1
|
Tao S, Qiu X, Wang Y, Qiu R, Yu C, Sun M, Liu L, Tao Z, Zhang L, Tang D. Effect of Post-transplant Dietary Restriction on Hematopoietic Reconstitution and Maintenance of Reconstitution Capacity of Hematopoietic Stem Cells. Stem Cell Rev Rep 2024:10.1007/s12015-024-10754-y. [PMID: 38965147 DOI: 10.1007/s12015-024-10754-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/22/2024] [Indexed: 07/06/2024]
Abstract
Hematopoietic cell transplantation (HCT) is an important therapy for many hematological malignancies as well as some non-malignant diseases. Post-transplant hematopoiesis is affected by multiple factors, and the mechanisms of delayed post-transplant hematopoiesis remain poorly understood. Patients undergoing HCT often suffer from significantly reduced food intake due to complications induced by preconditioning treatments. Here, we used a dietary restriction (DR) mouse model to study the effect of post-transplant dietary reduction on hematopoiesis and hematopoietic stem cells (HSCs). We found that post-transplant DR significantly inhibited both lymphopoiesis and myelopoiesis in the primary recipient mice. However, when bone marrow cells (BMCs) from the primary recipient mice were serially transplanted into secondary and tertiary recipient mice, the HSCs derived from the primary recipient mice, which were exposed to post-transplant DR, exhibited a much higher reconstitution capacity. Transplantation experiments with purified HSCs showed that post-transplant DR greatly inhibited hematopoietic stem cell (HSC) expansion. Additionally, post-transplant DR reshaped the gut microbiotas of the recipient mice, which inhibited inflammatory responses and thus may have contributed to maintaining HSC function. Our findings may have important implications for clinical work because reduced food intake and problems with digestion and absorption are common in patients undergoing HCT.
Collapse
Affiliation(s)
- Si Tao
- Department of Oncology, The Second Affiliated Hospital of Nanchang University, Jiangxi, China
- Jiangxi Key Laboratory of Clinical and Translational Cancer Research, Department of Oncology, The Second Affiliated Hospital of Nanchang University, Jiangxi, China
| | - Xingxing Qiu
- Department of Oncology, The Second Affiliated Hospital of Nanchang University, Jiangxi, China
- Jiangxi Key Laboratory of Clinical and Translational Cancer Research, Department of Oncology, The Second Affiliated Hospital of Nanchang University, Jiangxi, China
| | - Yiting Wang
- Department of Hematology, The Second Affiliated Hospital of Nanchang University, Jiangxi, China
- Jiangxi Provincial Key Laboratory of Hematological Diseases (2024SSY06052), Department of Hematology, The Second Affiliated Hospital of Nanchang University, Min-De Road. 1, Nanchang City, 330006, Jiangxi Province, China
| | - Rongrong Qiu
- Department of Oncology, The Second Affiliated Hospital of Nanchang University, Jiangxi, China
- Jiangxi Key Laboratory of Clinical and Translational Cancer Research, Department of Oncology, The Second Affiliated Hospital of Nanchang University, Jiangxi, China
| | - Chenghui Yu
- Department of Hematology, The Second Affiliated Hospital of Nanchang University, Jiangxi, China
- Jiangxi Provincial Key Laboratory of Hematological Diseases (2024SSY06052), Department of Hematology, The Second Affiliated Hospital of Nanchang University, Min-De Road. 1, Nanchang City, 330006, Jiangxi Province, China
| | - Man Sun
- Department of Oncology, The Second Affiliated Hospital of Nanchang University, Jiangxi, China
| | - Lulu Liu
- Department of Medical Oncology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zhendong Tao
- Department of Medical Laboratory Medicine, Jiangxi Province Hospital of Integrated Chinese & Western Medicine, Jiangxi, China
| | - Liu Zhang
- Intensive Care Unit, Beijing Jishuitan Hospital, Capital Medical University, Beijing, China
| | - Duozhuang Tang
- Department of Hematology, The Second Affiliated Hospital of Nanchang University, Jiangxi, China.
- Jiangxi Provincial Key Laboratory of Hematological Diseases (2024SSY06052), Department of Hematology, The Second Affiliated Hospital of Nanchang University, Min-De Road. 1, Nanchang City, 330006, Jiangxi Province, China.
| |
Collapse
|
2
|
Faltusová K, Báječný M, Heizer T, Páral P, Chen CL, Szikszai K, Klener P, Nečas E. Second bone marrow transplantation into regenerating hematopoiesis enhances reconstitution of immune system. Front Immunol 2024; 15:1405210. [PMID: 38947315 PMCID: PMC11211250 DOI: 10.3389/fimmu.2024.1405210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 05/28/2024] [Indexed: 07/02/2024] Open
Abstract
In bone marrow transplantation (BMT), hematopoiesis-reconstituting cells are introduced following myeloablative treatment, which eradicates existing hematopoietic cells and disrupts stroma within the hematopoietic tissue. Both hematopoietic cells and stroma then undergo regeneration. Our study compares the outcomes of a second BMT administered to mice shortly after myeloablative treatment and the first BMT, with those of a second BMT administered to mice experiencing robust hematopoietic regeneration after the initial transplant. We evaluated the efficacy of the second BMT in terms of engraftment efficiency, types of generated blood cells, and longevity of function. Our findings show that regenerating hematopoiesis readily accommodates newly transplanted stem cells, including those endowed with a robust capacity for generating B and T cells. Importantly, our investigation uncovered a window for preferential engraftment of transplanted stem cells coinciding with the resumption of blood cell production. Repeated BMT could intensify hematopoiesis reconstitution and enable therapeutic administration of genetically modified autologous stem cells.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Emanuel Nečas
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University, Prague, Czechia
| |
Collapse
|
3
|
Zhou Q, Cao C, Bao Y, Sun T, Yao Adzraku S, Hao X, Li Y, Yuan S, Huang Y, Xu K, Qiao J, Ju W, Zeng L. Macrophage depletion damages hematopoiesis partially through inhibition of cell homing and expansion after hematopoietic cell transplantation. Int Immunopharmacol 2024; 130:111760. [PMID: 38428148 DOI: 10.1016/j.intimp.2024.111760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/22/2024] [Accepted: 02/22/2024] [Indexed: 03/03/2024]
Abstract
Bone marrow macrophages (Mφ) are essential components of the bone marrow niche that regulate the function of hematopoietic stem cells. Poor graft function and inhibition of hematopoietic production can result from abnormal macrophage function; however, the underlying mechanism is unclear. Clodronate liposomes (Clo-Lip) have been used widely to deplete macrophages and study their functions. Our previous results showed that Clod-Lip-mediated clearance of macrophages plays a vital role in regulating hematopoietic reconstruction after allogeneic hematopoietic cell transplantation (HCT). In this study, using an isogenic hematopoietic stem cell transplantation model, we found that Clod-Lip-mediated clearance of macrophages suppressed hematopoietic reconstruction by inhibiting the homing process of hematopoietic cells. We also demonstrated that macrophage depletion inhibited the direct supportive effect of macrophages on hematopoietic stem and progenitor cells and erythroid differentiation but promoted the production of megakaryocytic progenitors ex vivo. We showed that macrophages increase CD49e expression on hematopoietic stem and progenitor cells (HSPCs). However, CD49e inhibitors did not support the proliferative effect of macrophages on hematopoietic cells. In contrast, macrophage E-selectin/ intercellular cell adhesion molecule-1 (ICAM-1) may be involved in directly regulating HSPCs. In conclusion, macrophage depletion with Clo-Lip partially disrupts bone marrow hematopoiesis after HCT by impeding donor cell homing and macrophage-HSPCs interactions.
Collapse
Affiliation(s)
- Qi Zhou
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou 221002, China; Key Laboratory of Bone Marrow Stem Cell, Jiangsu Province, Xuzhou 221002, China; Department of Hematology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, China; Xuzhou Ruihu Health Management Consulting Co., Ltd, Xuzhou 221002, China
| | - Can Cao
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou 221002, China; Key Laboratory of Bone Marrow Stem Cell, Jiangsu Province, Xuzhou 221002, China; Department of Hematology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, China; Xuzhou Ruihu Health Management Consulting Co., Ltd, Xuzhou 221002, China
| | - Yurong Bao
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou 221002, China; Key Laboratory of Bone Marrow Stem Cell, Jiangsu Province, Xuzhou 221002, China; Department of Hematology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, China
| | - Tiantian Sun
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou 221002, China; Key Laboratory of Bone Marrow Stem Cell, Jiangsu Province, Xuzhou 221002, China; Department of Hematology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, China
| | - Seyram Yao Adzraku
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou 221002, China; Key Laboratory of Bone Marrow Stem Cell, Jiangsu Province, Xuzhou 221002, China; Department of Hematology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, China; Xuzhou Ruihu Health Management Consulting Co., Ltd, Xuzhou 221002, China
| | - Xiaowen Hao
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou 221002, China; Key Laboratory of Bone Marrow Stem Cell, Jiangsu Province, Xuzhou 221002, China; Department of Hematology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, China
| | - Yue Li
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou 221002, China; Key Laboratory of Bone Marrow Stem Cell, Jiangsu Province, Xuzhou 221002, China; Department of Hematology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, China
| | - Shengnan Yuan
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou 221002, China; Key Laboratory of Bone Marrow Stem Cell, Jiangsu Province, Xuzhou 221002, China; Department of Hematology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, China
| | - Yujin Huang
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou 221002, China; Key Laboratory of Bone Marrow Stem Cell, Jiangsu Province, Xuzhou 221002, China; Department of Hematology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, China
| | - Kailin Xu
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou 221002, China; Key Laboratory of Bone Marrow Stem Cell, Jiangsu Province, Xuzhou 221002, China; Department of Hematology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, China
| | - Jianlin Qiao
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou 221002, China; Key Laboratory of Bone Marrow Stem Cell, Jiangsu Province, Xuzhou 221002, China; Department of Hematology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, China.
| | - Wen Ju
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou 221002, China; Key Laboratory of Bone Marrow Stem Cell, Jiangsu Province, Xuzhou 221002, China; Department of Hematology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, China; Xuzhou Ruihu Health Management Consulting Co., Ltd, Xuzhou 221002, China.
| | - Lingyu Zeng
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou 221002, China; Key Laboratory of Bone Marrow Stem Cell, Jiangsu Province, Xuzhou 221002, China; Department of Hematology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, China.
| |
Collapse
|
4
|
Adzraku SY, Cao C, Zhou Q, Yuan K, Hao X, Li Y, Yuan S, Huang Y, Xu K, Qiao J, Ju W, Zeng L. Endothelial Robo4 suppresses endothelial-to-mesenchymal transition induced by irradiation and improves hematopoietic reconstitution. Cell Death Dis 2024; 15:159. [PMID: 38383474 PMCID: PMC10881562 DOI: 10.1038/s41419-024-06546-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 02/04/2024] [Accepted: 02/07/2024] [Indexed: 02/23/2024]
Abstract
Bone marrow ablation is routinely performed before hematopoietic stem cell transplantation (HSCT). Hematopoietic stem and progenitor cells (HSPCs) require a stable bone marrow microenvironment to expand and refill the peripheral blood cell pool after ablation. Roundabout guidance receptor 4 (Robo4) is a transmembrane protein exclusive to endothelial cells and is vital in preserving vascular integrity. Hence, the hypothesis is that Robo4 maintains the integrity of bone marrow endothelial cells following radiotherapy. We created an endothelial cell injury model with γ-radiation before Robo4 gene manipulation using lentiviral-mediated RNAi and gene overexpression techniques. We demonstrate that Robo4 and specific mesenchymal proteins (Fibronectin, Vimentin, αSma, and S100A4) are upregulated in endothelial cells exposed to irradiation (IR). We found that Robo4 depletion increases the expression of endoglin (CD105), an auxiliary receptor for the transforming growth factor (TGF-β) family of proteins, and promotes endothelial-to-mesenchymal transition (End-MT) through activation of both the canonical (Smad) and non-canonical (AKT/NF-κB) signaling pathways to facilitate Snail1 activation and its nuclear translocation. Endothelial Robo4 overexpression stimulates the expression of immunoglobulin-like adhesion molecules (ICAM-1 and VCAM-1) and alleviates irradiation-induced End-MT. Our coculture model showed that transcriptional downregulation of endothelial Robo4 reduces HSPC proliferation and increases HSC quiescence and apoptosis. However, Robo4 overexpression mitigated the damaged endothelium's suppressive effects on HSC proliferation and differentiation. These findings indicate that by controlling End-MT, Robo4 preserves microvascular integrity after radiation preconditioning, protects endothelial function, and lessens the inhibitory effect of damaged endothelium on hematopoietic reconstitution.
Collapse
Affiliation(s)
- Seyram Yao Adzraku
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, 221002, China
- Key Laboratory of Bone Marrow Stem Cells, Jiangsu Province, Xuzhou, 221002, China
- Department of Hematology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, China
- Xuzhou Ruihu Health Management Consulting Co, Ltd, xuzhou, 221002, China
| | - Can Cao
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, 221002, China
- Key Laboratory of Bone Marrow Stem Cells, Jiangsu Province, Xuzhou, 221002, China
- Department of Hematology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, China
- Xuzhou Ruihu Health Management Consulting Co, Ltd, xuzhou, 221002, China
| | - Qi Zhou
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, 221002, China
- Key Laboratory of Bone Marrow Stem Cells, Jiangsu Province, Xuzhou, 221002, China
- Department of Hematology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, China
- Xuzhou Ruihu Health Management Consulting Co, Ltd, xuzhou, 221002, China
| | - Ke Yuan
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, 221002, China
- Key Laboratory of Bone Marrow Stem Cells, Jiangsu Province, Xuzhou, 221002, China
- Department of Hematology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, China
| | - Xiaowen Hao
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, 221002, China
- Key Laboratory of Bone Marrow Stem Cells, Jiangsu Province, Xuzhou, 221002, China
- Department of Hematology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, China
| | - Yue Li
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, 221002, China
- Key Laboratory of Bone Marrow Stem Cells, Jiangsu Province, Xuzhou, 221002, China
- Department of Hematology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, China
| | - Shengnan Yuan
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, 221002, China
- Key Laboratory of Bone Marrow Stem Cells, Jiangsu Province, Xuzhou, 221002, China
- Department of Hematology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, China
| | - Yujin Huang
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, 221002, China
- Key Laboratory of Bone Marrow Stem Cells, Jiangsu Province, Xuzhou, 221002, China
- Department of Hematology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, China
| | - Kailin Xu
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, 221002, China
- Key Laboratory of Bone Marrow Stem Cells, Jiangsu Province, Xuzhou, 221002, China
- Department of Hematology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, China
| | - Jianlin Qiao
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, 221002, China.
- Key Laboratory of Bone Marrow Stem Cells, Jiangsu Province, Xuzhou, 221002, China.
- Department of Hematology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, China.
| | - Wen Ju
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, 221002, China.
- Key Laboratory of Bone Marrow Stem Cells, Jiangsu Province, Xuzhou, 221002, China.
- Department of Hematology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, China.
- Xuzhou Ruihu Health Management Consulting Co, Ltd, xuzhou, 221002, China.
| | - Lingyu Zeng
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, 221002, China.
- Key Laboratory of Bone Marrow Stem Cells, Jiangsu Province, Xuzhou, 221002, China.
- Department of Hematology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, China.
| |
Collapse
|
5
|
Zhao Z, Liu W, Cheng G, Dong S, Zhao Y, Wu H, Cao Z. Knockdown of DAPK1 inhibits IL-1β-induced inflammation and cartilage degradation in human chondrocytes by modulating the PEDF-mediated NF-κB and NLRP3 inflammasome pathway. Innate Immun 2024; 30:21-30. [PMID: 36412004 PMCID: PMC10720599 DOI: 10.1177/17534259221086837] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 01/23/2022] [Accepted: 02/24/2022] [Indexed: 12/17/2023] Open
Abstract
Osteoarthritis (OA) is a common joint disease that is characterized by inflammation and cartilage degradation. Death-associated protein kinase 1 (DAPK1) is a multi-domain serine/threonine kinase and has been reported to be involved in the progression of OA. However, its role and mechanism in OA remain unclear. Here, we found the expression of DAPK1 in OA cartilage tissues was higher than that in normal cartilage tissues. The expression of DAPK1 in chondrocytes was up-regulated by IL-1β. Knockdown of DAPK1 promoted cell viability and anti-apoptotic protein expression, while it inhibited the apoptosis rate and pro-apoptotic protein expressions in IL-1β-induced chondrocytes. In addition, DAPK1 inhibition reduced the levels of inflammatory cytokines and expressions of matrix metalloproteinases (MMPs), and increased the expressions of collagen II and aggrecan. The data of mechanistic investigation indicated that the expression of pigment epithelium-derived factor (PEDF) was positively regulated by DAPK1. Overexpression of PEDF attenuated the effects of DAPK1 knockdown on IL-1β-induced cell viability, apoptosis, inflammation, and cartilage degradation. Furthermore, PEDF overexpression restored the activity of the NF-κB pathway and NLRP3 inflammasome after DAPK1 knockdown. Collectively, down-regulation of DAPK1 inhibited IL-1β-induced inflammation and cartilage degradation via the PEDF-mediated NF-κB and NLRP3 inflammasome pathways.
Collapse
Affiliation(s)
- Zhongyuan Zhao
- Department of Articulation Surgery, Yantaishan Hospital, Yantai, Shandong Province, China
| | - Wei Liu
- Department of Pathophysiology, Binzhou Medical University, Yantai, Shandong Province, China
| | - Gong Cheng
- Department of Sports Medicine, Yantaishan Hospital, Yantai, Shandong Province, China
| | - Shengjie Dong
- Department of Articulation Surgery, Yantaishan Hospital, Yantai, Shandong Province, China
| | - Yuchi Zhao
- Department of Articulation Surgery, Yantaishan Hospital, Yantai, Shandong Province, China
| | - Hao Wu
- Department of Sports Medicine, Yantaishan Hospital, Yantai, Shandong Province, China
| | - Zhilin Cao
- Department of Sports Medicine, Yantaishan Hospital, Yantai, Shandong Province, China
| |
Collapse
|
6
|
Sun Z, Li X, Li G, Xu Y, Meng J, Meng W, He S. Potential application value of pigment epithelium-derived factor in sensorineural hearing loss. Front Neurosci 2023; 17:1302124. [PMID: 38164244 PMCID: PMC10757943 DOI: 10.3389/fnins.2023.1302124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 11/17/2023] [Indexed: 01/03/2024] Open
Abstract
The inner ear is a complex and precise auditory perception system responsible for receiving and converting sound signals into neural signals, enabling us to perceive and understand sound. However, the occurrence and development of inner ear diseases and auditory disorders, such as sensorineural hearing loss, remain a global problem. In recent years, there has been increasing research on the treatment of inner ear diseases and auditory regeneration. Among these treatments, pigment epithelium-derived factor (PEDF), as a multifunctional secretory protein, exhibits diverse biological activities and functions through various mechanisms, and has shown potential applications in the inner ear. This minireview comprehensively evaluates the performance of PEDF in sensorineural hearing loss in inner ear and its potential targets and therapeutic prospects.
Collapse
Affiliation(s)
- Zihui Sun
- Department of Otolaryngology Head and Neck Surgery, Nanjing Tongren Hospital, School of Medicine, Southeast University, Nanjing, China
- Nanjing Tongren ENT Hospital, Nanjing, China
| | - Xiaoguang Li
- Department of Otolaryngology Head and Neck Surgery, Nanjing Tongren Hospital, School of Medicine, Southeast University, Nanjing, China
- Nanjing Tongren ENT Hospital, Nanjing, China
| | - Guangfei Li
- Department of Otolaryngology Head and Neck Surgery, Nanjing Tongren Hospital, School of Medicine, Southeast University, Nanjing, China
- Nanjing Tongren ENT Hospital, Nanjing, China
| | - Ying Xu
- Department of Stomatology, Nanjing Tongren Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Jie Meng
- Department of Otolaryngology Head and Neck Surgery, Nanjing Tongren Hospital, School of Medicine, Southeast University, Nanjing, China
- Nanjing Tongren ENT Hospital, Nanjing, China
| | - Wei Meng
- Department of Otolaryngology Head and Neck Surgery, Nanjing Tongren Hospital, School of Medicine, Southeast University, Nanjing, China
- Nanjing Tongren ENT Hospital, Nanjing, China
| | - Shuangba He
- Department of Otolaryngology Head and Neck Surgery, Nanjing Tongren Hospital, School of Medicine, Southeast University, Nanjing, China
- Nanjing Tongren ENT Hospital, Nanjing, China
| |
Collapse
|
7
|
Lu W, Zhang J, Qiu Y, Fei N, Yin L. Correlations between APACHE-II score and pressure parameters of mechanical ventilation in patients with ARDS and their value in prognostic evaluation. Pak J Med Sci 2023; 39:1584-1588. [PMID: 37936757 PMCID: PMC10626120 DOI: 10.12669/pjms.39.6.7190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/02/2023] [Accepted: 08/06/2023] [Indexed: 11/09/2023] Open
Abstract
Objective To investigate the correlations between APACHE-II score and pressure parameters of mechanical ventilation in patients with acute respiratory distress syndrome (ARDS) and their value in prognostic evaluation. Methods This was a retrospective study. The clinical data of 79 patients with ARDS treated in Shengzhou Hospital of Traditional Chinese Medicine from April 2020 to April 2022 were analyzed retrospectively. According to whether their APACHE-II scores were higher than 15, they were divided into low score group (n= 20) and high score group (n= 59). The plateau pressure (Pplat), driving pressure(ΔP) and mean airway pressure (Pmean) were compared. The correlation between APACHE-II score and pressure parameters of mechanical ventilation was analyzed. Based on the follow-up of 28-d survival, their Pplat, ΔP, Pmean and APACHE-II scores were compared. The value of APACHE-II score and pressure parameters in the prognostic evaluation of ARDS patients was analyzed. Results Pplat, ΔP and Pmean in the low score group were significantly lower than those in the high score group(P<0.05). Pplat, ΔP, Pmean and APACHE-II score in the survival group were significantly lower than those in the control group(P<0.05). APACHE-II score showed significantly positive correlations with Pplat, ΔP and Pmean. The AUC of Pmean, Pplat, ΔP and APACHE-II score in predicting the prognosis and diagnosis of ARDS patients was 0.761, 0.833, 0.754 and 0.832, respectively. Conclusion APACHE-II score of ARDS patients shows significantly positive correlations with pressure parameters of mechanical ventilation, and has diagnostic value for the prognosis of ARDS patients.
Collapse
Affiliation(s)
- Wei Lu
- Wei Lu, Intensive Care Unit, Shengzhou Hospital of Traditional Chinese Medicine, Shengzhou 312400, Zhejiang, China
| | - Jiansong Zhang
- Jiansong Zhang, Intensive Care Unit, Shengzhou Hospital of Traditional Chinese Medicine, Shengzhou 312400, Zhejiang, China
| | - Yao Qiu
- Yao Qiu, Intensive Care Unit, Shengzhou Hospital of Traditional Chinese Medicine, Shengzhou 312400, Zhejiang, China
| | - Na Fei
- Na Fei, Intensive Care Unit, Shengzhou Hospital of Traditional Chinese Medicine, Shengzhou 312400, Zhejiang, China
| | - Liansen Yin
- Liansen Yin, Intensive Care Unit, Shengzhou Hospital of Traditional Chinese Medicine, Shengzhou 312400, Zhejiang, China
| |
Collapse
|
8
|
Balakrishnan B, Illangeswaran RSS, Rajamani BM, Arunachalam AK, Pai AA, Mohanan E, Srivastava A, Mathews V, Balasubramanian P. Metformin pretreatment ameliorates busulfan-induced liver endothelial toxicity during haematopoietic stem cell transplantation. PLoS One 2023; 18:e0293311. [PMID: 37883349 PMCID: PMC10602364 DOI: 10.1371/journal.pone.0293311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 10/08/2023] [Indexed: 10/28/2023] Open
Abstract
The success of Haematopoietic cell transplantation (HCT) is often limited by regimen-related toxicity (RRT) caused by conditioning regimen drugs. Among different conditioning drugs, busulfan (Bu) and treosulfan (Treo), although widely used in HCT, exhibit different toxicity profiles, the mechanism of which is still unclear. Here we investigated the effects of Bu and Treo in endothelial cells. While both Bu and Treo induced DNA damage in endothelial cells, we observed Bu alone to induce oxidative stress and sustained activation of phospho-ERK1/2, leading to apoptosis. However, Treo-treated cells exhibited no oxidative stress/apoptosis of endothelial cells. Screening of pharmacological inhibitors of both ROS and p-ERK revealed that metformin effectively ameliorates Bu-mediated toxicity in endothelial cells. In Balb/c mice, we observed a significant reduction in bone marrow endothelial cells in Bu-treated mice compared to Treo-treated mice. Further, liver sinusoidal endothelial cells (LSEC) was damaged by Bu, which is implicated in liver vasculature and their functional capacity to uptake FITC-albumin. However, Treo-treated mice liver vasculature was morphologically and functionally normal. When mice were pretreated with metformin followed by Bu, LSECs damage was ameliorated morphologically and functionally. Bone marrow transplants done on these mice did not affect the engraftment of donor cells.
Collapse
Affiliation(s)
| | | | | | | | - Aswin Anand Pai
- Department of Haematology, Christian Medical College, Vellore, India
| | | | - Alok Srivastava
- Department of Haematology, Christian Medical College, Vellore, India
- Centre for Stem Cell Research (CSCR), A Unit of InStem Bengaluru, Christian Medical College Campus, Vellore, India
| | - Vikram Mathews
- Department of Haematology, Christian Medical College, Vellore, India
| | - Poonkuzhali Balasubramanian
- Department of Haematology, Christian Medical College, Vellore, India
- Centre for Stem Cell Research (CSCR), A Unit of InStem Bengaluru, Christian Medical College Campus, Vellore, India
| |
Collapse
|
9
|
Doan PL, Frei AC, Piryani SO, Szalewski N, Fan E, Himburg HA. Cord Blood-Derived Endothelial Progenitor Cells Promote In Vivo Regeneration of Human Hematopoietic Bone Marrow. Int J Radiat Oncol Biol Phys 2023; 116:1163-1174. [PMID: 36792018 PMCID: PMC11086728 DOI: 10.1016/j.ijrobp.2023.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 01/10/2023] [Accepted: 02/03/2023] [Indexed: 02/15/2023]
Abstract
PURPOSE Victims of acute radiation exposure are susceptible to hematopoietic toxicity due to bone marrow damage and loss of mature blood elements. Here, we evaluated cord blood-derived endothelial progenitor cells (CB-EPCs) as a potential cellular therapy for mitigation of hematologic acute radiation syndrome. CB-EPCs express endothelial cell markers and maintain their growth characteristics beyond 10+ passages without diminishing their doubling capacity. Further, CB-EPCs can be cryopreserved in vapor-phase liquid nitrogen and easily recovered for propagation, making them an attractive nonimmunogenic cellular therapy for off-the-shelf use. Importantly, we show CB-EPCs have the capacity to potently expand adult human bone marrow hematopoietic progenitor cells both in vitro and in vivo. METHODS AND MATERIALS To demonstrate the role of CB-EPCs in promoting in vivo human immune reconstitution after irradiation, we employed a novel humanized mouse model established by transplant of CD34+ bone marrow cells from 9 unique adult organ donors into immunocompromised NSG-SGM3 mice. The response of the humanized immune system to ionizing irradiation was then tested by exposure to 1 Gy followed by subcutaneous treatment of CB-EPCs, Food and Drug Administration-approved growth factor pegfilgrastim (0.3 mg/kg), or saline. RESULTS At day 7, total human bone marrow was decreased by 80% in irradiated controls. However, treatment with either growth factor pegfilgrastim or CB-EPCs increased recovery of total human bone marrow by 2.5-fold compared with saline. Notably, CB-EPCs also increased recovery of both human CD34+ progenitors by 5-fold and colony-forming capacity by 3-fold versus saline. Additionally, CB-EPCs promoted recovery of endogenous bone marrow endothelial cells as observed by both increased vessel area and length compared with saline. CONCLUSIONS These findings indicate the feasibility of using humanized mice engrafted with adult bone marrow for radiation research and the development of CB-EPCs as an off-the-shelf cellular therapy for mitigation of hematologic acute radiation syndrome.
Collapse
Affiliation(s)
- Phuong L Doan
- Department of Medicine, Division of Hematologic Malignancies and Cellular Therapy; Duke Cancer Institute, Duke University, Durham, North Carolina
| | | | - Sadhna O Piryani
- Department of Medicine, Division of Hematologic Malignancies and Cellular Therapy
| | | | - Elizabeth Fan
- Department of Medicine, Division of Hematologic Malignancies and Cellular Therapy
| | - Heather A Himburg
- Department of Radiation Oncology; Cancer Center, Medical College of Wisconsin, Milwaukee, Wisconsin.
| |
Collapse
|
10
|
Liu Y, Jiang L, Song W, Wang C, Yu S, Qiao J, Wang X, Jin C, Zhao D, Bai X, Zhang P, Wang S, Liu M. Ginsenosides on stem cells fate specification-a novel perspective. Front Cell Dev Biol 2023; 11:1190266. [PMID: 37476154 PMCID: PMC10354371 DOI: 10.3389/fcell.2023.1190266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 06/22/2023] [Indexed: 07/22/2023] Open
Abstract
Recent studies have demonstrated that stem cells have attracted much attention due to their special abilities of proliferation, differentiation and self-renewal, and are of great significance in regenerative medicine and anti-aging research. Hence, finding natural medicines that intervene the fate specification of stem cells has become a priority. Ginsenosides, the key components of natural botanical ginseng, have been extensively studied for versatile effects, such as regulating stem cells function and resisting aging. This review aims to summarize recent progression regarding the impact of ginsenosides on the behavior of adult stem cells, particularly from the perspective of proliferation, differentiation and self-renewal.
Collapse
Affiliation(s)
- Ying Liu
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Leilei Jiang
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Wenbo Song
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Chenxi Wang
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Shiting Yu
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Juhui Qiao
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Xinran Wang
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Chenrong Jin
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Daqing Zhao
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Xueyuan Bai
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Peiguang Zhang
- Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences Changchun, Changchun, Jilin, China
| | - Siming Wang
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Meichen Liu
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|
11
|
Adzraku SY, Wang G, Cao C, Bao Y, Wang Y, Smith AO, Du Y, Wang H, Li Y, Xu K, Qiao J, Ju W, Zeng L. Robo4 inhibits gamma radiation-induced permeability of a murine microvascular endothelial cell by regulating the junctions. Cell Mol Biol Lett 2023; 28:2. [PMID: 36647012 PMCID: PMC9843922 DOI: 10.1186/s11658-022-00413-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 12/19/2022] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Hematopoietic stem cell transplantation involves irradiation preconditioning which causes bone marrow endothelial cell dysfunction. While much emphasis is on the reconstitution of hematopoietic stem cells in the bone marrow microenvironment, endothelial cell preservation is indispensable to overcome the preconditioning damages. This study aims to ascertain the role of Roundabout 4 (Robo4) in regulating irradiation-induced damage to the endothelium. METHODS Microvascular endothelial cells were treated with γ-radiation to establish an endothelial cell injury model. Robo4 expression in the endothelial cells was manipulated employing lentiviral-mediated RNAi and gene overexpression technology before irradiation treatment. The permeability of endothelial cells was measured using qPCR, immunocytochemistry, and immunoblotting to analyze the effect on the expression and distribution of junctional molecules, adherens junctions, tight junctions, and gap junctions. Using Transwell endothelial monolayer staining, FITC-Dextran permeability, and gap junction-mediated intercellular communication (GJIC) assays, we determined the changes in endothelial functions after Robo4 gene manipulation and irradiation. Moreover, we measured the proportion of CD31 expression in endothelial cells by flow cytometry. We analyzed variations between two or multiple groups using Student's t-tests and ANOVA. RESULTS Ionizing radiation upregulates Robo4 expression but disrupts endothelial junctional molecules. Robo4 deletion causes further degradation of endothelial junctions hence increasing the permeability of the endothelial cell monolayer. Robo4 knockdown in microvascular endothelial cells increases the degradation and delocalization of ZO-1, PECAM-1, occludin, and claudin-5 molecules after irradiation. Conversely, connexin 43 expression increases after silencing Robo4 in endothelial cells to induce permeability but are readily destroyed when exposed to 10 Gy of gamma radiation. Also, Robo4 knockdown enhances Y731-VE-cadherin phosphorylation leading to the depletion and destabilization of VE-cadherin at the endothelial junctions following irradiation. However, Robo4 overexpression mitigates irradiation-induced degradation of tight junctional proteins and stabilizes claudin-5 and ZO-1 distribution. Finally, the enhanced expression of Robo4 ameliorates the irradiation-induced depletion of VE-cadherin and connexin 43, improves the integrity of microvascular endothelial cell junctions, and decreases permeability. CONCLUSION This study reveals that Robo4 maintains microvascular integrity after radiation preconditioning treatment by regulating endothelial permeability and protecting endothelial functions. Our results also provided a potential mechanism to repair the bone marrow vascular niche after irradiation by modulating Robo4 expression.
Collapse
Affiliation(s)
- Seyram Yao Adzraku
- grid.417303.20000 0000 9927 0537Blood Diseases Institute, Xuzhou Medical University, Xuzhou, 221002 China ,Key Laboratory of Bone Marrow Stem Cell, Xuzhou, 221002 Jiangsu China ,grid.413389.40000 0004 1758 1622Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002 China ,Xuzhou Ruihu Health Management Consulting Co., Ltd, Xuzhou, 221002 China
| | - Guozhang Wang
- grid.417303.20000 0000 9927 0537Blood Diseases Institute, Xuzhou Medical University, Xuzhou, 221002 China ,Key Laboratory of Bone Marrow Stem Cell, Xuzhou, 221002 Jiangsu China ,grid.413389.40000 0004 1758 1622Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002 China ,Xuzhou Ruihu Health Management Consulting Co., Ltd, Xuzhou, 221002 China
| | - Can Cao
- grid.417303.20000 0000 9927 0537Blood Diseases Institute, Xuzhou Medical University, Xuzhou, 221002 China ,Key Laboratory of Bone Marrow Stem Cell, Xuzhou, 221002 Jiangsu China ,grid.413389.40000 0004 1758 1622Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002 China ,Xuzhou Ruihu Health Management Consulting Co., Ltd, Xuzhou, 221002 China
| | - Yurong Bao
- grid.417303.20000 0000 9927 0537Blood Diseases Institute, Xuzhou Medical University, Xuzhou, 221002 China ,Key Laboratory of Bone Marrow Stem Cell, Xuzhou, 221002 Jiangsu China ,grid.413389.40000 0004 1758 1622Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002 China
| | - Yizhou Wang
- grid.417303.20000 0000 9927 0537Blood Diseases Institute, Xuzhou Medical University, Xuzhou, 221002 China ,Key Laboratory of Bone Marrow Stem Cell, Xuzhou, 221002 Jiangsu China ,grid.413389.40000 0004 1758 1622Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002 China
| | - Alhaji Osman Smith
- grid.417303.20000 0000 9927 0537Blood Diseases Institute, Xuzhou Medical University, Xuzhou, 221002 China ,Key Laboratory of Bone Marrow Stem Cell, Xuzhou, 221002 Jiangsu China ,grid.413389.40000 0004 1758 1622Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002 China
| | - Yuwei Du
- grid.417303.20000 0000 9927 0537Blood Diseases Institute, Xuzhou Medical University, Xuzhou, 221002 China ,Key Laboratory of Bone Marrow Stem Cell, Xuzhou, 221002 Jiangsu China ,grid.413389.40000 0004 1758 1622Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002 China
| | - Haiyang Wang
- grid.417303.20000 0000 9927 0537Blood Diseases Institute, Xuzhou Medical University, Xuzhou, 221002 China ,Key Laboratory of Bone Marrow Stem Cell, Xuzhou, 221002 Jiangsu China ,grid.413389.40000 0004 1758 1622Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002 China
| | - Yue Li
- grid.417303.20000 0000 9927 0537Blood Diseases Institute, Xuzhou Medical University, Xuzhou, 221002 China ,Key Laboratory of Bone Marrow Stem Cell, Xuzhou, 221002 Jiangsu China ,grid.413389.40000 0004 1758 1622Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002 China
| | - Kailin Xu
- grid.417303.20000 0000 9927 0537Blood Diseases Institute, Xuzhou Medical University, Xuzhou, 221002 China ,Key Laboratory of Bone Marrow Stem Cell, Xuzhou, 221002 Jiangsu China ,grid.413389.40000 0004 1758 1622Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002 China
| | - Jianlin Qiao
- grid.417303.20000 0000 9927 0537Blood Diseases Institute, Xuzhou Medical University, Xuzhou, 221002 China ,Key Laboratory of Bone Marrow Stem Cell, Xuzhou, 221002 Jiangsu China ,grid.413389.40000 0004 1758 1622Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002 China
| | - Wen Ju
- grid.417303.20000 0000 9927 0537Blood Diseases Institute, Xuzhou Medical University, Xuzhou, 221002 China ,Key Laboratory of Bone Marrow Stem Cell, Xuzhou, 221002 Jiangsu China ,grid.413389.40000 0004 1758 1622Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002 China ,Xuzhou Ruihu Health Management Consulting Co., Ltd, Xuzhou, 221002 China
| | - Lingyu Zeng
- grid.417303.20000 0000 9927 0537Blood Diseases Institute, Xuzhou Medical University, Xuzhou, 221002 China ,Key Laboratory of Bone Marrow Stem Cell, Xuzhou, 221002 Jiangsu China ,grid.413389.40000 0004 1758 1622Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002 China
| |
Collapse
|
12
|
Peci F, Dekker L, Pagliaro A, van Boxtel R, Nierkens S, Belderbos M. The cellular composition and function of the bone marrow niche after allogeneic hematopoietic cell transplantation. Bone Marrow Transplant 2022; 57:1357-1364. [PMID: 35690693 PMCID: PMC9187885 DOI: 10.1038/s41409-022-01728-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 04/29/2022] [Accepted: 05/26/2022] [Indexed: 11/09/2022]
Abstract
Allogeneic hematopoietic cell transplantation (HCT) is a potentially curative therapy for patients with a variety of malignant and non-malignant diseases. Despite its life-saving potential, HCT is associated with significant morbidity and mortality. Reciprocal interactions between hematopoietic stem cells (HSCs) and their surrounding bone marrow (BM) niche regulate HSC function during homeostatic hematopoiesis as well as regeneration. However, current pre-HCT conditioning regimens, which consist of high-dose chemotherapy and/or irradiation, cause substantial short- and long-term toxicity to the BM niche. This damage may negatively affect HSC function, impair hematopoietic regeneration after HCT and predispose to HCT-related morbidity and mortality. In this review, we summarize current knowledge on the cellular composition of the human BM niche after HCT. We describe how pre-HCT conditioning affects the cell types in the niche, including endothelial cells, mesenchymal stromal cells, osteoblasts, adipocytes, and neurons. Finally, we discuss therapeutic strategies to prevent or repair conditioning-induced niche damage, which may promote hematopoietic recovery and improve HCT outcome.
Collapse
Affiliation(s)
- Flavia Peci
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - Linde Dekker
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Anna Pagliaro
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Ruben van Boxtel
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - Stefan Nierkens
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Mirjam Belderbos
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands.
| |
Collapse
|
13
|
Li Y, Gao H, Dong H, Wang W, Xu Z, Wang G, Liu Y, Wang H, Ju W, Qiao J, Xu K, Fu C, Zeng L. PEDF reduces malignant cells proliferation and inhibits the progression of myelofibrosis in myeloproliferative neoplasms. Biochem Pharmacol 2022; 199:115013. [DOI: 10.1016/j.bcp.2022.115013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 03/15/2022] [Accepted: 03/16/2022] [Indexed: 11/02/2022]
|
14
|
Epoxyeicosatrienoic Acids and Fibrosis: Recent Insights for the Novel Therapeutic Strategies. Int J Mol Sci 2021; 22:ijms221910714. [PMID: 34639055 PMCID: PMC8509622 DOI: 10.3390/ijms221910714] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 09/26/2021] [Accepted: 09/27/2021] [Indexed: 12/27/2022] Open
Abstract
Organ fibrosis often ends in eventual organ failure and leads to high mortality. Although researchers have identified many effector cells and molecular pathways, there are few effective therapies for fibrosis to date and the underlying mechanism needs to be examined and defined further. Epoxyeicosatrienoic acids (EETs) are endogenous lipid metabolites of arachidonic acid (ARA) synthesized by cytochrome P450 (CYP) epoxygenases. EETs are rapidly metabolized primarily via the soluble epoxide hydrolase (sEH) pathway. The sEH pathway produces dihydroxyeicosatrienoic acids (DHETs), which have lower activity. Stabilized or increased EETs levels exert several protective effects, including pro-angiogenesis, anti-inflammation, anti-apoptosis, and anti-senescence. Currently, intensive investigations are being carried out on their anti-fibrotic effects in the kidney, heart, lung, and liver. The present review provides an update on how the stabilized or increased production of EETs is a reasonable theoretical basis for fibrosis treatment.
Collapse
|
15
|
Miyoshi H, Abo K, Hosoya D, Matsuo K, Utsumi Y. Effects of mouse fetal liver cell culture density on hematopoietic cell expansion in three-dimensional cocultures with stromal cells. Int J Artif Organs 2021; 45:103-112. [PMID: 33611956 DOI: 10.1177/0391398821996377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
OBJECTIVE An effective ex vivo expansion system of primitive hematopoietic cells (HCs) is required for wider application of hematopoietic stem cell transplantation. In this study, we examined effects of culture density on mouse fetal liver cells (FLCs) used as an HC source for the expansion of primitive HCs in three-dimensional (3D) cocultures with two kinds of mouse stromal cell lines (OP9 or C3H10T1/2). MATERIALS AND METHODS FLCs were seeded at different densities (1, 2, and 10 × 107 cells/cm3) into porous polymer scaffolds with or without stromal cell layers and HCs were expanded in the cultures for 2 weeks without exogenous cytokines. RESULTS Differential effects of culture density on HC expansion were observed between cocultures and solitary FLC controls. In stromal cell cocultures, high expansion of HCs was achieved when FLCs were seeded at low densities. In contrast, the expansion in the controls was enhanced with increasing culture densities. With respect to expansion of primitive HCs existing in the FLCs, cocultures with C3H10T1/2 cells were superior to those with OP9 cells with a 29.3-fold expansion for c-kit+ hematopoietic progenitor cells and 8.3-fold expansion for CD34+ hematopoietic stem cells. In the controls, HC expansion was lower than in any cocultures, demonstrating the advantages of coculturing for HC expansion. CONCLUSION Stromal cell lines are useful in expanding primitive HCs derived from FLCs in 3D cocultures. Culture density is a pivotal factor for the effective expansion of primitive HCs and this effect differs by culture condition.
Collapse
Affiliation(s)
- Hirotoshi Miyoshi
- Department of Biomedical Engineering, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Kenji Abo
- Department of Biomedical Engineering, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Daiki Hosoya
- Department of Biomedical Engineering, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Kazuyuki Matsuo
- Department of Biomedical Engineering, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Yoshio Utsumi
- Department of Biomedical Engineering, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| |
Collapse
|