1
|
Chen Y, Li G, Wei L, Weng J, Liu S, Gu M, Liu P, Zhu Y, Xiong A, Zeng H, Yu F. Tibial plateau fracture and RNA sequencing with osteogenesis imperfecta: a case report. Front Endocrinol (Lausanne) 2023; 14:1164386. [PMID: 37229455 PMCID: PMC10203611 DOI: 10.3389/fendo.2023.1164386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 04/10/2023] [Indexed: 05/27/2023] Open
Abstract
Osteogenesis imperfecta (OI) is a hereditary skeletal dysplasia with an incidence of approximately 1:15,000 to 20,000. OI is usually caused by the mutation of COL1A1 and COL1A2, which would encode the α-chain of type I collagen. OI is clinically characterized by decreased bone mass, increased risk of bone fragility, blue sclerae, and dentinogenesis. Case presentation A 29-year-old male patient was diagnosed with right tibial plateau fracture caused by slight violence. Physical examination revealed the following: height, 140 cm; weight, 70 kg; body mass index (BMI), 35.71 kg/m2; blue sclera and barrel chest were observed. X-ray examination showed left convex deformity of the thoracic vertebrae with reduced thoracic volume. Laboratory examinations revealed a decrease in both vitamin D and blood calcium levels. Bone mineral density (BMD) was lower than the normal range. After the preoperative preparation was completed, the open reduction and internal fixation of the right tibial plateau fracture were performed. Meanwhile, whole blood samples of this OI patient and the normal control were collected for RNA transcriptome sequencing. The RNA sequence analysis revealed that there were 513 differentially expressed genes (DEGs) between this OI patient and the normal control. KEGG-enriched signaling pathways were significantly enriched in extracellular matrix (ECM)-receptor interactions. Conclusion In this case, DEGs between this OI patient and the normal control were identified by RNA transcriptome sequencing. Moreover, the possible pathogenesis of OI was also explored, which may provide new evidence for the treatment of OI.
Collapse
Affiliation(s)
- Yixiao Chen
- Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, China
- National and Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, China
| | - Guoqing Li
- Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, China
- National and Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, China
| | - Liangchen Wei
- Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, China
- National and Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, China
| | - Jian Weng
- Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, China
- National and Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, China
| | - Su Liu
- Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, China
- National and Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, China
| | - Mingxi Gu
- Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, China
| | - Pei Liu
- Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, China
- National and Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, China
| | - Yuanchao Zhu
- Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, China
- National and Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, China
| | - Ao Xiong
- Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, China
- National and Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, China
| | - Hui Zeng
- Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, China
- National and Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, China
| | - Fei Yu
- Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, China
- National and Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, China
| |
Collapse
|
2
|
Liu X, Wang J, Yang M, Tian T, Hu T. Case report: Cystic hygroma accompanied with campomelic dysplasia in the first trimester caused by haploinsufficiency with SOX9 deletion. Front Genet 2022; 13:950271. [PMID: 36105084 PMCID: PMC9465627 DOI: 10.3389/fgene.2022.950271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 07/29/2022] [Indexed: 11/13/2022] Open
Abstract
Introduction: Campomelic dysplasia (CD) is a rare autosomal dominant skeletal malformation syndrome characterized by shortness and bowing of the lower extremities with or without XY sex reversal. Diagnosis using ultrasonography is most often made in the latter half of pregnancy. Intragenic heterozygous mutations in SOX9 are responsible for most cases of CD. CD caused by SOX9 deletion is a rare condition.Case presentation: We present a single case report of an individual with cystic hygroma accompanied by CD, which was detected by ultrasound in the first trimester. Chromosomal microarray analysis (CMA) was performed to determine copy number variants, whereas whole exome sequencing (WES) was performed to elucidate single-nucleotide variants. Chorionic villus sampling was performed to enable such analyses. Ultimately, CMA detected a 606 kb deletion in the 17q24.3 region with only one protein-coding gene (SOX9). However, no mutation in the SOX9 protein-coding sequence was detected by WES.Conclusion: When cystic hygroma is detected, prenatal diagnoses for skeletal dysplasia by ultrasound are likely to be confirmed in the first trimester. We propose a comprehensive prenatal diagnostic strategy that combines CMA and WES to diagnose fetuses with cystic hygroma accompanied by skeletal dysplasia.
Collapse
Affiliation(s)
- Xijing Liu
- Department of Medical Genetics, West China Second University Hospital, Sichuan University, Chengdu, China
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Jianmin Wang
- Department of Medical Genetics, West China Second University Hospital, Sichuan University, Chengdu, China
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Mei Yang
- Department of Medical Genetics, West China Second University Hospital, Sichuan University, Chengdu, China
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Tian Tian
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
- Department of Diagnostic Ultrasound, West China Second University Hospital, Sichuan University, Chengdu, China
- *Correspondence: Tian Tian, ; Ting Hu,
| | - Ting Hu
- Department of Medical Genetics, West China Second University Hospital, Sichuan University, Chengdu, China
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
- *Correspondence: Tian Tian, ; Ting Hu,
| |
Collapse
|