1
|
Kling D, Adolfsson E, Gréen H, Gréen A. The power of hybridization capture - Illustrated using an expanded gene panel on 100 post mortem samples, focusing on sudden unexplained death. Forensic Sci Int Genet 2024; 74:103160. [PMID: 39437498 DOI: 10.1016/j.fsigen.2024.103160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 09/06/2024] [Accepted: 10/06/2024] [Indexed: 10/25/2024]
Abstract
Sudden unexpected death (SUD) is an unexpected event that in many cases are caused by diseases with an underlying genetic background. Forensic molecular autopsy is an approach that has gained wide-spread attention, in part explained by the rapid progress of DNA sequencing techniques. The approach leverages genetic data in combination with medical autopsy findings in post-mortem samples to explore a potential underlying genetic cause of death. Traditional forensic approaches to molecular autopsy focus on a small panel of genes, say <200 genes, with strong association to heart conditions whereas clinical genetics tend to capture entire exomes while subsequently selecting targeted panels bioinformatically. The drop in price and the increased throughput has promoted wider exome sequencing as a viable method to discover genetic variants. We explore a targeted gene panel consisting of 2422 genes, selected based on their broad association to sudden unexplained death. A hybridization capture approach from Twist Bioscience based on double stranded DNA probes was used to target exons of the included genes. We selected and sequenced a total of 98 post-mortem samples from historical forensic autopsy cases where the cause of death could not be unambiguously determined based on medical findings and that had a previous negative molecular autopsy. In the current study, we focus on the performance of the hybridization capture technology on a 2422 gene panel and explore metrics related to sequencing success using a mid-end NextSeq 550 as well as a MiSeq FGx platform. With the latter we demonstrate that our sequence data benefits from 2×300 bp sequencing increasing coverage, in particular, for difficult regions where shadow coverage, i.e. regions outside the probes, are utilized. The results further illustrate a highly uniform capture across the panel of genes (mean fold80=1.5), in turn minimizing excessive sequencing costs to reach sufficient coverage, i.e. 20X. We outline a stepwise procedure to select genes associated with SUD through virtual bioinformatical panels extracting tier of genes with increasing strength of association to SUD. We propose some prioritization strategies to filter variants with highest potential and show that the number of high priority genetic variant requiring manual inspections is few (0-3 for all tiers of genes) when all filters are applied.
Collapse
Affiliation(s)
- Daniel Kling
- Department of Forensic Genetics and Forensic Toxicology, National Board of Forensic Medicine, Linköping, Sweden.
| | - Emma Adolfsson
- Department of Laboratory Medicine, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Henrik Gréen
- Department of Forensic Genetics and Forensic Toxicology, National Board of Forensic Medicine, Linköping, Sweden; Division of Drug Research, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Anna Gréen
- Department of Laboratory Medicine, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| |
Collapse
|
2
|
Wang S, Chen Y, Du J, Wang Z, Lin Z, Hong G, Qu D, Shen Y, Li L. Post-mortem genetic analysis of sudden unexplained death in a young cohort: a whole-exome sequencing study. Int J Legal Med 2023; 137:1661-1670. [PMID: 37624372 DOI: 10.1007/s00414-023-03075-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 08/15/2023] [Indexed: 08/26/2023]
Abstract
Sudden unexplained death (SUD) constitutes a considerable portion of unexpected sudden death in the young. Molecular autopsy has proved to be an efficient diagnostic tool in the multidisciplinary management of SUD. Yet, many cases remain undiagnosed using the widely adopted targeted genetic screening strategies. Here, we investigated the genetic substrates of a young SUD cohort (18-40 years old) from China using whole-exome sequencing (WES), with the primary aim to identify novel SUD susceptibility genes. Within 255 previously acknowledged SUD-associated genes, 21 variants with likely functional effects (pathogenic/likely pathogenic) were identified in 51.9% of the SUD cases. More importantly, a set of 33 candidate genes associated with myopathy were identified to be novel susceptibility genes for SUD. Comparative analysis of the cumulative PHRED-scaled CADD score and polygenetic burden score showed that the amount and deleteriousness of variants in the 255 SUD-associated genes and the 33 candidate genes identified by this study were significantly higher compared with 289 randomly selected genes. A significantly higher genetic burden of rare variants (MAF < 0.1%) in the 33 candidate genes also highlighted putative roles of these genes in SUD. After incorporating these novel genes, the genetic testing yields of the current SUD cohort elevated from 51.9 to 66.7%. Our study expands understanding of the genetic variants underlying SUD and presents insights that improve the utility of genetic screenings.
Collapse
Affiliation(s)
- Shouyu Wang
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, 131 Dongan Road, Xuhui District, Shanghai, 200032, People's Republic of China
| | - Yongsheng Chen
- Shanghai Key Laboratory of Crime Scene Evidence, Shanghai Public Security Bureau, Shanghai, 200083, People's Republic of China
| | - Jianghua Du
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, 131 Dongan Road, Xuhui District, Shanghai, 200032, People's Republic of China
| | - Zhimin Wang
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, 131 Dongan Road, Xuhui District, Shanghai, 200032, People's Republic of China
| | - Zijie Lin
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, 131 Dongan Road, Xuhui District, Shanghai, 200032, People's Republic of China
| | - Guanghui Hong
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, 131 Dongan Road, Xuhui District, Shanghai, 200032, People's Republic of China
| | - Dong Qu
- Institute of Legal Medicine, Hannover Medical School, 30625, Hannover, Germany
| | - Yiwen Shen
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, 131 Dongan Road, Xuhui District, Shanghai, 200032, People's Republic of China
| | - Liliang Li
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, 131 Dongan Road, Xuhui District, Shanghai, 200032, People's Republic of China.
| |
Collapse
|
3
|
Alzahrani SA, Alswaimil NF, Alammari AM, Al Saeed WH, Menezes RG. Postmortem Genetic Testing in Sudden Unexpected Death: A Narrative Review. Cureus 2023; 15:e33728. [PMID: 36643077 PMCID: PMC9837602 DOI: 10.7759/cureus.33728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/12/2023] [Indexed: 01/15/2023] Open
Abstract
Sudden unexpected death (SUD) is one of the challenging situations encountered in forensic medicine. As a rule, a comprehensive forensic assessment is performed to identify the cause of death in such cases; however, the absence of findings suggestive of a cause, i.e., a negative autopsy, warrants further investigation such as a molecular autopsy. In this review, we aim to highlight the genetic causes of SUD, tools used in a molecular autopsy, and the role of screening in surviving relatives. As per several guidelines, the most preferred samples for DNA extraction are whole blood and fresh frozen tissues. Furthermore, Sanger sequencing and next-generation sequencing are the technologies that are used for genetic analysis; the latter overcomes the former's drawbacks in terms of cost-effectiveness, time consumption, and the ability to sequence the whole exome. SUD have diverse etiologies; we can generally classify them into cardiac and non-cardiac causes. Regarding cardiac causes, many conditions having an underlying genetic basis are included, such as channelopathies and cardiomyopathies. Regarding non-cardiac causes of SUD, the main etiologies are epilepsy and metabolic disorders. Nevertheless, it has been proposed that there is a genetic overlap between channelopathies, especially long QT syndromes and epilepsy. Additionally, fatty acid oxidation disorders are major metabolic conditions that are caused by certain genetic mutations that can lead to SUD in infancy. Since many SUD causes have an underlying genetic mutation, it is important to understand the genetic variations not only to recognize the cause of death but also to undertake further preventive measures for surviving relatives. In conclusion, a molecular autopsy has a major role in the forensic examination of cases of SUD.
Collapse
Affiliation(s)
- Shahad A Alzahrani
- Department of General Medicine, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, SAU
| | - Nour F Alswaimil
- Department of General Medicine, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, SAU
| | - Alia M Alammari
- Department of General Medicine, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, SAU
| | - Wala H Al Saeed
- Department of General Medicine, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, SAU
| | - Ritesh G Menezes
- Department of Pathology, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, SAU
| |
Collapse
|
4
|
Alotaibi AS, Mahroos RA, Al Yateem SS, Menezes RG. Central Nervous System Causes of Sudden Unexpected Death: A Comprehensive Review. Cureus 2022; 14:e20944. [PMID: 35004089 PMCID: PMC8730823 DOI: 10.7759/cureus.20944] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/04/2022] [Indexed: 01/03/2023] Open
|