1
|
Jiang L, Xu X, Yan G, Wu Y, Xi N, Lai Y, Zhang G, Liu Y. Untargeted metabolomics yields insight into extramammary Paget's disease mechanisms. Front Oncol 2024; 14:1319819. [PMID: 38347841 PMCID: PMC10859479 DOI: 10.3389/fonc.2024.1319819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 01/08/2024] [Indexed: 02/15/2024] Open
Abstract
Background Extramammary Paget's disease (EMPD) is a rare cutaneous malignancy, commonly affecting the external genitalia and perianal area of the elderly with unclear pathogenesis. Metabolomics provides a novel perspective for uncovering the metabolic mechanisms of a verity of cancers. Materials and methods Here, we explored the metabolome of EMPD using an untargeted strategy. In order to further investigate the potential relationship between metabolites and gene expression, we re-analyzed the gene expression microarray data (GSE117285) using differential expression analysis and functional enrichment analyses. Results Results showed that a total of 896 metabolites were identified and 87 metabolites including 37 upregulated and 50 downregulated significantly in EMPD were sought out. In the following feature selection analyses, four metabolites, namely, cyclopentyl fentanyl-d5, LPI 17:0, guanosine-3',5'-cyclic monophosphate, kynurenine (KYN, high in EMPD) were identified by both random forest and support vector machine analyses. We then identified 1,079 dysfunctional genes: 646 upregulated and 433 downregulated in EMPD. Specifically, the tryptophan-degrading enzyme including indoleamine-2,3-dioxygenase-1 (IDO1) and tryptophan 2,3-dioxygenase (TDO2) were also increased. Generally, cancers exhibit a high expression of IDO1 and TDO2 to catabolize tryptophan, generating abundant KYN. Moreover, we also noticed the abnormal activation of sustaining proliferative signaling in EMPD. Conclusion In conclusion, this study was the first to reveal the metabolome profile of EMPD. Our results demonstrate that IDO1/TDO2-initialized KYN metabolic pathway may play a vital role in the development and progression of EMPD, which may serve as a potential therapeutic target for treating EMPD.
Collapse
Affiliation(s)
- Long Jiang
- Department of Dermatologic Surgery, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
- Skin Cancer Center, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xiaoxiang Xu
- Skin Cancer Center, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Pathology, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Guorong Yan
- Skin Cancer Center, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Phototherapy, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
- Institute of Photomedicine, School of Medicine, Tongji University, Shanghai, China
| | - Yuhao Wu
- Skin Cancer Center, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Phototherapy, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
- Institute of Photomedicine, School of Medicine, Tongji University, Shanghai, China
| | - Ningyuan Xi
- Skin Cancer Center, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Pathology, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yongxian Lai
- Department of Dermatologic Surgery, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
- Skin Cancer Center, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Guolong Zhang
- Skin Cancer Center, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Phototherapy, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
- Institute of Photomedicine, School of Medicine, Tongji University, Shanghai, China
| | - Yeqiang Liu
- Skin Cancer Center, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Pathology, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
2
|
Hong J, Li T, Chao Y, Xu Y, Zhu Z, Zhou Z, Gu W, Qu Q, Li D. Molecular basis of the inositol deacylase PGAP1 involved in quality control of GPI-AP biogenesis. Nat Commun 2024; 15:8. [PMID: 38167496 PMCID: PMC10761859 DOI: 10.1038/s41467-023-44568-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 12/19/2023] [Indexed: 01/05/2024] Open
Abstract
The secretion and quality control of glycosylphosphatidylinositol-anchored proteins (GPI-APs) necessitates post-attachment remodeling initiated by the evolutionarily conserved PGAP1, which deacylates the inositol in nascent GPI-APs. Impairment of PGAP1 activity leads to developmental diseases in humans and fatality and infertility in animals. Here, we present three PGAP1 structures (2.66-2.84 Å), revealing its 10-transmembrane architecture and product-enzyme interaction details. PGAP1 holds GPI-AP acyl chains in an optimally organized, guitar-shaped cavity with apparent energetic penalties from hydrophobic-hydrophilic mismatches. However, abundant glycan-mediated interactions in the lumen counterbalance these repulsions, likely conferring substrate fidelity and preventing off-target hydrolysis of bulk membrane lipids. Structural and biochemical analyses uncover a serine hydrolase-type catalysis with atypical features and imply mechanisms for substrate entrance and product release involving a drawing compass movement of GPI-APs. Our findings advance the mechanistic understanding of GPI-AP remodeling.
Collapse
Affiliation(s)
- Jingjing Hong
- State Key Laboratory of Molecular Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China
| | - Tingting Li
- State Key Laboratory of Molecular Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China
| | - Yulin Chao
- Shanghai Stomatological Hospital, School of Stomatology, Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Department of Systems Biology for Medicine, Fudan University, Shanghai, 200032, China
| | - Yidan Xu
- State Key Laboratory of Molecular Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China
| | - Zhini Zhu
- Shanghai Stomatological Hospital, School of Stomatology, Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Department of Systems Biology for Medicine, Fudan University, Shanghai, 200032, China
| | - Zixuan Zhou
- Shanghai Stomatological Hospital, School of Stomatology, Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Department of Systems Biology for Medicine, Fudan University, Shanghai, 200032, China
| | - Weijie Gu
- State Key Laboratory of Molecular Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China
| | - Qianhui Qu
- Shanghai Stomatological Hospital, School of Stomatology, Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Department of Systems Biology for Medicine, Fudan University, Shanghai, 200032, China.
| | - Dianfan Li
- State Key Laboratory of Molecular Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China.
| |
Collapse
|
3
|
Banaganapalli B, Fallatah I, Alsubhi F, Shetty PJ, Awan Z, Elango R, Shaik NA. Paget's disease: a review of the epidemiology, etiology, genetics, and treatment. Front Genet 2023; 14:1131182. [PMID: 37180975 PMCID: PMC10169728 DOI: 10.3389/fgene.2023.1131182] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 04/17/2023] [Indexed: 05/16/2023] Open
Abstract
Paget's disease of bone (PDB) is the second most prevalent metabolic bone disorder worldwide, with a prevalence rate of 1.5%-8.3%. It is characterized by localized areas of accelerated, disorganized, and excessive bone production and turnover. Typically, PDB develops in the later stages of life, particularly in the late 50s, and affects men more frequently than women. PDB is a complex disease influenced by both genetic and environmental factors. PDB has a complex genetic basis involving multiple genes, with SQSTM1 being the gene most frequently associated with its development. Mutations affecting the UBA domain of SQSTM1 have been detected in both familial and sporadic PDB cases, and these mutations are often associated with severe clinical expression. Germline mutations in other genes such as TNFRSF11A, ZNF687 and PFN1, have also been associated with the development of the disease. Genetic association studies have also uncovered several PDB predisposing risk genes contributing to the disease pathology and severity. Epigenetic modifications of genes involved in bone remodelling and regulation, including RANKL, OPG, HDAC2, DNMT1, and SQSTM1, have been implicated in the development and progression of Paget's disease of bone, providing insight into the molecular basis of the disease and potential targets for therapeutic intervention. Although PDB has a tendency to cluster within families, the variable severity of the disease across family members, coupled with decreasing incidence rates, indicates that environmental factors may also play a role in the pathophysiology of PDB. The precise nature of these environmental triggers and how they interact with genetic determinants remain poorly understood. Fortunately, majority of PDB patients can achieve long-term remission with an intravenous infusion of aminobisphosphonates, such as zoledronic acid. In this review, we discuss aspects like clinical characteristics, genetic foundation, and latest updates in PDB research.
Collapse
Affiliation(s)
- Babajan Banaganapalli
- Department of Genetic Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
- Princess Al-Jawhara Al-Brahim Center of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ibrahim Fallatah
- Department of Genetic Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Fai Alsubhi
- Department of Genetic Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Preetha Jayasheela Shetty
- Department of Biomedical Sciences, College of Medicine, Gulf Medical University, Ajman, United Arab Emirates
| | - Zuhier Awan
- Department of Clinical Biochemistry, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ramu Elango
- Department of Genetic Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
- Princess Al-Jawhara Al-Brahim Center of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Noor Ahmad Shaik
- Department of Genetic Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
- Princess Al-Jawhara Al-Brahim Center of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
4
|
Ma Y, Li W, Fan C, Wang Y, Jiang H, Yang W. Comprehensive Analysis of Long Non-Coding RNAs N4-Acetylcytidine in Alzheimer's Disease Mice Model Using High-Throughput Sequencing. J Alzheimers Dis 2022; 90:1659-1675. [PMID: 36314201 DOI: 10.3233/jad-220564] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND N4-acetylcytidine (ac4C), an important posttranscriptional modification, is involved in various disease processes. Long noncoding RNAs (lncRNAs) regulate gene expression mainly through epigenetic modification, transcription, and posttranscriptional modification. Alzheimer's disease (AD) is a neurodegenerative disease characterized by amyloidosis of the brain. However, the role of lncRNA ac4C modification in AD remains unclear. OBJECTIVE In this study, we investigated the association between ac4C modification and AD, and the underlying mechanisms of ac4C modification in AD. METHODS The male 9-month-old APP/PS1 double transgenic mice, age- and sex-matched wild type (WT) mice were used in this study. Then, ac4C-RIP-seq and RNA-seq were used to comprehensively analyze lncRNA ac4C modification in AD mice. The lncRNA-miRNA-mRNA regulatory networks using Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses showed the regulatory relationships among these three lncRNAs and AD. RESULTS The results showed that there were 120 significantly different ac4C peaks located on 102 lncRNAs in AD, of which 55 were hyperacetylated and 47 were hypoacetylated. Simultaneously, 231 differentially expressed lncRNAs were identified, including 138 upregulated lncRNAs and 93 downregulated lncRNAs. Moreover, 3 lncRNAs, lncRNA Gm26508, lncRNA A430046D13Rik, and lncRNA 9530059O14Rik, showed significant changes in both the ac4C and RNA levels using conjoint analysis. CONCLUSION The abundance of lncRNA ac4C modification is significantly different in AD and indicates that lncRNA ac4C is associated with the occurrence and development of AD, which could provide a basis for further exploration of the related regulatory mechanisms.
Collapse
Affiliation(s)
- Yanzhen Ma
- Experimental Center of Clinical Research, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Weizu Li
- Department of Pharmacology, Basic Medicine College, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, Hefei, Anhui, China
| | - Chang Fan
- Experimental Center of Clinical Research, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Yongzhong Wang
- Key Laboratory of Xin'an Medicine of the Ministry of Education, Anhui University of Chinese Medicine, Hefei, Anhui, China.,Department of Pharmacy, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Hui Jiang
- Experimental Center of Clinical Research, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, China.,Key Laboratory of Xin'an Medicine of the Ministry of Education, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Wenming Yang
- Key Laboratory of Xin'an Medicine of the Ministry of Education, Anhui University of Chinese Medicine, Hefei, Anhui, China.,Encephalopathy Center, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, China
| |
Collapse
|