1
|
Jiang Z, Yang F, Cao H, Xing C, Wang H, Chen J, Hu G, Gao X, Li G, Guo X, Dai X. Deltamethrin exposure caused renal inflammation and renal fibrosis via upregulating endoplasmic reticulum stress-mediated TXNDC5 level in mice. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 206:106180. [PMID: 39672609 DOI: 10.1016/j.pestbp.2024.106180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 10/09/2024] [Accepted: 10/22/2024] [Indexed: 12/15/2024]
Abstract
Deltamethrin (DLM) is a type II pyrethroid insecticide that is extensively applied to agriculture, veterinary medicine and livestock pest control. Excessive accumulation of DLM in the body can lead to nephrotoxicity, but the precise toxic mechanism remains obscure. Therefore, we established in vivo models of DLM-exposed mice for 30 days and in vitro models of DLM-exposed renal tubular epithelial cells of mice. The results revealed adverse effects on renal function in mice exposed to excessive DLM, manifested as endoplasmic reticulum (ER) swelling, local inflammatory infiltration in renal tissue and increased collagen fibers, suggesting renal inflammation and fibrosis, etc. Subsequently, in vivo experiments, we found that DLM exposure increased expression levels of endoplasmic reticulum stress (ERS)-related factors, significantly upregulated the expression of TXNDC5, and enhanced the colocalization of GRP78 with TXNDC5. Notably, DLM exposure also strengthened the co-localization of TXNDC5 with NF-κB p65 and TGF-β1, upregulated the expression levels of TLR4/MYD88/NF-κB and TGF-β/SMAD2/3 pathways, alongside inflammation and fibrosis-related factors, these changes exhibited a dose-dependent effect. Meanwhile, in vitro experiments, the results of ERS, inflammation, and fibrosis-related factor expression levels were consistent with those observed in vivo. In conclusion, our results demonstrated that TXNDC5 might played a certain role in DLM-induced nephrotoxicity. Specifically, DLM exposure could trigger ERS, increase TXNDC5 expression, and promote TLR4/MYD88/NF-κB and TGF-β/Smad2/3 pathways, leading to renal inflammation and fibrosis in mice. These discoveries not only deepen our understanding of DLM toxicity but also provide valuable avenues for exploring mitigation strategies and therapeutic interventions.
Collapse
Affiliation(s)
- Zhou Jiang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, Jiangxi, PR China
| | - Fan Yang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, Jiangxi, PR China
| | - Huabin Cao
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, Jiangxi, PR China
| | - Chenghong Xing
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, Jiangxi, PR China
| | - Huating Wang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, Jiangxi, PR China
| | - Jing Chen
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, Jiangxi, PR China
| | - Guoliang Hu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, Jiangxi, PR China
| | - Xiaona Gao
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, Jiangxi, PR China
| | - Guyue Li
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, Jiangxi, PR China
| | - Xiaoquan Guo
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, Jiangxi, PR China
| | - Xueyan Dai
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, Jiangxi, PR China.
| |
Collapse
|
2
|
Tavares de Sousa H, Ferreira M, Gullo I, Rocha AM, Pedro A, Leitão D, Oliveira C, Carneiro F, Magro F. Fibrosis-related Transcriptome Unveils a Distinctive Remodelling Matrix Pattern in Penetrating Ileal Crohn's Disease. J Crohns Colitis 2024; 18:1741-1752. [PMID: 38700484 DOI: 10.1093/ecco-jcc/jjae064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 04/02/2024] [Accepted: 05/01/2024] [Indexed: 05/05/2024]
Abstract
BACKGROUND AND AIMS Stricturing [B2] and penetrating [B3] ileal Crohn's disease have been reported to present similar levels of histopathological transmural fibrosis. This study aimed to compare the fibrosis-related transcriptomic profiles of penetrating and stricturing ileal Crohn's disease. METHODS Using Nanostring technology and comparative bioinformatics, we analysed the expression of 787 fibrosis-related genes in 36 ileal surgical specimens, 12 B2 and 24 B3, the latter including 12 cases with associated stricture[s] [B3s] and 12 without [B3o]. Quality control of extracted RNA was performed according to Nanostring parameters and principal component analysis for the distribution analysis. For the selection of the differentially expressed genes, a p-adjusted <0.05 and fold change ≤-1.5 or ≥1.5 were adopted. Quantitative polymerase chain reaction (qPCR) and immunohistochemistry analyses were used to validate selected differentially expressed genes. RESULTS We included 34 patients with B2 and B3 phenotypes, balanced for age at diagnosis, age at surgery, gender, Crohn's disease localisation, perianal disease, and therapy. Inflammation and fibrosis histopathological scoring were similar in all cases. B2 and B3 groups showed a very good clustering regarding 30 significantly differentially expressed genes, all being remarkably upregulated in B3. More than half of these genes were involved in Crohn's disease fibrogenesis, and eight differentially expressed genes were so in other organs. The most significantly active biological processes and pathways in penetrating disease were response to TGFβ and matrix organisation and degradation, as validated by immunohistochemistry. CONCLUSIONS Despite the histopathological similarities in fibrosis between stricturing and penetrating ileal Crohn's disease, their fibrosis-related transcriptomic profiles are distinct. Penetrating disease exhibits a distinctive transcriptomic landscape related to enhanced matrix remodelling.
Collapse
Affiliation(s)
- Helena Tavares de Sousa
- Gastroenterology Department, Algarve University Hospital Center [CHUA], Portimão, Portugal
- ABC-Algarve Biomedical Center, University of Algarve, Faro, Portugal
| | - Marta Ferreira
- Computer Science Department, Faculty of Sciences, University of Porto, Porto, Portugal
- Institute of Molecular Pathology and Immunology, University of Porto [IPATIMUP], Porto, Portugal
- Instituto de Investigação e Inovação em Saúde [i3S], University of Porto, Porto, Portugal
| | - Irene Gullo
- Institute of Molecular Pathology and Immunology, University of Porto [IPATIMUP], Porto, Portugal
- Instituto de Investigação e Inovação em Saúde [i3S], University of Porto, Porto, Portugal
- Department of Pathology, Centro Hospitalar de São João, Porto, Portugal
- Department of Pathology, Faculty of Medicine of the University of Porto [FMUP], Porto, Portugal
| | - Ana Mafalda Rocha
- Institute of Molecular Pathology and Immunology, University of Porto [IPATIMUP], Porto, Portugal
- Instituto de Investigação e Inovação em Saúde [i3S], University of Porto, Porto, Portugal
| | - Ana Pedro
- Instituto de Investigação e Inovação em Saúde [i3S], University of Porto, Porto, Portugal
| | - Dina Leitão
- Department of Pathology, Faculty of Medicine of the University of Porto [FMUP], Porto, Portugal
| | - Carla Oliveira
- Institute of Molecular Pathology and Immunology, University of Porto [IPATIMUP], Porto, Portugal
- Instituto de Investigação e Inovação em Saúde [i3S], University of Porto, Porto, Portugal
- Department of Pathology, Centro Hospitalar de São João, Porto, Portugal
| | - Fátima Carneiro
- Institute of Molecular Pathology and Immunology, University of Porto [IPATIMUP], Porto, Portugal
- Instituto de Investigação e Inovação em Saúde [i3S], University of Porto, Porto, Portugal
- Department of Pathology, Centro Hospitalar de São João, Porto, Portugal
- Department of Pathology, Faculty of Medicine of the University of Porto [FMUP], Porto, Portugal
| | - Fernando Magro
- Unit of Pharmacology and Therapeutics, Department of Biomedicine, Faculty of Medicine of the University of Porto [FMUP], Portugal
- Department of Gastroenterology, São João University Hospital Center, Porto, Portugal
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Porto, Portugal
| |
Collapse
|
3
|
Liu Z, Xian L, Li J, Zheng S, Xie H. Single-cell RNA sequencing analysis reveals the role of TXNDC5 in keloid formation. Cytojournal 2024; 21:40. [PMID: 39563670 PMCID: PMC11574684 DOI: 10.25259/cytojournal_58_2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 06/05/2024] [Indexed: 11/21/2024] Open
Abstract
Objective Thioredoxin domain-containing protein 5 (TXNDC5) is associated with fibrosis in a variety of organs, but its mechanism of action in keloid is unclear. In this study, we aimed to investigate the mechanism of TXNDC5 in keloid. Material and Methods Single-cell RNA sequencing data of keloid and normal scar samples obtained from public databases were normalized and clustered using the Seurat package. Pathway enrich analysis was conducted using biological process enrichment analysis and Gene Set Enrichment Analysis (GSEA). In addition, TXNDC5 expression and its effects on migration and invasion of keloid fibroblasts (KFs) were validated based on cell function experiments. Results A total of five cell types were obtained. The KF clusters were further clustered into two fibroblast subtypes (Fibroblast cells 1 and Fibroblast cells 2). Biological process enrichment analysis showed that transforming growth factor beta (TGF-β) signaling pathway was enriched in the two fibroblast subtypes. GSEA analysis demonstrated that genes in TGF-β signaling pathway were mainly enriched in Fibroblast cells 1, and that genes involved in cell proliferation, migration, and the TGF-β signaling pathway were all high-expressed in fibroblast cells 1. TXNDC5 was positively correlated with fibroblast proliferation, migration and TGF-β signaling pathway, and AUCell score. The cellular experiment confirmed that the messenger RNA and protein levels of TXNDC5 and TGF-β1 were high-expressed in KFs cells (P<0.001), and that knockdown of TXNDC5 downregulated TGF-β1 expression and inhibited migration and invasion of KFs (P<0.0001). Conclusion Our study indicated that TGF-β signaling pathway was enriched in fibroblast cells, and TXNDC5 was positively correlated with proliferation, migration, and TGF-β signaling pathway. Cellular experiment demonstrated that knocking down TXNDC5 downregulated TGF-β1 expression, and suppressed migration and invasion of KFs. The current discoveries provided a new therapeutic strategy for the treatment of keloid.
Collapse
Affiliation(s)
- Zhikun Liu
- Department of Plastic Surgery, The Second Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Lining Xian
- Department of Dermatology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jianmin Li
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shudan Zheng
- Department of Plastic Surgery, The Second Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Hongju Xie
- Department of Plastic Surgery, The Second Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| |
Collapse
|
4
|
Michels EHA, Chouchane O, de Brabander J, de Vos AF, Faber DR, Douma RA, Smit ER, Wiersinga WJ, van den Biggelaar M, van der Poll T, Hoogendijk AJ. Proteomic profiling of neutrophils and plasma in community-acquired pneumonia reveals crucial proteins in diverse biological pathways linked to clinical outcome. Front Immunol 2024; 15:1470383. [PMID: 39493755 PMCID: PMC11527607 DOI: 10.3389/fimmu.2024.1470383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 09/20/2024] [Indexed: 11/05/2024] Open
Abstract
Introduction Neutrophils play a dichotomous role in community-acquired pneumonia (CAP), providing protection and potentially causing damage. Existing research on neutrophil function in CAP relies on animal studies, leaving a gap in patient-centered investigations. Methods We used mass spectrometry to characterize the neutrophil proteome of moderately ill CAP patients at general ward admission and related the proteome to controls and clinical outcomes. Results We prospectively included 57 CAP patients and 26 controls and quantified 3482 proteins in neutrophil lysates and 386 proteins in concurrently collected plasma. The extensively studied granule-related proteins in animal models did not drive the neutrophil proteome changes associated with human CAP. Proteome alterations were primarily characterized by an increased abundance of proteins related to (aerobic) metabolic activity and (m)RNA translation/processing, concurrent with a diminished presence of cytoskeletal organization-related proteins (all pathways p<0.001). Higher and lower abundances of specific proteins, primarily constituents of these pathways, were associated with prolonged time to clinical stability in CAP. Moreover, we identified a pronounced presence of platelet-related proteins in neutrophil lysates of particularly viral CAP patients, suggesting the existence of neutrophil-platelet complexes in non-critically ill CAP patients. Of the proteins measured in neutrophils, 4.3% were detected in plasma. Discussion Our study presents new perspectives on the neutrophil proteome associated with CAP, laying the groundwork for forthcoming patient-centred investigations. Our results could pave the way for targeted strategies to fine-tune neutrophil responses, potentially improving CAP outcomes.
Collapse
Affiliation(s)
- Erik H. A. Michels
- Center for Experimental and Molecular Medicine (CEMM), Amsterdam UMC location University of Amsterdam, Amsterdam, Netherlands
| | - Osoul Chouchane
- Center for Experimental and Molecular Medicine (CEMM), Amsterdam UMC location University of Amsterdam, Amsterdam, Netherlands
| | - Justin de Brabander
- Center for Experimental and Molecular Medicine (CEMM), Amsterdam UMC location University of Amsterdam, Amsterdam, Netherlands
| | - Alex F. de Vos
- Center for Experimental and Molecular Medicine (CEMM), Amsterdam UMC location University of Amsterdam, Amsterdam, Netherlands
| | - Daniël R. Faber
- Department of Internal Medicine, BovenIJ Hospital, Amsterdam, Netherlands
| | - Renée A. Douma
- Department of Internal Medicine, Flevo Hospital, Almere, Netherlands
| | - Eva R. Smit
- Department of Molecular Hematology, Sanquin Research, Amsterdam, Netherlands
| | - W. Joost Wiersinga
- Center for Experimental and Molecular Medicine (CEMM), Amsterdam UMC location University of Amsterdam, Amsterdam, Netherlands
- Division of Infectious Diseases, Amsterdam UMC location University of Amsterdam, Amsterdam, Netherlands
| | | | - Tom van der Poll
- Center for Experimental and Molecular Medicine (CEMM), Amsterdam UMC location University of Amsterdam, Amsterdam, Netherlands
- Division of Infectious Diseases, Amsterdam UMC location University of Amsterdam, Amsterdam, Netherlands
| | - Arie J. Hoogendijk
- Department of Molecular Hematology, Sanquin Research, Amsterdam, Netherlands
| |
Collapse
|
5
|
Brandenburg JT, Chen WC, Boua PR, Govender MA, Agongo G, Micklesfield LK, Sorgho H, Tollman S, Asiki G, Mashinya F, Hazelhurst S, Morris AP, Fabian J, Ramsay M. Genetic Association and Transferability for Urinary Albumin-Creatinine Ratio as a Marker of Kidney Disease in four Sub-Saharan African Populations and non-continental Individuals of African Ancestry. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.01.17.24301398. [PMID: 38293229 PMCID: PMC10827237 DOI: 10.1101/2024.01.17.24301398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
BACKGROUND Genome-wide association studies (GWAS) have predominantly focused on populations of European and Asian ancestry, limiting our understanding of genetic factors influencing kidney disease in Sub-Saharan African (SSA) populations. This study presents the largest GWAS for urinary albumin-to-creatinine ratio (UACR) in SSA individuals, including 8,970 participants living in different African regions and an additional 9,705 non-resident individuals of African ancestry from the UK Biobank and African American cohorts. METHODS Urine biomarkers and genotype data were obtained from two SSA cohorts (AWI-Gen and ARK), and two non-resident African-ancestry studies (UK Biobank and CKD-Gen Consortium). Association testing and meta-analyses were conducted, with subsequent fine-mapping, conditional analyses, and replication studies. Polygenic scores (PGS) were assessed for transferability across populations. RESULTS Two genome-wide significant (P<5x10-8) UACR-associated loci were identified, one in the BMP6 region on chromosome 6, in the meta-analysis of resident African individuals, and another in the HBB region on chromosome 11 in the meta-analysis of non-resident SSA individuals, as well as the combined meta-analysis of all studies. Replication of previous significant results confirmed associations in known UACR-associated regions, including THB53, GATM, and ARL15. PGS estimated using previous studies from European ancestry, African ancestry, and multi-ancestry cohorts exhibited limited transferability of PGS across populations, with less than 1% of observed variance explained. CONCLUSION This study contributes novel insights into the genetic architecture of kidney disease in SSA populations, emphasizing the need for conducting genetic research in diverse cohorts. The identified loci provide a foundation for future investigations into the genetic susceptibility to chronic kidney disease in underrepresented African populations Additionally, there is a need to develop integrated scores using multi-omics data and risk factors specific to the African context to improve the accuracy of predicting disease outcomes. METHODS Urine biomarkers and genotype data were obtained from two SSA cohorts (AWI-Gen and ARK), and two non-resident African-ancestry studies (UK Biobank and CKD-Gen Consortium). Association testing and meta-analyses were conducted, with subsequent fine-mapping, conditional analyses, and replication studies. Polygenic scores (PGS) were assessed for transferability across populations. RESULTS Two genome-wide significant (P<5x10-8) UACR-associated loci were identified, one in the BMP6 region on chromosome 6, in the meta-analysis of resident African individuals, and another in the HBB region on chromosome 11 in the meta-analysis of non-resident SSA individuals, as well as the combined meta-analysis of all studies. Replication of previous significant results confirmed associations in known UACR-associated regions, including THB53, GATM, and ARL15. PGS estimated using previous studies from European ancestry, African ancestry, and multi-ancestry cohorts exhibited limited transferability of PGS across populations, with less than 1% of observed variance explained. CONCLUSION This study contributes novel insights into the genetic architecture of kidney function in SSA populations, emphasizing the need for conducting genetic research in diverse cohorts. The identified loci provide a foundation for future investigations into the genetic susceptibility to chronic kidney disease in underrepresented African populations.
Collapse
|
6
|
Bidooki SH, Navarro MA, Fernandes SCM, Osada J. Thioredoxin Domain Containing 5 (TXNDC5): Friend or Foe? Curr Issues Mol Biol 2024; 46:3134-3163. [PMID: 38666927 PMCID: PMC11049379 DOI: 10.3390/cimb46040197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 03/25/2024] [Accepted: 03/30/2024] [Indexed: 04/28/2024] Open
Abstract
This review focuses on the thioredoxin domain containing 5 (TXNDC5), also known as endoplasmic reticulum protein 46 (ERp46), a member of the protein disulfide isomerase (PDI) family with a dual role in multiple diseases. TXNDC5 is highly expressed in endothelial cells, fibroblasts, pancreatic β-cells, liver cells, and hypoxic tissues, such as cancer endothelial cells and atherosclerotic plaques. TXNDC5 plays a crucial role in regulating cell proliferation, apoptosis, migration, and antioxidative stress. Its potential significance in cancer warrants further investigation, given the altered and highly adaptable metabolism of tumor cells. It has been reported that both high and low levels of TXNDC5 expression are associated with multiple diseases, such as arthritis, cancer, diabetes, brain diseases, and infections, as well as worse prognoses. TXNDC5 has been attributed to both oncogenic and tumor-suppressive features. It has been concluded that in cancer, TXNDC5 acts as a foe and responds to metabolic and cellular stress signals to promote the survival of tumor cells against apoptosis. Conversely, in normal cells, TXNDC5 acts as a friend to safeguard cells against oxidative and endoplasmic reticulum stress. Therefore, TXNDC5 could serve as a viable biomarker or even a potential pharmacological target.
Collapse
Affiliation(s)
- Seyed Hesamoddin Bidooki
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón, Universidad de Zaragoza, E-50013 Zaragoza, Spain; (S.H.B.); (M.A.N.)
- Centre National de la Recherche Scientifique (CNRS), Institute of Analytical Sciences and Physico-Chemistry for Environment and Materials (IPREM), Universite de Pau et des Pays de l’Adour, E2S UPPA, 64 000 Pau, France;
- MANTA—Marine Materials Research Group, Universite de Pau et des Pays de l’Adour, E2S UPPA, 64 600 Anglet, France
| | - María A. Navarro
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón, Universidad de Zaragoza, E-50013 Zaragoza, Spain; (S.H.B.); (M.A.N.)
- Instituto Agroalimentario de Aragón, CITA-Universidad de Zaragoza, E-50013 Zaragoza, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, E-28029 Madrid, Spain
| | - Susana C. M. Fernandes
- Centre National de la Recherche Scientifique (CNRS), Institute of Analytical Sciences and Physico-Chemistry for Environment and Materials (IPREM), Universite de Pau et des Pays de l’Adour, E2S UPPA, 64 000 Pau, France;
- MANTA—Marine Materials Research Group, Universite de Pau et des Pays de l’Adour, E2S UPPA, 64 600 Anglet, France
| | - Jesus Osada
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón, Universidad de Zaragoza, E-50013 Zaragoza, Spain; (S.H.B.); (M.A.N.)
- Instituto Agroalimentario de Aragón, CITA-Universidad de Zaragoza, E-50013 Zaragoza, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, E-28029 Madrid, Spain
| |
Collapse
|
7
|
Jiao M, Zhang Y, Song X, Xu B. The role and mechanism of TXNDC5 in disease progression. Front Immunol 2024; 15:1354952. [PMID: 38629066 PMCID: PMC11019510 DOI: 10.3389/fimmu.2024.1354952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 03/19/2024] [Indexed: 04/19/2024] Open
Abstract
Thioredoxin domain containing protein-5 (TXNDC5), also known as endothelial protein-disulfide isomerase (Endo-PDI), is confined to the endoplasmic reticulum through the structural endoplasmic reticulum retention signal (KDEL), is a member of the PDI protein family and is highly expressed in the hypoxic state. TXNDC5 can regulate the rate of disulfide bond formation, isomerization and degradation of target proteins through its function as a protein disulfide isomerase (PDI), thereby altering protein conformation, activity and improving protein stability. Several studies have shown that there is a significant correlation between TXNDC5 gene polymorphisms and genetic susceptibility to inflammatory diseases such as rheumatoid, fibrosis and tumors. In this paper, we detail the expression characteristics of TXNDC5 in a variety of diseases, summarize the mechanisms by which TXNDC5 promotes malignant disease progression, and summarize potential therapeutic strategies to target TXNDC5 for disease treatment.
Collapse
Affiliation(s)
- Mingxia Jiao
- Department of Urology, The First Affiliated Hospital of Shandong First Medical University & Shandong Province Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Organ Transplantation and Nephrosis, Shandong Institute of Nephrology, Jinan, Shandong, China
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
| | - Yeyong Zhang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Jinan, Shandong, China
| | - Xie Song
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Bing Xu
- Department of Urology, The First Affiliated Hospital of Shandong First Medical University & Shandong Province Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Organ Transplantation and Nephrosis, Shandong Institute of Nephrology, Jinan, Shandong, China
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
| |
Collapse
|
8
|
Ge Y, Jia B, Zhang P, Chen B, Liu L, Shi Y, Huang S, Liu X, Wang R, Xie Y, Li Z, Dong J. TBX15 facilitates malignant progression of glioma by transcriptional activation of TXDNC5. iScience 2024; 27:108950. [PMID: 38327797 PMCID: PMC10847739 DOI: 10.1016/j.isci.2024.108950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/03/2023] [Accepted: 01/15/2024] [Indexed: 02/09/2024] Open
Abstract
T-box transcription factor 15 (TBX15) plays important role in various cancers; however, its expression and role in glioma is still unclear. In this study, our findings indicated that TBX15 was increased in gliomas compared to normal brain tissues, and high levels of TBX15 were related to poor survival. Furthermore, TBX15 silencing in glioma cells not only inhibited their proliferation, migration, and invasion in vitro, but also weakened their ability to recruit macrophages and polarize the latter to the M2 subtype. Mechanism study indicated that thioredoxin domain containing 5 (TXNDC5) lies downstream of TBX15. Furthermore, rescue assays verified that the role of TBX15 in glioma cells is dependent on TXNDC5. Moreover, sh-TBX15 loaded into DNA origami nanocarrier suppressed the malignant phenotype of glioma in vitro and in vivo. Taken together, the TBX15/TXNDC5 axis is involved in the genesis and progression of glioma, and is a potential therapeutic target.
Collapse
Affiliation(s)
- Yuyuan Ge
- Department of Neurosurgery, Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Bin Jia
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210023, China
| | - Peng Zhang
- Department of Neurosurgery, People’s Hospital of Rugao, Nantong 226500, China
- Department of Neurosurgery, Rugao Clinical College, Jiangsu Health Vocational College, Nantong 226500, China
| | - Baomin Chen
- Department of Neurosurgery, Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Liang Liu
- Department of Neurosurgery, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing 210029, China
| | - Yan Shi
- Department of Neurosurgery, Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Shilu Huang
- Department of Neurosurgery, Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Xinglei Liu
- Department of Neurosurgery, Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Ran Wang
- Department of Neurosurgery, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing 210029, China
| | - Yandong Xie
- Department of Neurosurgery, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing 210029, China
| | - Zhe Li
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210023, China
| | - Jun Dong
- Department of Neurosurgery, Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| |
Collapse
|
9
|
Tang L, Yu Y, Deng W, Liu J, Wang Y, Ye F, Kang R, Tang D, He Q. TXNDC12 inhibits lipid peroxidation and ferroptosis. iScience 2023; 26:108393. [PMID: 38047088 PMCID: PMC10690572 DOI: 10.1016/j.isci.2023.108393] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 10/24/2023] [Accepted: 11/01/2023] [Indexed: 12/05/2023] Open
Abstract
Ferroptosis is a type of regulated cell death characterized by lipid peroxidation and subsequent damage to the plasma membrane. Here, we report a ferroptosis resistance mechanism involving the upregulation of TXNDC12, a thioredoxin domain-containing protein located in the endoplasmic reticulum. The inducible expression of TXNDC12 during ferroptosis in leukemia cells is inhibited by the knockdown of the transcription factor ATF4, rather than NFE2L2. Mechanistically, TXNDC12 acts to inhibit lipid peroxidation without affecting iron accumulation during ferroptosis. When TXNDC12 is overexpressed, it restores the sensitivity of ATF4-knockdown cells to ferroptosis. Moreover, TXNDC12 plays a GPX4-independent role in inhibiting lipid peroxidation. The absence of TXNDC12 enhances the tumor-suppressive effects of ferroptosis induction in both cell culture and animal models. Collectively, these findings demonstrate an endoplasmic reticulum-based anti-ferroptosis pathway in cancer cells with potential translational applications.
Collapse
Affiliation(s)
- Lanlan Tang
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Yan Yu
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Wenjun Deng
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Jiao Liu
- DAMP Laboratory, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510150, China
| | - Yichun Wang
- Department of Critical Care Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510150, China
| | - Fanghua Ye
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Rui Kang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Qingnan He
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| |
Collapse
|
10
|
Luo L, Wang S, Hu Y, Wang L, Jiang X, Zhang J, Liu X, Guo X, Luo Z, Zhu C, Xie M, Li Y, You J, Yang F. Precisely Regulating M2 Subtype Macrophages for Renal Fibrosis Resolution. ACS NANO 2023; 17:22508-22526. [PMID: 37948096 DOI: 10.1021/acsnano.3c05998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Macrophages are central to the pathogenesis of kidney disease and serve as an effective therapeutic target for kidney injury and fibrosis. Among them, M2-type macrophages have double-edged effects regarding anti-inflammatory effects and tissue repair. Depending on the polarization of the M2 subtypes (M2a or M2c) in the diseased microenvironment, they can either mediate normal tissue repair or drive tissue fibrosis. In renal fibrosis, M2a promotes disease progression through macrophage-to-myofibroblast transition (MMT) cells, while M2c possesses potent anti-inflammatory functions and promotes tissue repair, and is inhibited. The mechanisms underlying this differentiation are complex and are currently not well understood. Therefore, in this study, we first confirmed that M2a-derived MMT cells are responsible for the development of renal fibrosis and demonstrated that the intensity of TGF-β signaling is a major factor determining the differential polarization of M2a and M2c. Under excessive TGF-β stimulation, M2a undergoes a process known as MMT cells, whereas moderate TGF-β stimulation favors the polarization of M2c phenotype macrophages. Based on these findings, we employed targeted nanotechnology to codeliver endoplasmic reticulum stress (ERS) inhibitor (Ceapin 7, Cea or C) and conventional glucocorticoids (Dexamethasone, Dex or D), precisely modulating the ATF6/TGF-β/Smad3 signaling axis within macrophages. This approach calibrated the level of TGF-β stimulation on macrophages, promoting their polarization toward the M2c phenotype and suppressing excessive MMT polarization. The study indicates that the combination of ERS inhibitor and a first-line anti-inflammatory drug holds promise as an effective therapeutic approach for renal fibrosis resolution.
Collapse
Affiliation(s)
- Lihua Luo
- College of Pharmaceutical Sciences, Zhejiang University, 886 Yuhangtang Road, Hangzhou 310058, Zhejiang, China
- National Key Laboratory of Advanced Drug Delivery and Release Systems, Hangzhou 310058, Zhejiang, China
| | - Sijie Wang
- College of Pharmaceutical Sciences, Zhejiang University, 886 Yuhangtang Road, Hangzhou 310058, Zhejiang, China
| | - Yilong Hu
- College of Pharmaceutical Sciences, Zhejiang University, 886 Yuhangtang Road, Hangzhou 310058, Zhejiang, China
| | - Litong Wang
- College of Pharmaceutical Sciences, Zhejiang University, 886 Yuhangtang Road, Hangzhou 310058, Zhejiang, China
| | - Xindong Jiang
- College of Pharmaceutical Sciences, Zhejiang University, 886 Yuhangtang Road, Hangzhou 310058, Zhejiang, China
| | - Junlei Zhang
- College of Pharmaceutical Sciences, Zhejiang University, 886 Yuhangtang Road, Hangzhou 310058, Zhejiang, China
| | - Xu Liu
- College of Pharmaceutical Sciences, Zhejiang University, 886 Yuhangtang Road, Hangzhou 310058, Zhejiang, China
| | - Xuemeng Guo
- College of Pharmaceutical Sciences, Zhejiang University, 886 Yuhangtang Road, Hangzhou 310058, Zhejiang, China
| | - Zhenyu Luo
- College of Pharmaceutical Sciences, Zhejiang University, 886 Yuhangtang Road, Hangzhou 310058, Zhejiang, China
| | - Chunqi Zhu
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Miaomiao Xie
- The Second Affiliated Hospital of Shenzhen University, 118 Longjinger Road, Baoan District, Shenzhen 518101, Guangdong, China
| | - Yeqing Li
- The People's Hospital of Baoan Shenzhen, 118 Longjinger Road, Baoan District, Shenzhen 518101, Guangdong, China
| | - Jian You
- College of Pharmaceutical Sciences, Zhejiang University, 886 Yuhangtang Road, Hangzhou 310058, Zhejiang, China
| | - Fuchun Yang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang, China
| |
Collapse
|