1
|
Nadel G, Maik-Rachline G, Seger R. JNK Cascade-Induced Apoptosis-A Unique Role in GqPCR Signaling. Int J Mol Sci 2023; 24:13527. [PMID: 37686335 PMCID: PMC10487481 DOI: 10.3390/ijms241713527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/27/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023] Open
Abstract
The response of cells to extracellular signals is mediated by a variety of intracellular signaling pathways that determine stimulus-dependent cell fates. One such pathway is the cJun-N-terminal Kinase (JNK) cascade, which is mainly involved in stress-related processes. The cascade transmits its signals via a sequential activation of protein kinases, organized into three to five tiers. Proper regulation is essential for securing a proper cell fate after stimulation, and the mechanisms that regulate this cascade may involve the following: (1) Activatory or inhibitory phosphorylations, which induce or abolish signal transmission. (2) Regulatory dephosphorylation by various phosphatases. (3) Scaffold proteins that bring distinct components of the cascade in close proximity to each other. (4) Dynamic change of subcellular localization of the cascade's components. (5) Degradation of some of the components. In this review, we cover these regulatory mechanisms and emphasize the mechanism by which the JNK cascade transmits apoptotic signals. We also describe the newly discovered PP2A switch, which is an important mechanism for JNK activation that induces apoptosis downstream of the Gq protein coupled receptors. Since the JNK cascade is involved in many cellular processes that determine cell fate, addressing its regulatory mechanisms might reveal new ways to treat JNK-dependent pathologies.
Collapse
Affiliation(s)
| | | | - Rony Seger
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot 7610001, Israel; (G.N.); (G.M.-R.)
| |
Collapse
|
2
|
Yu H, Zaveri S, Sattar Z, Schaible M, Perez Gandara B, Uddin A, McGarvey LR, Ohlmeyer M, Geraghty P. Protein Phosphatase 2A as a Therapeutic Target in Pulmonary Diseases. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1552. [PMID: 37763671 PMCID: PMC10535831 DOI: 10.3390/medicina59091552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/22/2023] [Accepted: 08/24/2023] [Indexed: 09/29/2023]
Abstract
New disease targets and medicinal chemistry approaches are urgently needed to develop novel therapeutic strategies for treating pulmonary diseases. Emerging evidence suggests that reduced activity of protein phosphatase 2A (PP2A), a complex heterotrimeric enzyme that regulates dephosphorylation of serine and threonine residues from many proteins, is observed in multiple pulmonary diseases, including lung cancer, smoke-induced chronic obstructive pulmonary disease, alpha-1 antitrypsin deficiency, asthma, and idiopathic pulmonary fibrosis. Loss of PP2A responses is linked to many mechanisms associated with disease progressions, such as senescence, proliferation, inflammation, corticosteroid resistance, enhanced protease responses, and mRNA stability. Therefore, chemical restoration of PP2A may represent a novel treatment for these diseases. This review outlines the potential impact of reduced PP2A activity in pulmonary diseases, endogenous and exogenous inhibitors of PP2A, details the possible PP2A-dependent mechanisms observed in these conditions, and outlines potential therapeutic strategies for treatment. Substantial medicinal chemistry efforts are underway to develop therapeutics targeting PP2A activity. The development of specific activators of PP2A that selectively target PP2A holoenzymes could improve our understanding of the function of PP2A in pulmonary diseases. This may lead to the development of therapeutics for restoring normal PP2A responses within the lung.
Collapse
Affiliation(s)
- Howard Yu
- Department of Medicine, State University of New York Downstate Health Sciences University, 450 Clarkson Avenue, Brooklyn, NY 11203, USA; (H.Y.); (S.Z.); (Z.S.); (M.S.); (B.P.G.); (A.U.); (L.R.M.)
| | - Sahil Zaveri
- Department of Medicine, State University of New York Downstate Health Sciences University, 450 Clarkson Avenue, Brooklyn, NY 11203, USA; (H.Y.); (S.Z.); (Z.S.); (M.S.); (B.P.G.); (A.U.); (L.R.M.)
| | - Zeeshan Sattar
- Department of Medicine, State University of New York Downstate Health Sciences University, 450 Clarkson Avenue, Brooklyn, NY 11203, USA; (H.Y.); (S.Z.); (Z.S.); (M.S.); (B.P.G.); (A.U.); (L.R.M.)
| | - Michael Schaible
- Department of Medicine, State University of New York Downstate Health Sciences University, 450 Clarkson Avenue, Brooklyn, NY 11203, USA; (H.Y.); (S.Z.); (Z.S.); (M.S.); (B.P.G.); (A.U.); (L.R.M.)
| | - Brais Perez Gandara
- Department of Medicine, State University of New York Downstate Health Sciences University, 450 Clarkson Avenue, Brooklyn, NY 11203, USA; (H.Y.); (S.Z.); (Z.S.); (M.S.); (B.P.G.); (A.U.); (L.R.M.)
| | - Anwar Uddin
- Department of Medicine, State University of New York Downstate Health Sciences University, 450 Clarkson Avenue, Brooklyn, NY 11203, USA; (H.Y.); (S.Z.); (Z.S.); (M.S.); (B.P.G.); (A.U.); (L.R.M.)
| | - Lucas R. McGarvey
- Department of Medicine, State University of New York Downstate Health Sciences University, 450 Clarkson Avenue, Brooklyn, NY 11203, USA; (H.Y.); (S.Z.); (Z.S.); (M.S.); (B.P.G.); (A.U.); (L.R.M.)
| | | | - Patrick Geraghty
- Department of Medicine, State University of New York Downstate Health Sciences University, 450 Clarkson Avenue, Brooklyn, NY 11203, USA; (H.Y.); (S.Z.); (Z.S.); (M.S.); (B.P.G.); (A.U.); (L.R.M.)
| |
Collapse
|
3
|
Tao X, Li J, He J, Jiang Y, Liu C, Cao W, Wu H. Pinellia ternata (Thunb.) Breit. Attenuates the allergic airway inflammation of cold asthma via inhibiting the activation of TLR4-medicated NF-kB and NLRP3 signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2023; 315:116720. [PMID: 37268256 DOI: 10.1016/j.jep.2023.116720] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/28/2023] [Accepted: 05/30/2023] [Indexed: 06/04/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Pinellia ternata (Thunb.) Breit. (PT) has been demonstrated to be effective against the allergic airway inflammation (AAI) in clinical practices, especially in cold asthma (CA). Until now, the active ingredients, protective effect, and possible mechanism of PT against CA remain unknown. AIM OF THE STUDY The aim of this investigation was to examine the therapeutic impact and elucidate the underlying mechanism of PT on the AAI of CA. METHODS The compositions of PT water extract were determined via the UPLC-Q-TOF-MS/MS. The ovalbumin (OVA) and cold-water baths were used to induce CA in female mice. Morphological characteristic observations, expectorant effect, bronchial hyperreactivity (BHR), excessive mucus secretion, and inflammatory factors were used to uncover the treatment effect of PT water extract. In addition, the mucin 5AC (MUC5AC) mRNA and protein levels and the aquaporin 5 (AQP5) mRNA and protein levels were detected via qRT-PCR, immunohistochemistry (IHC), and western blotting. Moreover, the protein expressions associated with the TLR4, NF-κB, and NLRP3 signaling pathway were monitored by western blot analysis. RESULTS Thirty-eight compounds were identified from PT water extract. PT showed significant therapeutic effects on mice with cold asthma in terms of expectorant activity, histopathological changes, airway inflammation, mucus secretion, and hyperreactivity. PT exhibited good anti-inflammatory effects in vitro and in vivo. The expression levels of MUC5AC mRNA and protein decreased significantly, while AQP5 expression levels increased significantly in the lung tissues of mice after administration with PT as compared to mice induced by CA. Furthermore, the protein expressions of TLR4, p-iκB, p-p65, IL-1β, IL-18, NLRP3, cleaved caspase-1, and ASC were markedly reduced following PT treatment. CONCLUSIONS PT attenuated the AAI of CA by modulating Th1- and Th2-type cytokines. PT could inhibit the TLR4-medicated NF-kB signaling pathway and activate the NLRP3 inflammasome to reduce CA. This study provides an alternative therapeutic agent of the AAI of CA after administration with PT.
Collapse
Affiliation(s)
- Xingbao Tao
- College of Pharmacy, Chongqing College of Traditional Chinese Medicine, Chongqing, 402760, China; Post-Doctoral Research Center, Chongqing College of Traditional Chinese Medicine, Chongqing, 402760, China
| | - Juan Li
- Rehabilitation Center, Chongqing Academy of Chinese Materia Medica, Chongqing, 400065, China
| | - Jun He
- College of Traditional Chinese Medicine, Chongqing College of Traditional Chinese Medicine, Chongqing, 402760, China
| | - Yunbin Jiang
- College of Pharmaceutical Sciences and Chinese Medicine, Southwest University, Chongqing, 400715, China
| | - Chunshan Liu
- Rehabilitation Center, Chongqing Academy of Chinese Materia Medica, Chongqing, 400065, China
| | - Weiguo Cao
- College of Pharmacy, Chongqing College of Traditional Chinese Medicine, Chongqing, 402760, China.
| | - Hao Wu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
4
|
Hendriks WJAJ, van Cruchten RTP, Pulido R. Hereditable variants of classical protein tyrosine phosphatase genes: Will they prove innocent or guilty? Front Cell Dev Biol 2023; 10:1051311. [PMID: 36755664 PMCID: PMC9900141 DOI: 10.3389/fcell.2022.1051311] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 12/28/2022] [Indexed: 01/24/2023] Open
Abstract
Protein tyrosine phosphatases, together with protein tyrosine kinases, control many molecular signaling steps that control life at cellular and organismal levels. Impairing alterations in the genes encoding the involved proteins is expected to profoundly affect the quality of life-if compatible with life at all. Here, we review the current knowledge on the effects of germline variants that have been reported for genes encoding a subset of the protein tyrosine phosphatase superfamily; that of the thirty seven classical members. The conclusion must be that the newest genome research tools produced an avalanche of data that suggest 'guilt by association' for individual genes to specific disorders. Future research should face the challenge to investigate these accusations thoroughly and convincingly, to reach a mature genotype-phenotype map for this intriguing protein family.
Collapse
Affiliation(s)
- Wiljan J. A. J. Hendriks
- Department of Cell Biology, Radboud University Medical Centre, Nijmegen, The Netherlands,*Correspondence: Wiljan J. A. J. Hendriks,
| | | | - Rafael Pulido
- Biomarkers in Cancer Unit, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain,Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
5
|
Oxidative Stress Promotes Corticosteroid Insensitivity in Asthma and COPD. Antioxidants (Basel) 2021; 10:antiox10091335. [PMID: 34572965 PMCID: PMC8471691 DOI: 10.3390/antiox10091335] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/18/2021] [Accepted: 08/23/2021] [Indexed: 02/06/2023] Open
Abstract
Corticosteroid insensitivity is a key characteristic of patients with severe asthma and COPD. These individuals experience greater pulmonary oxidative stress and inflammation, which contribute to diminished lung function and frequent exacerbations despite the often and prolonged use of systemic, high dose corticosteroids. Reactive oxygen and nitrogen species (RONS) promote corticosteroid insensitivity by disrupting glucocorticoid receptor (GR) signaling, leading to the sustained activation of pro-inflammatory pathways in immune and airway structural cells. Studies in asthma and COPD models suggest that corticosteroids need a balanced redox environment to be effective and to reduce airway inflammation. In this review, we discuss how oxidative stress contributes to corticosteroid insensitivity and the importance of optimizing endogenous antioxidant responses to enhance corticosteroid sensitivity. Future studies should aim to identify how antioxidant-based therapies can complement corticosteroids to reduce the need for prolonged high dose regimens in patients with severe asthma and COPD.
Collapse
|
6
|
Kobayashi Y, Kanda A, Yun Y, Bui DV, Suzuki K, Sawada S, Asako M, Iwai H. Reduced Local Response to Corticosteroids in Eosinophilic Chronic Rhinosinusitis with Asthma. Biomolecules 2020; 10:biom10020326. [PMID: 32085629 PMCID: PMC7072408 DOI: 10.3390/biom10020326] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 02/13/2020] [Accepted: 02/14/2020] [Indexed: 12/19/2022] Open
Abstract
Eosinophilic chronic rhinosinusitis (ECRS), a subgroup of chronic rhinosinusitis with nasal polyps, is recognized as a refractory eosinophilic disorder characterized by both upper and lower airway inflammation. In some severe cases, disease control is poor, likely due to local steroid insensitivity. In this study, we focused on protein phosphatase 2A (PP2A), a key factor regulating glucocorticoid receptor (GR) nuclear translocation, and examined its association with local responses to corticosteroids in eosinophilic airway inflammation. Our results indicated reduced responses to corticosteroids in nasal epithelial cells from ECRS patients with asthma, which were also associated with decreased PP2A mRNA expression. Eosinophil peroxidase stimulates elevated PP2A phosphorylation levels, reducing PP2A protein expression and activity. In addition, mRNA levels of inflammatory mediators (TSLP, IL-25, IL-33, CCL4, CCL5, CCL11, and CCL26) associated with eosinophilic airway inflammation in epithelial cells were increased in nasal polyps (eosinophil-rich areas) compared with those in uncinate process tissues (eosinophil-poor areas) from the same patients. PP2A reduction by siRNA reduced GR nuclear translocation, whereas PP2A overexpression by plasmid transfection, or PP2A activation by formoterol, enhanced GR nuclear translocation. Collectively, our findings indicate that PP2A may represent a promising therapeutic target in refractory eosinophilic airway inflammation characterized by local steroid insensitivity.
Collapse
Affiliation(s)
- Yoshiki Kobayashi
- Airway Disease Section, Department of Otorhinolaryngology, Kansai Medical University, Hirakata, Osaka 573-1010, Japan (Y.Y.)
- Allergic Center, Kansai Medical University Hospital, Hirakata, Osaka 573-1010, Japan
- Correspondence: ; Tel.: +81-72-804-2463
| | - Akira Kanda
- Airway Disease Section, Department of Otorhinolaryngology, Kansai Medical University, Hirakata, Osaka 573-1010, Japan (Y.Y.)
- Allergic Center, Kansai Medical University Hospital, Hirakata, Osaka 573-1010, Japan
| | - Yasutaka Yun
- Airway Disease Section, Department of Otorhinolaryngology, Kansai Medical University, Hirakata, Osaka 573-1010, Japan (Y.Y.)
| | - Dan Van Bui
- Airway Disease Section, Department of Otorhinolaryngology, Kansai Medical University, Hirakata, Osaka 573-1010, Japan (Y.Y.)
| | - Kensuke Suzuki
- Airway Disease Section, Department of Otorhinolaryngology, Kansai Medical University, Hirakata, Osaka 573-1010, Japan (Y.Y.)
| | - Shunsuke Sawada
- Airway Disease Section, Department of Otorhinolaryngology, Kansai Medical University, Hirakata, Osaka 573-1010, Japan (Y.Y.)
| | - Mikiya Asako
- Airway Disease Section, Department of Otorhinolaryngology, Kansai Medical University, Hirakata, Osaka 573-1010, Japan (Y.Y.)
- Allergic Center, Kansai Medical University Hospital, Hirakata, Osaka 573-1010, Japan
| | - Hiroshi Iwai
- Airway Disease Section, Department of Otorhinolaryngology, Kansai Medical University, Hirakata, Osaka 573-1010, Japan (Y.Y.)
| |
Collapse
|
7
|
Yan YX, Li YN. [Pathogenesis of steroid-resistant asthma and the influence of vitamin D]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2019; 21:724-729. [PMID: 31315776 PMCID: PMC7389094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 05/22/2019] [Indexed: 11/04/2023]
Abstract
Glucocorticoid (GC) is currently the most effective drug for controlling persistent asthma; however, there is a significant difference in the response to GC among patients with asthma. Steroid-resistant asthma is one of the subtypes of asthma and has poor response to high-dose GC treatment. It may affect the quality of life of patients and even threaten their lives. Therefore, it is of great significance to explore the pathogenesis of steroid-resistant asthma and related targeted treatment strategy. In recent years, a variety of pathogeneses have been found to participate in the development and progression of steroid-resistant asthma, including the reduction in the binding between GC receptor and GC, the increase in the expression of GC receptor β, over-activation of nuclear transcription factor activating protein 1 and nuclear factor-κB, abnormality in histone acetylation, and immune-mediated cytokine dysregulation. In addition, many studies have shown that vitamin D can improve the sensitivity to GC among patients with steroid-resistant asthma. This article reviews the pathogenesis of steroid-resistant asthma and the influence of vitamin D.
Collapse
Affiliation(s)
- Yu-Xiao Yan
- First Clinical Medical College of Lanzhou University, Lanzhou 730000, China.
| | | |
Collapse
|
8
|
Yan YX, Li YN. [Pathogenesis of steroid-resistant asthma and the influence of vitamin D]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2019; 21:724-729. [PMID: 31315776 PMCID: PMC7389094 DOI: 10.7499/j.issn.1008-8830.2019.07.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 05/22/2019] [Indexed: 06/10/2023]
Abstract
Glucocorticoid (GC) is currently the most effective drug for controlling persistent asthma; however, there is a significant difference in the response to GC among patients with asthma. Steroid-resistant asthma is one of the subtypes of asthma and has poor response to high-dose GC treatment. It may affect the quality of life of patients and even threaten their lives. Therefore, it is of great significance to explore the pathogenesis of steroid-resistant asthma and related targeted treatment strategy. In recent years, a variety of pathogeneses have been found to participate in the development and progression of steroid-resistant asthma, including the reduction in the binding between GC receptor and GC, the increase in the expression of GC receptor β, over-activation of nuclear transcription factor activating protein 1 and nuclear factor-κB, abnormality in histone acetylation, and immune-mediated cytokine dysregulation. In addition, many studies have shown that vitamin D can improve the sensitivity to GC among patients with steroid-resistant asthma. This article reviews the pathogenesis of steroid-resistant asthma and the influence of vitamin D.
Collapse
Affiliation(s)
- Yu-Xiao Yan
- First Clinical Medical College of Lanzhou University, Lanzhou 730000, China.
| | | |
Collapse
|
9
|
Kobayashi Y, Ito K, Kanda A, Tomoda K, Mercado N, Barnes PJ. Impaired Dual-Specificity Protein Phosphatase DUSP4 Reduces Corticosteroid Sensitivity. Mol Pharmacol 2017; 91:475-481. [PMID: 28283554 DOI: 10.1124/mol.116.107656] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 03/06/2017] [Indexed: 12/23/2022] Open
Abstract
We have reported that phosphorylation of the glucocorticoid receptor (GR) at Ser226 reduces GR nuclear translocation, resulting in corticosteroid insensitivity in patients with severe asthmas. A serine/threonine protein phosphatase 2A, which regulates c-Jun N-terminal kinase (JNK) 1 and GR-Ser226 signaling, is involved in this mechanism. Here, we further explored protein kinase dual-specificity phosphatases (DUSPs) with the ability to dephosphorylate JNK, and identified DUSP4 as a phosphatase involved in the regulation of corticosteroid sensitivity. The effects of knocking down DUSPs (DUSP1, 4, 8, 16, and 22) by small interfering RNA (siRNA) were evaluated in a monocytic cell line (U937). Corticosteroid sensitivity was determined by dexamethasone enhancement of FK506-binding protein 51 or inhibition of tumor necrosis factor α (TNFα)-induced interferon γ and interleukin 8 expression and GR translocation from cell cytoplasm to nucleus. The nuclear/cytoplasmic GR, phosphorylation levels of GR-Ser226 and JNK1, coimmunoprecipitated GR-JNK1-DUSP4, and DUSP4 expression were analyzed by western blotting and/or imaging flow cytometry. Phosphatase activity of immunoprecipitated (IP)-DUSP4 was measured by fluorescence-based assay. Knockdown of DUSP4 enhanced phosphorylation of GR-Ser226 and JNK1 and reduced GR nuclear translocation and corticosteroid sensitivity. Coimmunoprecipitation experiments showed that DUSP4 is associated with GR and JNK1. In peripheral blood mononuclear cells from severe asthmatics, DUSP4 expression was reduced versus healthy subjects and negatively correlated with phosphorylation levels of GR-Ser226 and JNK1. Formoterol enhanced DUSP4 activity and restored corticosteroid sensitivity reduced by DUSP4 siRNA. In conclusion, DUSP4 regulates corticosteroid sensitivity via dephosphorylation of JNK1 and GR-Ser226 DUSP4 activation by formoterol restores impaired corticosteroid sensitivity, indicating that DUSP4 is crucial in regulating corticosteroid sensitivity, and therefore might be a novel therapeutic target in severe asthma.
Collapse
Affiliation(s)
- Yoshiki Kobayashi
- Airway Disease Section, National Heart and Lung Institute, Imperial College London, London, United Kingdom (Y.K., K.I., N.M., P.J.B.); and Airway Disease Section, Department of Otolaryngology, Kansai Medical University, Moriguchi, Osaka, Japan (Y.K., A.K., K.T.)
| | - Kazuhiro Ito
- Airway Disease Section, National Heart and Lung Institute, Imperial College London, London, United Kingdom (Y.K., K.I., N.M., P.J.B.); and Airway Disease Section, Department of Otolaryngology, Kansai Medical University, Moriguchi, Osaka, Japan (Y.K., A.K., K.T.)
| | - Akira Kanda
- Airway Disease Section, National Heart and Lung Institute, Imperial College London, London, United Kingdom (Y.K., K.I., N.M., P.J.B.); and Airway Disease Section, Department of Otolaryngology, Kansai Medical University, Moriguchi, Osaka, Japan (Y.K., A.K., K.T.)
| | - Koich Tomoda
- Airway Disease Section, National Heart and Lung Institute, Imperial College London, London, United Kingdom (Y.K., K.I., N.M., P.J.B.); and Airway Disease Section, Department of Otolaryngology, Kansai Medical University, Moriguchi, Osaka, Japan (Y.K., A.K., K.T.)
| | - Nicolas Mercado
- Airway Disease Section, National Heart and Lung Institute, Imperial College London, London, United Kingdom (Y.K., K.I., N.M., P.J.B.); and Airway Disease Section, Department of Otolaryngology, Kansai Medical University, Moriguchi, Osaka, Japan (Y.K., A.K., K.T.)
| | - Peter J Barnes
- Airway Disease Section, National Heart and Lung Institute, Imperial College London, London, United Kingdom (Y.K., K.I., N.M., P.J.B.); and Airway Disease Section, Department of Otolaryngology, Kansai Medical University, Moriguchi, Osaka, Japan (Y.K., A.K., K.T.)
| |
Collapse
|