1
|
Marino MJ, Sousa-Pinto B, Lal D. The Application of mHealth and Artificial Intelligence to Chronic Rhinitis. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2024; 12:1490-1492. [PMID: 38641130 DOI: 10.1016/j.jaip.2024.04.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 04/10/2024] [Indexed: 04/21/2024]
Affiliation(s)
- Michael J Marino
- Department of Otorhinolaryngology-Head and Neck Surgery, Mayo Clinic Arizona, Phoenix, Ariz
| | - Bernardo Sousa-Pinto
- MEDCIDS-Department of Community Medicine, Information and Health Decision Sciences, Faculty of Medicine, University of Porto, Porto, Portugal; CINTESIS-Centre for Health Technologies and Services Research, University of Porto, Porto, Portugal
| | - Devyani Lal
- Department of Otorhinolaryngology-Head and Neck Surgery, Mayo Clinic Arizona, Phoenix, Ariz.
| |
Collapse
|
2
|
张 皓, 王 艳, 程 冯, 安 云, 赵 长. [Progress of allergic rhinitis research based on transcriptome sequencing]. LIN CHUANG ER BI YAN HOU TOU JING WAI KE ZA ZHI = JOURNAL OF CLINICAL OTORHINOLARYNGOLOGY, HEAD, AND NECK SURGERY 2024; 38:556-560. [PMID: 38858125 PMCID: PMC11480586 DOI: 10.13201/j.issn.2096-7993.2024.06.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Indexed: 06/12/2024]
Abstract
Traditional studies on allergic rhinitis(AR) have mainly adopted animal models and biomolecular approaches. In addition, the advent of transcriptome sequencing technology is promoting the development of AR at the genetic level. Recently, many scholars have focused on the role of common RNA in the pathogenesis of AR, suggesting that breakthroughs have been made in the field of AR bioinformatics analysis. This review aims to summarize the research advances in AR, the development of transcriptome sequencing technology, and the application of transcriptome sequencing in AR, in order to explore potential drug targets for AR treatment and provide new insights into precision medicine.
Collapse
Affiliation(s)
- 皓翔 张
- 山西医科大学第二附属医院耳鼻咽喉头颈外科 山西省气道炎性疾病神经免疫研究省级重点培育实验室(太原,030001)Department of Otorhinolaryngology Head and Neck Surgery, the Second Hospital, Shanxi Medical University, Key Research Laboratory of Airway Neuroimmunology, Taiyuan, 030001, China
| | - 艳杰 王
- 山西医科大学第二附属医院耳鼻咽喉头颈外科 山西省气道炎性疾病神经免疫研究省级重点培育实验室(太原,030001)Department of Otorhinolaryngology Head and Neck Surgery, the Second Hospital, Shanxi Medical University, Key Research Laboratory of Airway Neuroimmunology, Taiyuan, 030001, China
| | - 冯丽 程
- 山西医科大学第二附属医院耳鼻咽喉头颈外科 山西省气道炎性疾病神经免疫研究省级重点培育实验室(太原,030001)Department of Otorhinolaryngology Head and Neck Surgery, the Second Hospital, Shanxi Medical University, Key Research Laboratory of Airway Neuroimmunology, Taiyuan, 030001, China
| | - 云芳 安
- 山西医科大学第二附属医院耳鼻咽喉头颈外科 山西省气道炎性疾病神经免疫研究省级重点培育实验室(太原,030001)Department of Otorhinolaryngology Head and Neck Surgery, the Second Hospital, Shanxi Medical University, Key Research Laboratory of Airway Neuroimmunology, Taiyuan, 030001, China
| | - 长青 赵
- 山西医科大学第二附属医院耳鼻咽喉头颈外科 山西省气道炎性疾病神经免疫研究省级重点培育实验室(太原,030001)Department of Otorhinolaryngology Head and Neck Surgery, the Second Hospital, Shanxi Medical University, Key Research Laboratory of Airway Neuroimmunology, Taiyuan, 030001, China
| |
Collapse
|
3
|
Liu J, Jiang X, Liu K, Deng J, Qiu Y, Wei W, Yang C. Role of LINC00240 on T-helper 9 differentiation in allergic rhinitis through influencing DNMT1-dependent methylation of PU.1. Immunol Res 2024; 72:197-211. [PMID: 37966708 DOI: 10.1007/s12026-023-09435-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 11/06/2023] [Indexed: 11/16/2023]
Abstract
BACKGROUND Allergic rhinitis (AR) is a common allergic disease with increasing prevalence globally. However, the molecular mechanism underlying AR pathogenesis remains largely undefined. METHODS Peripheral blood and nasal mucosa samples obtained from patients with AR (n = 22), and ovalbumin-induced AR mouse model (n = 8 per group) were prepared for subsequent detection. qRT-PCR and western blot were used to detect the expression of LINC00240, miR-155-5p, PU.1 and other key molecules. ELISA assay and flow cytometry were employed to evaluate the secretion of IL-9 and T-helper 9 (Th9) cell ratio, respectively. Bioinformatics analysis, RNA immunoprecipitation (RIP), chromatin immunoprecipitation (ChIP) and luciferase reporter assays were employed to further elucidate the regulatory network of LINC00240/miR-155-5p/DNMT1. The methylation of PU.1 promoter was assessed by methylation-specific PCR (MSP). This signaling axis was further validated in the mouse model of AR. RESULTS LINC00240 was downregulated, while miR-155-5p and PU.1 were upregulated in the peripheral blood and nasal mucosa of AR patients, as well as in AR mice. This was accompanied with the increased ratio of Th9 cells and elevated IL-9 secretion. Mechanistically, LINC00240 served as a miR-155-5p sponge, and DNMT1 was a target of miR-155-5p. In addition, DNMT1 mediated the methylation of PU.1 promoter. In vivo studies verified that LINC00240 mitigated AR progression, possibly via miR-155-5p/DNMT1/PU.1-dependent Th9 differentiation. CONCLUSION The involvement of LINC00240 in AR pathogenesis is closely associated with Th9 differentiation through modulating DNMT1-dependent methylation of PU.1 by sponging miR-155-5p.
Collapse
Affiliation(s)
- JianGuo Liu
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Affiliated Hospital of Nanchang University, No. 1, Minde Road, Nanchang, 330006, Jiangxi Province, P.R. China
| | - XunShuo Jiang
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Affiliated Hospital of Nanchang University, No. 1, Minde Road, Nanchang, 330006, Jiangxi Province, P.R. China
| | - Ke Liu
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Affiliated Hospital of Nanchang University, No. 1, Minde Road, Nanchang, 330006, Jiangxi Province, P.R. China
| | - JianJian Deng
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Affiliated Hospital of Nanchang University, No. 1, Minde Road, Nanchang, 330006, Jiangxi Province, P.R. China
| | - Yi Qiu
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Affiliated Hospital of Nanchang University, No. 1, Minde Road, Nanchang, 330006, Jiangxi Province, P.R. China
| | - Wan Wei
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Affiliated Hospital of Nanchang University, No. 1, Minde Road, Nanchang, 330006, Jiangxi Province, P.R. China
| | - ChunPing Yang
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Affiliated Hospital of Nanchang University, No. 1, Minde Road, Nanchang, 330006, Jiangxi Province, P.R. China.
| |
Collapse
|
4
|
Gencel-Augusto J, Wu W, Bivona TG. Long Non-Coding RNAs as Emerging Targets in Lung Cancer. Cancers (Basel) 2023; 15:3135. [PMID: 37370745 DOI: 10.3390/cancers15123135] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/04/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
Long non-coding RNAs (LncRNAs) are mRNA-like molecules that do not encode for proteins and that are longer than 200 nucleotides. LncRNAs play important biological roles in normal cell physiology and organism development. Therefore, deregulation of their activities is involved in disease processes such as cancer. Lung cancer is the leading cause of cancer-related deaths due to late stage at diagnosis, distant metastasis, and high rates of therapeutic failure. LncRNAs are emerging as important molecules in lung cancer for their oncogenic or tumor-suppressive functions. LncRNAs are highly stable in circulation, presenting an opportunity for use as non-invasive and early-stage cancer diagnostic tools. Here, we summarize the latest works providing in vivo evidence available for lncRNAs role in cancer development, therapy-induced resistance, and their potential as biomarkers for diagnosis and prognosis, with a focus on lung cancer. Additionally, we discuss current therapeutic approaches to target lncRNAs. The evidence discussed here strongly suggests that investigation of lncRNAs in lung cancer in addition to protein-coding genes will provide a holistic view of molecular mechanisms of cancer initiation, development, and progression, and could open up a new avenue for cancer treatment.
Collapse
Affiliation(s)
- Jovanka Gencel-Augusto
- Department of Medicine, University of California San Francisco (UCSF), San Francisco, CA 94158, USA
- UCSF Hellen Diller Comprehensive Cancer Center, San Francisco, CA 94158, USA
| | - Wei Wu
- Department of Medicine, University of California San Francisco (UCSF), San Francisco, CA 94158, USA
- UCSF Hellen Diller Comprehensive Cancer Center, San Francisco, CA 94158, USA
| | - Trever G Bivona
- Department of Medicine, University of California San Francisco (UCSF), San Francisco, CA 94158, USA
- UCSF Hellen Diller Comprehensive Cancer Center, San Francisco, CA 94158, USA
- Chan-Zuckerberg Biohub, San Francisco, CA 94158, USA
| |
Collapse
|
5
|
The Role of Noncoding RNA in Airway Allergic Diseases through Regulation of T Cell Subsets. Mediators Inflamm 2022; 2022:6125698. [PMID: 36248190 PMCID: PMC9553461 DOI: 10.1155/2022/6125698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/31/2022] [Accepted: 09/23/2022] [Indexed: 11/18/2022] Open
Abstract
Allergic rhinitis and asthma are common airway allergic diseases, the incidence of which has increased annually in recent years. The human body is frequently exposed to allergens and environmental irritants that trigger immune and inflammatory responses, resulting in altered gene expression. Mounting evidence suggested that epigenetic alterations were strongly associated with the progression and severity of allergic diseases. Noncoding RNAs (ncRNAs) are a class of transcribed RNA molecules that cannot be translated into polypeptides and consist of three major categories, microRNAs (miRNAs), long noncoding RNAs (lncRNAs), and circular RNAs (circRNAs). Previous studies showed that ncRNAs were involved in the physiopathological mechanisms of airway allergic diseases and contributed to their occurrence and development. This article reviews the current state of understanding of the role of noncoding RNAs in airway allergic diseases, highlights the limitations of recent studies, and outlines the prospects for further research to facilitate the clinical translation of noncoding RNAs as therapeutic targets and biomarkers.
Collapse
|
6
|
Li Z, Zou W, Sun J, Zhou S, Zhou Y, Cai X, Zhang J. A comprehensive gene expression profile of allergic rhinitis-derived nasal fibroblasts and the potential mechanism for its phenotype. Hum Exp Toxicol 2022; 41:9603271211069038. [PMID: 35133179 DOI: 10.1177/09603271211069038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND Allergic rhinitis (AR) is a common immunoglobulin E-mediated immune response involved various cell types, while the role of nasal fibroblasts (NFs) in the pathogenesis of AR is less understood. PURPOSE The study aimed to uncover the gene expression profile of AR-derived NFs and the potential mechanism for the changed phenotype of AR-NFs. RESEARCH DESIGN The primary NFs were isolated from 3 AR patients (AR-NFs) and 3 controls (Ctrl-NFs), and the proliferation, migration and interleukins production abilities of NFs were detected respectively. RNA-sequence was used to identify differentially expressed genes (DEGs) in AR-NFs. Transcription factor (TF) regulatory network and bioinformatic analyses were both conducted to clarify the biological roles of DEGs including the TFs. The DEG with the highest validated |fold change (FC)| value, detected by qPCR, was selected for further confirmation. RESULTS AR-NFs showed a higher proliferation and migration abilities as well as released higher levels of IL-33 and IL-6, compared to Ctrl-NFs. A total of 729 DEGs were screened out in AR-NFs. TF regulatory network indicated that BARX homeobox 1 (BARX1) and forkhead box L1 were the major node TFs. Bioinformatic analyses showed that a large number of DEGs including several target genes of BARX1 were both enriched cytokine-related GO terms, and immune- or inflammation-related pathways. BARX1 had the highest |FC| value, and silencing BARX1 in AR-NFs resulted in the significant downregulation of proliferation and migration abilities, and the production of interleukins. CONCLUSIONS Our study for the first time provided the gene expression profile of AR-derived NFs, and BARX1 could be developed as a potent target to alleviate the pathogenesis of AR.
Collapse
Affiliation(s)
- Zhengwen Li
- Department of Otorhinolaryngology, 278245Shanghai Tenth Peoples' Hospital, Tongji University, Shanghai, China
| | - Wentao Zou
- Department of Otorhinolaryngology, 278245Shanghai Tenth Peoples' Hospital, Tongji University, Shanghai, China
| | - Jingwen Sun
- Department of Otorhinolaryngology, 278245Shanghai Tenth Peoples' Hospital, Tongji University, Shanghai, China
| | - Shuang Zhou
- Department of Otorhinolaryngology, 278245Shanghai Tenth Peoples' Hospital, Tongji University, Shanghai, China
| | - Yue Zhou
- Department of Otorhinolaryngology, 278245Shanghai Tenth Peoples' Hospital, Tongji University, Shanghai, China
| | - Xiaojing Cai
- Department of Otorhinolaryngology, 278245Shanghai Tenth Peoples' Hospital, Tongji University, Shanghai, China
| | - Jiaxiong Zhang
- Department of Otorhinolaryngology, 278245Shanghai Tenth Peoples' Hospital, Tongji University, Shanghai, China
| |
Collapse
|