1
|
van Opijnen MP, de Vos FYF, Cuppen E, Geurts M, Maas SLN, Broekman MLD. The role of molecular biomarkers in recurrent glioblastoma trials: an assessment of the current trial landscape of genome-driven oncology. Med Oncol 2024; 41:250. [PMID: 39316248 PMCID: PMC11422459 DOI: 10.1007/s12032-024-02501-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 09/13/2024] [Indexed: 09/25/2024]
Abstract
For glioblastoma patients, the efficacy-targeted therapy is limited to date. Most of the molecular therapies previously studied are lacking efficacy in this population. More trials are needed to study the actual actionability of biomarkers in (recurrent) glioblastoma. This study aimed to assess the current clinical trial landscape to assess the role of molecular biomarkers in trials on recurrent glioblastoma treatment. The database ClinicalTrials.gov was used to identify not yet completed clinical trials on recurrent glioblastoma in adults. Recruiting studies were assessed to investigate the role of molecular criteria, which were retrieved as detailed as possible. Primary outcome was molecular criteria used as selection criteria for study participation. Next to this, details on moment and method of testing, and targets and drugs studied, were collected. In 76% (181/237) of the included studies, molecular criteria were not included in the study design. Of the remaining 56 studies, at least one specific genomic alteration as selection criterium for study participation was required in 33 (59%) studies. Alterations in EGFR, CDKN2A/B or C, CDK4/6, and RB were most frequently investigated, as were the corresponding drugs abemaciclib and ribociclib. Of the immunotherapies, CAR-T therapies were the most frequently studied therapies. Previously, genomics studies have revealed the presence of potentially actionable alterations in glioblastoma. Our study shows that the potential efficacy of targeted treatment is currently not translated into genome-driven trials in patients with recurrent glioblastoma. An intensification of genome-driven trials might help in providing evidence for (in)efficacy of targeted treatments.
Collapse
Affiliation(s)
- Mark P van Opijnen
- Department of Neurosurgery, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, the Netherlands.
- Department of Cell and Chemical Biology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, the Netherlands.
| | - Filip Y F de Vos
- Department of Medical Oncology, Utrecht University Medical Center, Utrecht, the Netherlands
| | - Edwin Cuppen
- Hartwig Medical Foundation, Amsterdam, the Netherlands
- Center for Molecular Medicine and Oncode Institute, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Marjolein Geurts
- Departments of Neurology and Medical Oncology, Brain Tumor Center, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Sybren L N Maas
- Department of Pathology, Leiden University Medical Center, Leiden, the Netherlands
- Department of Pathology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Marike L D Broekman
- Department of Neurosurgery, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, the Netherlands
- Department of Cell and Chemical Biology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, the Netherlands
- Department of Neurosurgery, Haaglanden Medical Center, Lijnbaan 32, 2512 VA, The Hague, the Netherlands
| |
Collapse
|
2
|
Hasner MC, van Opijnen MP, de Vos FYF, Cuppen E, Broekman MLD. Whole genome sequencing in (recurrent) glioblastoma: challenges related to informed consent procedures and data sharing. Acta Neurochir (Wien) 2024; 166:266. [PMID: 38874628 PMCID: PMC11178618 DOI: 10.1007/s00701-024-06158-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 06/04/2024] [Indexed: 06/15/2024]
Abstract
Increased use of whole genome sequencing (WGS) in neuro-oncology for diagnostics and research purposes necessitates a renewed conversation about informed consent procedures and governance structures for sharing personal health data. There is currently no consensus on how to obtain informed consent for WGS in this population. In this narrative review, we analyze the formats and contents of frameworks suggested in literature for WGS in oncology and assess their benefits and limitations. We discuss applicability, specific challenges, and legal context for patients with (recurrent) glioblastoma. This population is characterized by the rarity of the disease, extremely limited prognosis, and the correlation of the stage of the disease with cognitive abilities. Since this has implications for the informed consent procedure for WGS, we suggest that the content of informed consent should be tailor-made for (recurrent) glioblastoma patients.
Collapse
Affiliation(s)
- Mira C Hasner
- Department of Neurosurgery, Haaglanden Medical Center, The Hague, The Netherlands
| | - Mark P van Opijnen
- Department of Neurosurgery, Haaglanden Medical Center, The Hague, The Netherlands.
- Department of Cell and Chemical Biology, Leiden University Medical Center, Albinusdreef 2, Leiden, 2333 ZA, The Netherlands.
| | - Filip Y F de Vos
- Department of Medical Oncology, Utrecht University Medical Center, Utrecht, The Netherlands
| | - Edwin Cuppen
- Hartwig Medical Foundation, Amsterdam, The Netherlands
- Center for Molecular Medicine and Oncode Institute, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Marike L D Broekman
- Department of Neurosurgery, Haaglanden Medical Center, The Hague, The Netherlands
- Department of Cell and Chemical Biology, Leiden University Medical Center, Albinusdreef 2, Leiden, 2333 ZA, The Netherlands
- Department of Neurosurgery, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
3
|
Alhalabi OT, Dao Trong P, Kaes M, Jakobs M, Kessler T, Oehler H, König L, Eichkorn T, Sahm F, Debus J, von Deimling A, Wick W, Wick A, Krieg SM, Unterberg AW, Jungk C. Repeat surgery of recurrent glioma for molecularly informed treatment in the age of precision oncology: A risk-benefit analysis. J Neurooncol 2024; 167:245-255. [PMID: 38334907 PMCID: PMC11023957 DOI: 10.1007/s11060-024-04595-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 01/31/2024] [Indexed: 02/10/2024]
Abstract
PURPOSE Surgery for recurrent glioma provides cytoreduction and tissue for molecularly informed treatment. With mostly heavily pretreated patients involved, it is unclear whether the benefits of repeat surgery outweigh its potential risks. METHODS Patients receiving surgery for recurrent glioma WHO grade 2-4 with the goal of tissue sampling for targeted therapies were analyzed retrospectively. Complication rates (surgical, neurological) were compared to our institutional glioma surgery cohort. Tissue molecular diagnostic yield, targeted therapies and post-surgical survival rates were analyzed. RESULTS Between 2017 and 2022, tumor board recommendation for targeted therapy through molecular diagnostics was made for 180 patients. Of these, 70 patients (38%) underwent repeat surgery. IDH-wildtype glioblastoma was diagnosed in 48 patients (69%), followed by IDH-mutant astrocytoma (n = 13; 19%) and oligodendroglioma (n = 9; 13%). Gross total resection (GTR) was achieved in 50 patients (71%). Tissue was processed for next-generation sequencing in 64 cases (91%), and for DNA methylation analysis in 58 cases (83%), while immunohistochemistry for mTOR phosphorylation was performed in 24 cases (34%). Targeted therapy was recommended in 35 (50%) and commenced in 21 (30%) cases. Postoperatively, 7 patients (11%) required revision surgery, compared to 7% (p = 0.519) and 6% (p = 0.359) of our reference cohorts of patients undergoing first and second craniotomy, respectively. Non-resolving neurological deterioration was documented in 6 cases (10% vs. 8%, p = 0.612, after first and 4%, p = 0.519, after second craniotomy). Median survival after repeat surgery was 399 days in all patients and 348 days in GBM patients after repeat GTR. CONCLUSION Surgery for recurrent glioma provides relevant molecular diagnostic information with a direct consequence for targeted therapy under a reasonable risk of postoperative complications. With satisfactory postoperative survival it can therefore complement a multi-modal glioma therapy approach.
Collapse
Affiliation(s)
- Obada T Alhalabi
- Department of Neurosurgery, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
- Department of Neurosurgery, Medical Faculty, Heidelberg University, Heidelberg, Germany
| | - Philip Dao Trong
- Department of Neurosurgery, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
- Department of Neurosurgery, Medical Faculty, Heidelberg University, Heidelberg, Germany
| | - Manuel Kaes
- Department of Neurosurgery, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
- Department of Neurosurgery, Medical Faculty, Heidelberg University, Heidelberg, Germany
| | - Martin Jakobs
- Department of Neurosurgery, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
- Department of Neurosurgery, Medical Faculty, Heidelberg University, Heidelberg, Germany
- Department of Neurosurgery, Division for Stereotactic Neurosurgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Tobias Kessler
- Clinical Cooperation Unit Neurooncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Neurology and Neurooncology Program, National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany
| | - Hannah Oehler
- Clinical Cooperation Unit Neurooncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Neurology and Neurooncology Program, National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany
| | - Laila König
- Department of Radiation Oncology, Heidelberg Ion Beam Therapy Centre (HIT), National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg University Hospital, Heidelberg, Germany
| | - Tanja Eichkorn
- Department of Radiation Oncology, Heidelberg Ion Beam Therapy Centre (HIT), National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg University Hospital, Heidelberg, Germany
| | - Felix Sahm
- Department of Neuropathology, University Hospital Heidelberg, Heidelberg, Germany
- CCU Neuropathology, German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jürgen Debus
- Department of Radiation Oncology, Heidelberg Ion Beam Therapy Centre (HIT), National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg University Hospital, Heidelberg, Germany
| | - Andreas von Deimling
- Department of Radiation Oncology, Heidelberg Ion Beam Therapy Centre (HIT), National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg University Hospital, Heidelberg, Germany
| | - Wolfgang Wick
- Clinical Cooperation Unit Neurooncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Neurology and Neurooncology Program, National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany
| | - Antje Wick
- Clinical Cooperation Unit Neurooncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Neurology and Neurooncology Program, National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany
| | - Sandro M Krieg
- Department of Neurosurgery, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
- Department of Neurosurgery, Medical Faculty, Heidelberg University, Heidelberg, Germany
| | - Andreas W Unterberg
- Department of Neurosurgery, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
- Department of Neurosurgery, Medical Faculty, Heidelberg University, Heidelberg, Germany
| | - Christine Jungk
- Department of Neurosurgery, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany.
- Department of Neurosurgery, Medical Faculty, Heidelberg University, Heidelberg, Germany.
| |
Collapse
|