1
|
Panagiotou E, Vathiotis IA, Makrythanasis P, Hirsch F, Sen T, Syrigos K. Biological and therapeutic implications of the cancer-related germline mutation landscape in lung cancer. THE LANCET. RESPIRATORY MEDICINE 2024; 12:997-1005. [PMID: 38885686 DOI: 10.1016/s2213-2600(24)00124-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 06/20/2024]
Abstract
Although smoking is the primary cause of lung cancer, only about 15% of lifelong smokers develop the disease. Moreover, a substantial proportion of lung cancer cases occur in never-smokers, highlighting the potential role of inherited genetic factors in the cause of lung cancer. Lung cancer is significantly more common among those with a positive family history, especially for early-onset disease. Therefore, the presence of pathogenic germline variants might act synergistically with environmental factors. The incorporation of next-generation sequencing in routine clinical practice has led to the identification of cancer-predisposing mutations in an increasing proportion of patients with lung cancer. This Review summarises the landscape of germline susceptibility in lung cancer and highlights the importance of germline testing in patients diagnosed with the disease, which has the potential to identify individuals at risk, with implications for tailored therapeutic approaches and successful prevention through genetic counselling and screening.
Collapse
Affiliation(s)
- Emmanouil Panagiotou
- Third Department of Internal Medicine, Sotiria General Hospital for Chest Diseases, National and Kapodistrian University of Athens, Athens, Greece
| | - Ioannis A Vathiotis
- Third Department of Internal Medicine, Sotiria General Hospital for Chest Diseases, National and Kapodistrian University of Athens, Athens, Greece.
| | - Periklis Makrythanasis
- Laboratory of Medical Genetics, Medical School, National and Kapodistrian University of Athens, Athens, Greece; Department of Genetic Medicine and Development, Medical School, University of Geneva, Geneva, Switzerland; Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Fred Hirsch
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Triparna Sen
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Konstantinos Syrigos
- Third Department of Internal Medicine, Sotiria General Hospital for Chest Diseases, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
2
|
Qiang M, Liu H, Yang L, Wang H, Guo R. Immunotherapy for small cell lung cancer: the current state and future trajectories. Discov Oncol 2024; 15:355. [PMID: 39152301 PMCID: PMC11329494 DOI: 10.1007/s12672-024-01119-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 06/21/2024] [Indexed: 08/19/2024] Open
Abstract
Small cell lung cancer (SCLC) constitutes approximately 10% to 15% of all lung cancer diagnoses and represents a pressing global public health challenge due to its high mortality rates. The efficacy of conventional treatments for SCLC is suboptimal, characterized by limited anti-tumoral effects and frequent relapses. In this context, emerging research has pivoted towards immunotherapy combined with chemotherapy, a rapidly advancing field that has shown promise in ameliorating the clinical outcomes of SCLC patients. Through originally developed for non-small cell lung cancer (NSCLC), these therapies have extended new treatment avenues for SCLC. Currently, a nexus of emerging hot-spot treatments has demonstrated significant therapeutic efficacy. Based on the amalgamation of chemotherapy and immunotherapy, and the development of new immunotherapy agents, the treatment of SCLC has seen the hoping future. Progress has been achieved in enhancing the tumor immune microenvironment through the concomitant use of chemotherapy, immunotherapy, and tyrosine kinase inhibitors (TKI), as evinced by emerging clinical trial data. Moreover, a tripartite approach involving immunotherapy, targeted therapy, and chemotherapy appears auspicious for future clinical applications. Overcoming resistance to post-immunotherapy regimens remains an urgent area of exploration. Finally, bispecific antibodies, adoptive cell transfer (ACT), oncolytic virus, monotherapy, including Delta-like ligand 3 (DLL3) and T cell immunoreceptor with Ig and ITIM domains (TIGIT), as well as precision medicine, may present a prospective route towards achieving curative outcomes in SCLC. This review aims to synthesize extant literature and highlight future directions in SCLC treatment, acknowledging the persistent challenges in the field. Furthermore, the continual development of novel therapeutic agents and technologies renders the future of SCLC treatment increasingly optimistic.
Collapse
Affiliation(s)
- Min Qiang
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Hongyang Liu
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Lei Yang
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Hong Wang
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Rui Guo
- Clinical Laboratory, The First Hospital of Jilin University, Jilin University, Changchun, China.
| |
Collapse
|
3
|
Zhang J, Chen H, Zhang J, Wang S, Guan Y, Gu W, Li J, Zhang X, Li J, Wang X, Lu Z, Zhou J, Peng Z, Sun Y, Shao Y, Shen L, Zhuo M, Lu M. Molecular features of gastroenteropancreatic neuroendocrine carcinoma: A comparative analysis with lung neuroendocrine carcinoma and digestive adenocarcinomas. Chin J Cancer Res 2024; 36:90-102. [PMID: 38455367 PMCID: PMC10915635 DOI: 10.21147/j.issn.1000-9604.2024.01.09] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/10/2024] [Indexed: 03/09/2024] Open
Abstract
Objective There is an ongoing debate about whether the management of gastroenteropancreatic (GEP) neuroendocrine carcinoma (NEC) should follow the guidelines of small-cell lung cancer (SCLC). We aim to identify the genetic differences of GEPNEC and its counterpart. Methods We recruited GEPNEC patients as the main cohort, with lung NEC and digestive adenocarcinomas as comparative cohorts. All patients undergone next-generation sequencing (NGS). Different gene alterations were compared and analyzed between GEPNEC and lung NEC (LNEC), GEPNEC and adenocarcinoma to yield the remarkable genes. Results We recruited 257 patients, including 99 GEPNEC, 57 LNEC, and 101 digestive adenocarcinomas. Among the mutations, KRAS, RB1, TERT, IL7R, and CTNNB1 were found to have different gene alterations between GEPNEC and LNEC samples. Specific genes for each site were revealed: gastric NEC ( TERT amplification), colorectal NEC ( KRAS mutation), and bile tract NEC ( ARID1A mutation). The gene disparities between small-cell NEC (SCNEC) and large-cell NEC (LCNEC) were KEAP1 and CDH1. Digestive adenocarcinoma was also compared with GEPNEC and suggested RB1, APC, and KRAS as significant genes. The TP53/ RB1 mutation pattern was associated with first-line effectiveness. Putative targetable genes and biomarkers in GEPNEC were identified in 22.2% of the patients, and they had longer progression-free survival (PFS) upon targetable treatment [12.5 months vs. 3.0 months, HR=0.40 (0.21-0.75), P=0.006]. Conclusions This work demonstrated striking gene distinctions in GEPNEC compared with LNEC and adenocarcinoma and their clinical utility.
Collapse
Affiliation(s)
- Jianwei Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gastrointestinal Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, China
- Department of Radiation Therapy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen 518172, China
| | - Hanxiao Chen
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department I of Thoracic Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Junli Zhang
- Medical Department, Nanjing Geneseeq Technology Inc., Nanjing 210061, China
| | - Sha Wang
- Medical Department, Nanjing Geneseeq Technology Inc., Nanjing 210061, China
| | | | | | - Jie Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gastrointestinal Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Xiaotian Zhang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Department of Gastrointestinal Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Jian Li
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Department of Gastrointestinal Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Xicheng Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gastrointestinal Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Zhihao Lu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gastrointestinal Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Jun Zhou
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gastrointestinal Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Zhi Peng
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Department of Gastrointestinal Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Yu Sun
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Pathology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Yang Shao
- Medical Department, Nanjing Geneseeq Technology Inc., Nanjing 210061, China
| | - Lin Shen
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Department of Gastrointestinal Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Minglei Zhuo
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department I of Thoracic Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Ming Lu
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Department of Gastrointestinal Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| |
Collapse
|
4
|
Li Y, Zhou X, Lyu Z. Analysis of two-gene signatures and related drugs in small-cell lung cancer by bioinformatics. Open Med (Wars) 2023; 18:20230806. [PMID: 37808164 PMCID: PMC10560035 DOI: 10.1515/med-2023-0806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 08/29/2023] [Accepted: 09/01/2023] [Indexed: 10/10/2023] Open
Abstract
Small-cell lung cancer (SCLC) has a poor prognosis and can be diagnosed with systemic metastases. Nevertheless, the molecular mechanisms underlying the development of SCLC are unclear, requiring further investigation. The current research aims to identify relevant biomarkers and available drugs to treat SCLC. The bioinformatics analysis comprised three Gene Expression Omnibus datasets (including GSE2149507, GSE6044, and GSE30219). Using the limma R package, we discovered differentially expressed genes (DEGs) in the current work. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses were made by adopting the DAVID website. The DEG protein-protein interaction network was built based on the Search Tool for the Retrieval of Interacting Genes/Proteins website and visualized using the CytoHubba plugin in Cytoscape, aiming to screen the top ten hub genes. Quantitative real-time polymerase chain reaction was adopted for verifying the level of the top ten hub genes. Finally, the potential drugs were screened and identified using the QuartataWeb database. Totally 195 upregulated and 167 downregulated DEGs were determined. The ten hub genes were NCAPG, BUB1B, TOP2A, CCNA2, NUSAP1, UBE2C, AURKB, RRM2, CDK1, and KIF11. Ten FDA-approved drugs were screened. Finally, two genes and related drugs screened could be the prospective drug targets for SCLC treatment.
Collapse
Affiliation(s)
- Yi Li
- The School of Clinical Medicine, Fujian Medical University, Fuzhou, China
| | - Xiwen Zhou
- Medical College, Shantou University, Shantou, China
| | - Zhi Lyu
- The School of Clinical Medicine, Fujian Medical University, Fuzhou, China
- Department of Senior Cadres Ward, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| |
Collapse
|
5
|
Farinea G, Crespi V, Listì A, Righi L, Bironzo P, Merlini A, Malapelle U, Novello S, Scagliotti GV, Passiglia F. The Role of Germline Mutations in Thoracic Malignancies: Between Myth and Reality. J Thorac Oncol 2023; 18:1146-1164. [PMID: 37331604 DOI: 10.1016/j.jtho.2023.05.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/15/2023] [Accepted: 05/23/2023] [Indexed: 06/20/2023]
Abstract
Considering the established contribution of environmental factors to the development of thoracic malignancies, the inherited susceptibility of these tumors has rarely been explored. However, the recent introduction of next-generation sequencing-based tumor molecular profiling in the real-word setting enabled us to deeply characterize the genomic background of patients with lung cancer with or without smoking-related history, increasing the likelihood of detecting germline mutations with potential prevention and treatment implications. Pathogenic germline variants have been detected in 2% to 3% of patients with NSCLC undergoing next-generation sequencing analysis, whereas the proportion of germline mutations associated with the development of pleural mesothelioma widely varies across different studies, ranging between 5% and 10%. This review provides an updated summary of emerging evidence about germline mutations in thoracic malignancies, focusing on pathogenetic mechanisms, clinical features, therapeutic implications, and screening recommendations for high-risk individuals.
Collapse
Affiliation(s)
- Giovanni Farinea
- Department of Oncology, University of Turin, San Luigi Hospital, Orbassano, Turin, Italy
| | - Veronica Crespi
- Department of Oncology, University of Turin, San Luigi Hospital, Orbassano, Turin, Italy
| | - Angela Listì
- Department of Oncology, University of Turin, San Luigi Hospital, Orbassano, Turin, Italy
| | - Luisella Righi
- Department of Oncology, University of Turin, San Luigi Hospital, Orbassano, Turin, Italy
| | - Paolo Bironzo
- Department of Oncology, University of Turin, San Luigi Hospital, Orbassano, Turin, Italy
| | - Alessandra Merlini
- Department of Oncology, University of Turin, San Luigi Hospital, Orbassano, Turin, Italy
| | - Umberto Malapelle
- Department of Public Health, University Federico II of Naples, Naples, Italy
| | - Silvia Novello
- Department of Oncology, University of Turin, San Luigi Hospital, Orbassano, Turin, Italy
| | | | - Francesco Passiglia
- Department of Oncology, University of Turin, San Luigi Hospital, Orbassano, Turin, Italy
| |
Collapse
|
6
|
Krpina K, Vranić S, Tomić K, Samaržija M, Batičić L. Small Cell Lung Carcinoma: Current Diagnosis, Biomarkers, and Treatment Options with Future Perspectives. Biomedicines 2023; 11:1982. [PMID: 37509621 PMCID: PMC10377361 DOI: 10.3390/biomedicines11071982] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/10/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Small cell lung cancer (SCLC) is an aggressive malignancy characterized by rapid proliferation, early dissemination, acquired therapy resistance, and poor prognosis. Early diagnosis of SCLC is crucial since most patients present with advanced/metastatic disease, limiting the potential for curative treatment. While SCLC exhibits initial responsiveness to chemotherapy and radiotherapy, treatment resistance commonly emerges, leading to a five-year overall survival rate of up to 10%. New effective biomarkers, early detection, and advancements in therapeutic strategies are crucial for improving survival rates and reducing the impact of this devastating disease. This review aims to comprehensively summarize current knowledge on diagnostic options, well-known and emerging biomarkers, and SCLC treatment strategies and discuss future perspectives on this aggressive malignancy.
Collapse
Affiliation(s)
- Kristina Krpina
- Clinic for Respiratory Diseases Jordanovac, University Hospital Centre Zagreb, 10000 Zagreb, Croatia
| | - Semir Vranić
- College of Medicine, QU Health, Qatar University, Doha 2713, Qatar
| | - Krešimir Tomić
- Department of Oncology, University Clinical Hospital Mostar, 88000 Mostar, Bosnia and Herzegovina
| | - Miroslav Samaržija
- Clinic for Respiratory Diseases Jordanovac, University Hospital Centre Zagreb, 10000 Zagreb, Croatia
| | - Lara Batičić
- Department of Medical Chemistry, Biochemistry and Clinical Chemistry, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia
| |
Collapse
|
7
|
Qiu Y, Wang X, Fan Y, Bao Y, Meng F, Liu B, Li R. A case of bilateral synchronous double primary lung cancer secondary to bladder cancer: From the next-generation sequencing prospect. Thorac Cancer 2023; 14:1316-1319. [PMID: 36965139 PMCID: PMC10175027 DOI: 10.1111/1759-7714.14864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/04/2023] [Accepted: 03/06/2023] [Indexed: 03/27/2023] Open
Abstract
One year following bladder cancer surgery, a 65-year-old man had computed tomography (CT) that revealed bilateral pulmonary nodules. Pulmonary wedge resections were performed after the nodules were found to grow in follow-up. Unusually, we found that these two lesions were not homologous, nor were they metastases from prior bladder cancer, and therefore, synchronous double primary lung cancer (sDPLC) was diagnosed. The immunohistochemical findings excluded the possibility of bladder cancer metastasis, but could not determine whether they were from the same source. Next generation sequencing (NGS) supported the diagnosis sDPLC because they amply demonstrated the two sources' distinct origins. Finally, after discussion with pathologists, this patient was diagnosed as small cell lung carcinoma (SCLC) and received postoperative EP chemotherapy. We also documented a few rather uncommon alterations that might serve as a foundation for further investigation. This case suggests that in addition to immunohistochemical, NGS is also helpful to clarify the etiology and refine the pathological classification of tumors, which has guiding significance for the establishment of precise diagnosis and optimal treatment.
Collapse
Affiliation(s)
- Yuling Qiu
- Department of Oncology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
- The Comprehensive Cancer Centre, Affiliated Drum Tower Hospital, Medical School, Nanjing University and Clinical Cancer Institute of Najing University, Nanjing, China
| | - Xuedi Wang
- Department of Pathology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Yingrui Fan
- Department of Oncology, Affiliated Taikang Xianlin Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Yanru Bao
- Department of Oncology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Fanqing Meng
- Department of Pathology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Baorui Liu
- Department of Oncology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
- The Comprehensive Cancer Centre, Affiliated Drum Tower Hospital, Medical School, Nanjing University and Clinical Cancer Institute of Najing University, Nanjing, China
| | - Rutian Li
- Department of Oncology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
- The Comprehensive Cancer Centre, Affiliated Drum Tower Hospital, Medical School, Nanjing University and Clinical Cancer Institute of Najing University, Nanjing, China
| |
Collapse
|
8
|
Li Z, Li Y, Zhang Q, Ge W, Zhang Y, Zhao X, Hu J, Yuan L, Zhang W. Establishment of Bactrian Camel Induced Pluripotent Stem Cells and Prediction of Their Unique Pluripotency Genes. Int J Mol Sci 2023; 24:ijms24031917. [PMID: 36768240 PMCID: PMC9916525 DOI: 10.3390/ijms24031917] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/05/2023] [Accepted: 01/15/2023] [Indexed: 01/21/2023] Open
Abstract
Induced pluripotent stem cells (iPSCs) can differentiate into all types of cells and can be used in livestock for research on biological development, genetic breeding, and in vitro genetic resource conservation. The Bactrian camel is a large domestic animal that inhabits extreme environments and holds value in the treatment of various diseases and the development of the local economy. Therefore, we transferred four mouse genes (Oct4, Sox2, Klf4, and c-Myc) into Bactrian camel fetal fibroblasts (BCFFs) using retroviruses with a large host range to obtain Bactrian camel induced pluripotent stem cells (bciPSCs). They were comprehensively identified based on cell morphology, pluripotency gene and marker expression, chromosome number, transcriptome sequencing, and differentiation potential. The results showed the pluripotency of bciPSCs. However, unlike stem cells of other species, late formation of stem cell clones was observed; moreover, the immunofluorescence of SSEA1, SSEA3, and SSEA4 were positive, and teratoma formation took four months. These findings may be related to the extremely long gestation period and species specificity of Bactrian camels. By mining RNA sequence data, 85 potential unique pluripotent genes of Bactrian camels were predicted, which could be used as candidate genes for the production of bciPSC in the future. Among them, ASF1B, DTL, CDCA5, PROM1, CYTL1, NUP210, Epha3, and SYT13 are more attractive. In conclusion, we generated bciPSCs for the first time and obtained their transcriptome information, expanding the iPSC genetic information database and exploring the applicability of iPSCs in livestock. Our results can provide an experimental basis for Bactrian camel ESC establishment, developmental research, and genetic resource conservation.
Collapse
Affiliation(s)
- Zongshuai Li
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Gansu Agricultural University, Lanzhou 730070, China
| | - Yina Li
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Gansu Agricultural University, Lanzhou 730070, China
| | - Qiran Zhang
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Gansu Agricultural University, Lanzhou 730070, China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Wenbo Ge
- Chinese Academy of Agricultural Sciences Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Lanzhou 730070, China
| | - Yong Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Gansu Agricultural University, Lanzhou 730070, China
- Correspondence:
| | - Xingxu Zhao
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Gansu Agricultural University, Lanzhou 730070, China
| | - Junjie Hu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Gansu Agricultural University, Lanzhou 730070, China
| | - Ligang Yuan
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
| | - Wangdong Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|