1
|
Guseva EA, Emelianova MA, Sidorova VN, Tyulpakov AN, Dontsova OA, Sergiev PV. Diversity of Molecular Functions of RNA-Binding Ubiquitin Ligases from the MKRN Protein Family. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:1558-1572. [PMID: 39418515 DOI: 10.1134/s0006297924090037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/12/2024] [Accepted: 08/19/2024] [Indexed: 10/19/2024]
Abstract
Makorin RING finger protein family includes four members (MKRN1, MKRN2, MKRN3, and MKRN4) that belong to E3 ubiquitin ligases and play a key role in various biological processes, such as cell survival, cell differentiation, and innate and adaptive immunity. MKRN1 contributes to the tumor growth suppression, energy metabolism, anti-pathogen defense, and apoptosis and has a broad variety of targets, including hTERT, APC, FADD, p21, and various viral proteins. MKRN2 regulates cell proliferation, inflammatory response; its targets are p65, PKM2, STAT1, and other proteins. MKRN3 is a master regulator of puberty timing; it controls the levels of gonadotropin-releasing hormone in the arcuate nucleus neurons. MKRN4 is the least studied member of the MKRN protein family, however, it is known to contribute to the T cell activation by ubiquitination of serine/threonine kinase MAP4K3. Proteins of the MKRN family are associated with the development of numerous diseases, for example, systemic lupus erythematosus, central precocious puberty, Prader-Willi syndrome, degenerative lumbar spinal stenosis, inflammation, and cancer. In this review, we discuss the functional roles of all members of the MKRN protein family and their involvement in the development of diseases.
Collapse
Affiliation(s)
- Ekaterina A Guseva
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, 143025, Russia.
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Maria A Emelianova
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, 143025, Russia
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Vera N Sidorova
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119991, Russia
| | | | - Olga A Dontsova
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, 143025, Russia
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, 117997, Russia
| | - Petr V Sergiev
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, 143025, Russia
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
| |
Collapse
|
2
|
Tominaga H, Tokumoto H, Maeda S, Kawamura I, Sanada M, Kawazoe K, Taketomi E, Taniguchi N. High prevalence of lumbar spinal stenosis in cases of idiopathic normal-pressure hydrocephalus affects improvements in gait disturbance after shunt operation. World Neurosurg X 2023; 20:100236. [PMID: 37435396 PMCID: PMC10331591 DOI: 10.1016/j.wnsx.2023.100236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 05/24/2023] [Accepted: 06/12/2023] [Indexed: 07/13/2023] Open
Abstract
Objective Idiopathic normal-pressure hydrocephalus (iNPH) is characterized by symptoms of dementia, urinary incontinence, and gait disturbance; however, gait disturbance tends to persist after shunt surgery. Gait disturbance and urinary dysfunction are also major symptoms of lumbar spinal stenosis (LSS). Currently, the epidemiology of the complications of LSS in iNPH is unclear. Here, we evaluated the coexistence rate of LSS in iNPH cases. Methods This was a retrospective case-control study. Between 2011 and 2017, 224 patients with a median age of 78 years, including 119 males, were diagnosed with iNPH and underwent lumboperitoneal shunts or ventriculoperitoneal shunts. LSS was diagnosed with magnetic resonance imaging by two spine surgeons. Age, sex, body mass index (BMI), Timed Up and Go (TUG) test, Mini Mental State Examination (MMSE) score, and urinary dysfunction were examined. We compared the changes in these variables in the group of patients with iNPH without LSS versus those with both iNPH and LSS. Results Seventy-three iNPH patients (32.6%) with LSS had significantly higher age and BMI. The existence of LSS did not alter the postoperative improvement rates of MMSE and urinary dysfunction; however, TUG improvement was significantly impaired in the LSS-positive group. Conclusions LSS affects improvements in gait disturbance of iNPH patients after shunt operation. Because our results revealed that one-third of iNPH patients were associated with LSS, gait disturbance observed in iNPH patients should be considered a potential complication of LSS.
Collapse
Affiliation(s)
- Hiroyuki Tominaga
- Department of Orthopaedic Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima, 890-8520, Japan
| | - Hiroto Tokumoto
- Department of Orthopaedic Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima, 890-8520, Japan
| | - Shingo Maeda
- Department of Bone and Joint Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima, 890-8520, Japan
| | - Ichiro Kawamura
- Department of Orthopaedic Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima, 890-8520, Japan
| | - Masato Sanada
- Department of Orthopaedic Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima, 890-8520, Japan
| | - Kazumasa Kawazoe
- Department of Neurosurgery, Japanese Red Cross Kagoshima Hospital, 2545 Hirakawa, Kagoshima, 891-0133, Japan
| | - Eiji Taketomi
- Department of Orthopaedic Surgery, Japanese Red Cross Kagoshima Hospital, 2545 Hirakawa, Kagoshima, 891-0133, Japan
| | - Noboru Taniguchi
- Department of Orthopaedic Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima, 890-8520, Japan
| |
Collapse
|
3
|
Wang T, Liu W, Wang C, Ma X, Akhtar MF, Li Y, Li L. MRKNs: Gene, Functions, and Role in Disease and Infection. Front Oncol 2022; 12:862206. [PMID: 35463379 PMCID: PMC9024132 DOI: 10.3389/fonc.2022.862206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 03/17/2022] [Indexed: 11/26/2022] Open
Abstract
The makorin RING finger protein (MKRN) gene family encodes proteins (makorins) with a characteristic array of zinc-finger motifs present in a wide array from invertebrates to vertebrates. MKRNs (MKRN1, MKRN2, MKRN3, MKRN4) as RING finger E3 ligases that mediate substrate degradation are related with conserved RING finger domains that control multiple cellular components via the ubiquitin-proteasome system (UPS), including p53, p21, FADD, PTEN, p65, Nptx1, GLK, and some viral or bacterial proteins. MKRNs also served as diverse roles in disease, like MKRN1 in transcription regulation, metabolic disorders, and tumors; MKRN2 in testis physiology, neurogenesis, apoptosis, and mutation of MKRN2 regulation signals transduction, inflammatory responses, melanoma, and neuroblastoma; MKRN3 in central precocious puberty (CPP) therapy; and MKRN4 firstly reported as a novel E3 ligase instead of a pseudogene to contribute to systemic lupus erythematosus (SLE). Here, we systematically review advances in the gene’s expression, function, and role of MKRNs orthologs in disease and pathogens infection. Further, MKRNs can be considered targets for the host’s innate intracellular antiviral defenses and disease therapy.
Collapse
Affiliation(s)
- Tongtong Wang
- College of Agronomy, Liaocheng University, Liaocheng, China
| | - Wenqiang Liu
- College of Agronomy, Liaocheng University, Liaocheng, China
| | - Changfa Wang
- College of Agronomy, Liaocheng University, Liaocheng, China
| | - Xuelian Ma
- Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China
| | | | - Yubao Li
- College of Agronomy, Liaocheng University, Liaocheng, China
- *Correspondence: Yubao Li, ; Liangliang Li,
| | - Liangliang Li
- College of Agronomy, Liaocheng University, Liaocheng, China
- *Correspondence: Yubao Li, ; Liangliang Li,
| |
Collapse
|