatively correlated with IL-6 and IL-6R levels. After two courses of consolidation chemotherapy, 19 patients achieved complete remission, 10 of whom presented steady circulating miR-451a levels during follow-up; the other nine patients had an abrupt decrease in circulating miR-451a levels. The turning points in the trend appeared 4–8 weeks before positive results were obtained via MFC, and 4–16 weeks before clinical relapse. Moreover, miR-451a overexpression notably downregulated the expression of the IL-6R mRNA and protein. Collectively, circulating miR-451a levels potentially represent a novel biomarker to monitor MRD and predict relapse.
Collapse
Affiliation(s)
- Ling Zhong
- Department of Clinical and Experimental Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, P.R. China.,Department of Natural Products Research Center, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Sichuan 610041, P.R. China
| | - Xin Jin
- Department of Clinical and Experimental Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, P.R. China
| | - Zhuyu Xu
- Department of Pharmacy, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, P.R. China
| | - Minghui Zeng
- Department of Pharmacy, Qionglai Municipal Medical Center Hospital of Sichuan Province, Chengdu, Sichuan 611530, P.R. China
| | - Dongmei Chen
- Department of Clinical and Experimental Medicine, Southwest Medical University Clinical Medical School, Luzhou, Sichuan 646000, P.R. China
| | - Yuan He
- Department of Clinical and Experimental Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, P.R. China
| | - Jianbo Zhang
- Department of Clinical and Experimental Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, P.R. China
| | - Tao Jiang
- Department of Hematology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, P.R. China
| | - Jiao Chen
- Department of Hematology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, P.R. China
| |
Collapse
|