1
|
Shih PC, Lin CH, Chokkalingam U, Prakash E, Kao CN, Chang CF, Lin WL. The Aloe vera acemannan polysaccharides inhibit phthalate-induced cell viability, metastasis, and stemness in colorectal cancer cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 288:117351. [PMID: 39561564 DOI: 10.1016/j.ecoenv.2024.117351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 11/12/2024] [Accepted: 11/13/2024] [Indexed: 11/21/2024]
Abstract
Plasticizers are recognized as environmental pollutants that may be associated with a range of health concerns, including impacts on growth, development, and oncogenic risks. Previous research demonstrated that prolonged exposure to di-(2-ethylhexyl) phthalate and its metabolite mono-(2-ethylhexyl) phthalate contributes to chemotherapeutic drug resistance and stemness in colorectal cancer cells. Aloe vera, an herbaceous plant with a long-standing history in traditional medicine, has attracted considerable attention for its diverse pharmacological properties. This study aimed to investigate the therapeutic potential of polysaccharides extracted from Aloe vera, specifically focusing on their anticancer properties. We eluted polysaccharides from Aloe vera using water and ethanol, resulting in the fractions designated A50 and I50, respectively. We characterized their effects on cell viability, migration, invasion, stemness, and glycosylation of colorectal cancer cells exposed to phthalates. Comprehensive glycan analysis revealed that phthalate exposure induced alterations in glycosylation patterns in colorectal cancer cells. Treatment with A50 and I50 reversed these changes to varying degrees, indicating distinct regulatory roles of the two polysaccharide fractions in colorectal cancer cells subjected to phthalate exposure. A50 exhibited a dose-dependent reduction in cell viability induced by phthalates, whereas I50 demonstrated no such effect. Notably, I50 displayed a notable inhibitory effect on migration, invasion, and stemness induced by phthalates when compared with A50. The differing polysaccharide structures of A50 and I50 may account for their divergent effects on the malignancy of colorectal cancer cells. These findings underscore the potential of Aloe vera polysaccharides in anticancer therapy and highlight the necessity for further investigation into their clinical applications.
Collapse
Affiliation(s)
- Pei-Chun Shih
- Department of Medical Laboratory Science and Biotechnology, National Cheng Kung University, Tainan 70101, Taiwan
| | - Chung-Hsien Lin
- Department of Medical Laboratory Science and Biotechnology, National Cheng Kung University, Tainan 70101, Taiwan
| | | | | | | | - Chuan-Fa Chang
- Department of Medical Laboratory Science and Biotechnology, National Cheng Kung University, Tainan 70101, Taiwan; Institute of Basic Medical Science, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan.
| | - Wei-Ling Lin
- Department of Medical Laboratory Science and Biotechnology, National Cheng Kung University, Tainan 70101, Taiwan; Institute of Basic Medical Science, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan.
| |
Collapse
|
2
|
Hu J, Huynh DT, Boyce M. Sugar Highs: Recent Notable Breakthroughs in Glycobiology. Biochemistry 2024; 63:2937-2947. [PMID: 39475524 DOI: 10.1021/acs.biochem.4c00418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2024]
Abstract
Glycosylation is biochemically complex and functionally critical to a wide range of processes and disease states, making it a vibrant area of contemporary research. Here, we highlight a selection of notable recent advances in the glycobiology of SARS-CoV-2 infection and immunity, cancer biology and immunotherapy, and newly discovered glycosylated RNAs. Together, these studies illustrate the significance of glycosylation in normal biology and the great promise of manipulating glycosylation for therapeutic benefit in disease.
Collapse
Affiliation(s)
- Jimin Hu
- Department of Biochemistry, Duke University School of Medicine, Durham, North Carolina 27710, United States
| | - Duc T Huynh
- Department of Biochemistry, Duke University School of Medicine, Durham, North Carolina 27710, United States
| | - Michael Boyce
- Department of Biochemistry, Duke University School of Medicine, Durham, North Carolina 27710, United States
| |
Collapse
|
3
|
Ren X, Lin S, Guan F, Kang H. Glycosylation Targeting: A Paradigm Shift in Cancer Immunotherapy. Int J Biol Sci 2024; 20:2607-2621. [PMID: 38725856 PMCID: PMC11077373 DOI: 10.7150/ijbs.93806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 04/18/2024] [Indexed: 05/12/2024] Open
Abstract
Immunotherapy has shown great potential in cancer treatment. However, even with the intervention of techniques such as immune checkpoint inhibitor therapy, tumors can still achieve immune escape, leading to a low response rate. Abnormal glycosylation is a widely recognized hallmark of cancer. The development of a complex "glyco-code" on the surface of tumor cells can potentially influence the immune system's ability to monitor tumors and can impact the anti-tumor immune response. Therefore, abnormal glycosylation has emerged as a promising target for immunotherapy. Many recent studies have shown that targeted glycosylation can reshape the tumor microenvironment (TME) and promote the immune response, thereby improving the response to immunotherapy. This review summarizes how glycosylation affects anti-tumor immune function in the TME and synthesizes the latest research progress on targeted glycosylation in immunotherapy. It is hoped that by elucidating the basic laws and biological connotations of glycosylation, this review will enable researcher to thoroughly analyze the mechanism of its influence on the immune metabolic regulation network, which will provide a theoretical tool for promoting the clinical application of glycosylation codes.
Collapse
Affiliation(s)
- Xueting Ren
- Department of Oncology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Shuai Lin
- Department of Oncology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Feng Guan
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, Shaanxi, China
| | - Huafeng Kang
- Department of Oncology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| |
Collapse
|
4
|
dos Reis JS, Rodrigues da Costa Santos MA, Mendonça DP, Martins do Nascimento SI, Barcelos PM, Correia de Lima RG, da Costa KM, Freire-de-Lima CG, Morrot A, Previato JO, Mendonça Previato L, da Fonseca LM, Freire-de-Lima L. Glycobiology of Cancer: Sugar Drives the Show. MEDICINES 2022; 9:medicines9060034. [PMID: 35736247 PMCID: PMC9229842 DOI: 10.3390/medicines9060034] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/19/2022] [Accepted: 05/20/2022] [Indexed: 11/16/2022]
Abstract
Cancer development and progression is associated with aberrant changes in cellular glycosylation. Cells expressing altered glycan-structures are recognized by cells of the immune system, favoring the induction of inhibitory immune processes which subsequently promote tumor growth and spreading. Here, we discuss about the importance of glycobiology in modern medicine, taking into account the impact of altered glycan structures expressed in cancer cells as potential glycobiomarkers of disease, as well as on cancer development and progression.
Collapse
Affiliation(s)
- Jhenifer Santos dos Reis
- Instituto de Biofisica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-170, Brazil; (J.S.d.R.); (M.A.R.d.C.S.); (D.P.M.); (S.I.M.d.N.); (P.M.B.); (R.G.C.d.L.); (K.M.d.C.); (C.G.F.-d.-L.); (J.O.P.); (L.M.P.); (L.M.d.F.)
| | - Marcos André Rodrigues da Costa Santos
- Instituto de Biofisica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-170, Brazil; (J.S.d.R.); (M.A.R.d.C.S.); (D.P.M.); (S.I.M.d.N.); (P.M.B.); (R.G.C.d.L.); (K.M.d.C.); (C.G.F.-d.-L.); (J.O.P.); (L.M.P.); (L.M.d.F.)
| | - Daniella Pereira Mendonça
- Instituto de Biofisica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-170, Brazil; (J.S.d.R.); (M.A.R.d.C.S.); (D.P.M.); (S.I.M.d.N.); (P.M.B.); (R.G.C.d.L.); (K.M.d.C.); (C.G.F.-d.-L.); (J.O.P.); (L.M.P.); (L.M.d.F.)
| | - Stefani Ingrid Martins do Nascimento
- Instituto de Biofisica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-170, Brazil; (J.S.d.R.); (M.A.R.d.C.S.); (D.P.M.); (S.I.M.d.N.); (P.M.B.); (R.G.C.d.L.); (K.M.d.C.); (C.G.F.-d.-L.); (J.O.P.); (L.M.P.); (L.M.d.F.)
| | - Pedro Marçal Barcelos
- Instituto de Biofisica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-170, Brazil; (J.S.d.R.); (M.A.R.d.C.S.); (D.P.M.); (S.I.M.d.N.); (P.M.B.); (R.G.C.d.L.); (K.M.d.C.); (C.G.F.-d.-L.); (J.O.P.); (L.M.P.); (L.M.d.F.)
| | - Rafaela Gomes Correia de Lima
- Instituto de Biofisica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-170, Brazil; (J.S.d.R.); (M.A.R.d.C.S.); (D.P.M.); (S.I.M.d.N.); (P.M.B.); (R.G.C.d.L.); (K.M.d.C.); (C.G.F.-d.-L.); (J.O.P.); (L.M.P.); (L.M.d.F.)
| | - Kelli Monteiro da Costa
- Instituto de Biofisica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-170, Brazil; (J.S.d.R.); (M.A.R.d.C.S.); (D.P.M.); (S.I.M.d.N.); (P.M.B.); (R.G.C.d.L.); (K.M.d.C.); (C.G.F.-d.-L.); (J.O.P.); (L.M.P.); (L.M.d.F.)
| | - Celio Geraldo Freire-de-Lima
- Instituto de Biofisica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-170, Brazil; (J.S.d.R.); (M.A.R.d.C.S.); (D.P.M.); (S.I.M.d.N.); (P.M.B.); (R.G.C.d.L.); (K.M.d.C.); (C.G.F.-d.-L.); (J.O.P.); (L.M.P.); (L.M.d.F.)
| | - Alexandre Morrot
- Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro 21040-360, Brazil;
- Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21044-020, Brazil
| | - Jose Osvaldo Previato
- Instituto de Biofisica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-170, Brazil; (J.S.d.R.); (M.A.R.d.C.S.); (D.P.M.); (S.I.M.d.N.); (P.M.B.); (R.G.C.d.L.); (K.M.d.C.); (C.G.F.-d.-L.); (J.O.P.); (L.M.P.); (L.M.d.F.)
| | - Lucia Mendonça Previato
- Instituto de Biofisica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-170, Brazil; (J.S.d.R.); (M.A.R.d.C.S.); (D.P.M.); (S.I.M.d.N.); (P.M.B.); (R.G.C.d.L.); (K.M.d.C.); (C.G.F.-d.-L.); (J.O.P.); (L.M.P.); (L.M.d.F.)
| | - Leonardo Marques da Fonseca
- Instituto de Biofisica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-170, Brazil; (J.S.d.R.); (M.A.R.d.C.S.); (D.P.M.); (S.I.M.d.N.); (P.M.B.); (R.G.C.d.L.); (K.M.d.C.); (C.G.F.-d.-L.); (J.O.P.); (L.M.P.); (L.M.d.F.)
| | - Leonardo Freire-de-Lima
- Instituto de Biofisica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-170, Brazil; (J.S.d.R.); (M.A.R.d.C.S.); (D.P.M.); (S.I.M.d.N.); (P.M.B.); (R.G.C.d.L.); (K.M.d.C.); (C.G.F.-d.-L.); (J.O.P.); (L.M.P.); (L.M.d.F.)
- Correspondence: ; Tel./Fax: +55-21-3938-6646
| |
Collapse
|
5
|
Flevaris K, Kontoravdi C. Immunoglobulin G N-glycan Biomarkers for Autoimmune Diseases: Current State and a Glycoinformatics Perspective. Int J Mol Sci 2022; 23:5180. [PMID: 35563570 PMCID: PMC9100869 DOI: 10.3390/ijms23095180] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/02/2022] [Accepted: 05/04/2022] [Indexed: 02/04/2023] Open
Abstract
The effective treatment of autoimmune disorders can greatly benefit from disease-specific biomarkers that are functionally involved in immune system regulation and can be collected through minimally invasive procedures. In this regard, human serum IgG N-glycans are promising for uncovering disease predisposition and monitoring progression, and for the identification of specific molecular targets for advanced therapies. In particular, the IgG N-glycome in diseased tissues is considered to be disease-dependent; thus, specific glycan structures may be involved in the pathophysiology of autoimmune diseases. This study provides a critical overview of the literature on human IgG N-glycomics, with a focus on the identification of disease-specific glycan alterations. In order to expedite the establishment of clinically-relevant N-glycan biomarkers, the employment of advanced computational tools for the interpretation of clinical data and their relationship with the underlying molecular mechanisms may be critical. Glycoinformatics tools, including artificial intelligence and systems glycobiology approaches, are reviewed for their potential to provide insight into patient stratification and disease etiology. Challenges in the integration of such glycoinformatics approaches in N-glycan biomarker research are critically discussed.
Collapse
Affiliation(s)
| | - Cleo Kontoravdi
- Department of Chemical Engineering, Imperial College London, London SW7 2AZ, UK
| |
Collapse
|
6
|
Barchi JJ. Glycoconjugate Nanoparticle-Based Systems in Cancer Immunotherapy: Novel Designs and Recent Updates. Front Immunol 2022; 13:852147. [PMID: 35432351 PMCID: PMC9006936 DOI: 10.3389/fimmu.2022.852147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 03/04/2022] [Indexed: 11/15/2022] Open
Abstract
For many years, cell-surface glycans (in particular, Tumor-Associated Carbohydrate Antigens, TACAs) have been the target of both passive and active anticancer immunotherapeutic design. Recent advances in immunotherapy as a treatment for a variety of malignancies has revolutionized anti-tumor treatment regimens. Checkpoint inhibitors, Chimeric Antigen Receptor T-cells, Oncolytic virus therapy, monoclonal antibodies and vaccines have been developed and many approvals have led to remarkable outcomes in a subset of patients. However, many of these therapies are very selective for specific patient populations and hence the search for improved therapeutics and refinement of techniques for delivery are ongoing and fervent research areas. Most of these agents are directed at protein/peptide epitopes, but glycans-based targets are gaining in popularity, and a handful of approved immunotherapies owe their activity to oligosaccharide targets. In addition, nanotechnology and nanoparticle-derived systems can help improve the delivery of these agents to specific organs and cell types based on tumor-selective approaches. This review will first outline some of the historical beginnings of this research area and subsequently concentrate on the last 5 years of work. Based on the progress in therapeutic design, predictions can be made as to what the future holds for increasing the percentage of positive patient outcomes for optimized systems.
Collapse
Affiliation(s)
- Joseph J. Barchi
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, United States
| |
Collapse
|
7
|
Wu ZY, He YQ, Wang TM, Yang DW, Li DH, Deng CM, Cao LJ, Zhang JB, Xue WQ, Jia WH. Glycogenes in Oncofetal Chondroitin Sulfate Biosynthesis are Differently Expressed and Correlated With Immune Response in Placenta and Colorectal Cancer. Front Cell Dev Biol 2021; 9:763875. [PMID: 34966741 PMCID: PMC8710744 DOI: 10.3389/fcell.2021.763875] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 11/10/2021] [Indexed: 01/14/2023] Open
Abstract
Oncofetal chondroitin sulfate expression plays an important role in the development of tumors and the pathogenesis of malaria in pregnancy. However, the biosynthesis and functions of these chondroitin sulfates, particularly the tissue-specific regulation either in tumors or placenta, have not been fully elucidated. Here, by examining the glycogenes availability in chondroitin sulfate biosynthesis such as xylosytransferase, chondroitin synthase, sulfotransferase, and epimerase, the conserved or differential CS glycosylation in normal, colorectal cancer (CRC), and placenta tissue were predicted. We found that the expression of seven chondroitin sulfate biosynthetic enzymes, namely B4GALT7, B3GALT6, B3GAT3, CHSY3, CHSY1, CHPF, and CHPF2, were significantly increased, while four other enzymes (XYLT1, CHST7, CHST15, and UST) were decreased in the colon adenocarcinoma (COAD) and rectum adenocarcinoma (READ) patients. In the human placenta, where the distinct chondroitin sulfate is specifically bound with VAR2CSA on Plasmodium parasite-infected RBC, eight chondroitin sulfate biosynthesis enzymes (CSGALNACT1, CSGALNACT2, CHSY3, CHSY1, CHPF, DSE, CHST11, and CHST3) were significantly higher than the normal colon tissue. The similarly up-regulated chondroitin synthases (CHSY1, CHSY3, and CHPF) in both cancer tissue and human placenta indicate an important role of the proteoglycan CS chains length for Plasmodium falciparum VAR2CSA protein binding. Interestingly, twelve highly expressed chondroitin sulfate enzymes were significantly correlated to worse outcomes (prognosis) in both COAD and READ. Furthermore, we showed that the levels of chondroitin sulfate enzymes are significantly correlated with the expression of immuno-regulators and immune infiltration levels in CRCs and placenta, and involved in multiple essential pathways, such as extracellular matrix organization, epithelial-mesenchymal transition, and cell adhesion. Our study provides novel insights into the oncofetal chondroitin sulfate biosynthesis regulation and identifies promising targets and biomarkers of immunotherapy for CRC and malaria in pregnancy.
Collapse
Affiliation(s)
- Zi-Yi Wu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yong-Qiao He
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Tong-Min Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Da-Wei Yang
- School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Dan-Hua Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Chang-Mi Deng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Lian-Jing Cao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jiang-Bo Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Wen-Qiong Xue
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Wei-Hua Jia
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China.,School of Public Health, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|