1
|
Abu SL, Hehar NK, Chigbu DI. Novel therapeutic receptor agonists and antagonists in allergic conjunctivitis. Curr Opin Allergy Clin Immunol 2024; 24:380-389. [PMID: 39079155 DOI: 10.1097/aci.0000000000001010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2024]
Abstract
PURPOSE OF REVIEW Allergic conjunctivitis is characterized by the development of pathophysiological changes to the ocular surface, which occurs when pro-allergic and pro-inflammatory mediators interact with their cognate receptors expressed on immune and nonimmune cells. Traditional treatments with antihistamines and corticosteroids provide relief, but there is a need for more efficacious and tolerable long-term therapy with a better safety profile. This article aims to provide an overview of the mode of action and clinical application of agonist therapies targeting glucocorticoid, melanocortin, and toll-like receptors, as well as antagonist therapies targeting cytokine, chemokine, integrin, and histamine receptors. RECENT FINDINGS There has been considerable advancement in immunology and pharmacology, as well as a greater understanding of the cellular and molecular mechanisms of allergic conjunctivitis. Recent research advancing therapy for allergic conjunctivitis has focused on developing synthetic molecules and biologics that can interfere with the process of the allergic immune reaction. SUMMARY This review discusses novel therapeutic receptors being explored agonistically or antagonistically to develop alternative treatment options for allergic conjunctivitis. These novel approaches hold promise for improving the management of allergic eye diseases, offering patients hope for more effective and safer treatment options in the future.
Collapse
Affiliation(s)
- Sampson L Abu
- Pennsylvania College of Optometry, Salus at Drexel University, Elkins Park, Pennsylvania, USA
| | | | | |
Collapse
|
2
|
Lockett J, Inder WJ, Clifton VL. The Glucocorticoid Receptor: Isoforms, Functions, and Contribution to Glucocorticoid Sensitivity. Endocr Rev 2024; 45:593-624. [PMID: 38551091 PMCID: PMC11244253 DOI: 10.1210/endrev/bnae008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Indexed: 07/13/2024]
Abstract
Glucocorticoids exert pleiotropic effects on all tissues to regulate cellular and metabolic homeostasis. Synthetic forms are used therapeutically in a wide range of conditions for their anti-inflammatory benefits, at the cost of dose and duration-dependent side effects. Significant variability occurs between tissues, disease states, and individuals with regard to both the beneficial and deleterious effects. The glucocorticoid receptor (GR) is the site of action for these hormones and a vast body of work has been conducted understanding its function. Traditionally, it was thought that the anti-inflammatory benefits of glucocorticoids were mediated by transrepression of pro-inflammatory transcription factors, while the adverse metabolic effects resulted from direct transactivation. This canonical understanding of the GR function has been brought into question over the past 2 decades with advances in the resolution of scientific techniques, and the discovery of multiple isoforms of the receptor present in most tissues. Here we review the structure and function of the GR, the nature of the receptor isoforms, and the contribution of the receptor to glucocorticoid sensitivity, or resistance in health and disease.
Collapse
Affiliation(s)
- Jack Lockett
- Mater Research Institute, The University of Queensland, Translational Research Institute, Woolloongabba, QLD 4101, Australia
- Faculty of Medicine, The University of Queensland, Herston, QLD 4006, Australia
- Department of Diabetes and Endocrinology, Princess Alexandra Hospital, Metro South Health, Woolloongabba, QLD 4102, Australia
| | - Warrick J Inder
- Faculty of Medicine, The University of Queensland, Herston, QLD 4006, Australia
- Department of Diabetes and Endocrinology, Princess Alexandra Hospital, Metro South Health, Woolloongabba, QLD 4102, Australia
| | - Vicki L Clifton
- Mater Research Institute, The University of Queensland, Translational Research Institute, Woolloongabba, QLD 4101, Australia
| |
Collapse
|
3
|
Pofi R, Caratti G, Ray DW, Tomlinson JW. Treating the Side Effects of Exogenous Glucocorticoids; Can We Separate the Good From the Bad? Endocr Rev 2023; 44:975-1011. [PMID: 37253115 PMCID: PMC10638606 DOI: 10.1210/endrev/bnad016] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/25/2023] [Accepted: 05/26/2023] [Indexed: 06/01/2023]
Abstract
It is estimated that 2% to 3% of the population are currently prescribed systemic or topical glucocorticoid treatment. The potent anti-inflammatory action of glucocorticoids to deliver therapeutic benefit is not in doubt. However, the side effects associated with their use, including central weight gain, hypertension, insulin resistance, type 2 diabetes (T2D), and osteoporosis, often collectively termed iatrogenic Cushing's syndrome, are associated with a significant health and economic burden. The precise cellular mechanisms underpinning the differential action of glucocorticoids to drive the desirable and undesirable effects are still not completely understood. Faced with the unmet clinical need to limit glucocorticoid-induced adverse effects alongside ensuring the preservation of anti-inflammatory actions, several strategies have been pursued. The coprescription of existing licensed drugs to treat incident adverse effects can be effective, but data examining the prevention of adverse effects are limited. Novel selective glucocorticoid receptor agonists and selective glucocorticoid receptor modulators have been designed that aim to specifically and selectively activate anti-inflammatory responses based upon their interaction with the glucocorticoid receptor. Several of these compounds are currently in clinical trials to evaluate their efficacy. More recently, strategies exploiting tissue-specific glucocorticoid metabolism through the isoforms of 11β-hydroxysteroid dehydrogenase has shown early potential, although data from clinical trials are limited. The aim of any treatment is to maximize benefit while minimizing risk, and within this review we define the adverse effect profile associated with glucocorticoid use and evaluate current and developing strategies that aim to limit side effects but preserve desirable therapeutic efficacy.
Collapse
Affiliation(s)
- Riccardo Pofi
- Oxford Centre for Diabetes, Endocrinology and Metabolism, NIHR Oxford Biomedical Research Centre, University of Oxford, Churchill Hospital, Oxford OX3 7LE, UK
| | - Giorgio Caratti
- Oxford Centre for Diabetes, Endocrinology and Metabolism, NIHR Oxford Biomedical Research Centre, University of Oxford, Churchill Hospital, Oxford OX3 7LE, UK
| | - David W Ray
- Oxford Centre for Diabetes, Endocrinology and Metabolism, NIHR Oxford Biomedical Research Centre, University of Oxford, Churchill Hospital, Oxford OX3 7LE, UK
- NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford OX3 9DU, UK
- Oxford Kavli Centre for Nanoscience Discovery, University of Oxford, Oxford OX37LE, UK
| | - Jeremy W Tomlinson
- Oxford Centre for Diabetes, Endocrinology and Metabolism, NIHR Oxford Biomedical Research Centre, University of Oxford, Churchill Hospital, Oxford OX3 7LE, UK
| |
Collapse
|
4
|
Postel S, Wissler L, Johansson CA, Gunnarsson A, Gordon E, Collins B, Castaldo M, Köhler C, Öling D, Johansson P, Fröderberg Roth L, Beinsteiner B, Dainty I, Delaney S, Klaholz BP, Billas IML, Edman K. Quaternary glucocorticoid receptor structure highlights allosteric interdomain communication. Nat Struct Mol Biol 2023; 30:286-295. [PMID: 36747092 DOI: 10.1038/s41594-022-00914-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 12/15/2022] [Indexed: 02/08/2023]
Abstract
The glucocorticoid receptor (GR) is a ligand-activated transcription factor that binds DNA and assembles co-regulator complexes to regulate gene transcription. GR agonists are widely prescribed to people with inflammatory and autoimmune diseases. Here we present high-resolution, multidomain structures of GR in complex with ligand, DNA and co-regulator peptide. The structures reveal how the receptor forms an asymmetric dimer on the DNA and provide a detailed view of the domain interactions within and across the two monomers. Hydrogen-deuterium exchange and DNA-binding experiments demonstrate that ligand-dependent structural changes are communicated across the different domains in the full-length receptor. This study demonstrates how GR forms a distinct architecture on DNA and how signal transmission can be modulated by the ligand pharmacophore, provides a platform to build a new level of understanding of how receptor modifications can drive disease progression and offers key insight for future drug design.
Collapse
Affiliation(s)
- Sandra Postel
- Mechanistic & Structural Biology, Discovery Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Lisa Wissler
- Mechanistic & Structural Biology, Discovery Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Carina A Johansson
- Mechanistic & Structural Biology, Discovery Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Anders Gunnarsson
- Mechanistic & Structural Biology, Discovery Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Euan Gordon
- Discovery Biology, Discovery Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Barry Collins
- Bioscience COPD/IPF, Research and Early Development, Respiratory and Immunology (R&I), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Marie Castaldo
- Discovery Biology, Discovery Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Christian Köhler
- Bioscience COPD/IPF, Research and Early Development, Respiratory and Immunology (R&I), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - David Öling
- Discovery Biology, Discovery Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Patrik Johansson
- Mechanistic & Structural Biology, Discovery Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | | | - Brice Beinsteiner
- Centre for Integrative Biology (CBI), Department of Integrated Structural Biology, Institute of Genetics and of Molecular and Cellular Biology (IGBMC), Illkirch, France
- Université de Strasbourg, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), Illkirch, France
- Centre National de la Recherche Scientifique (CNRS) UMR 7104, Illkirch, France
| | - Ian Dainty
- Bioscience COPD/IPF, Research and Early Development, Respiratory and Immunology (R&I), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Stephen Delaney
- Bioscience COPD/IPF, Research and Early Development, Respiratory and Immunology (R&I), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Bruno P Klaholz
- Centre for Integrative Biology (CBI), Department of Integrated Structural Biology, Institute of Genetics and of Molecular and Cellular Biology (IGBMC), Illkirch, France
- Université de Strasbourg, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), Illkirch, France
- Centre National de la Recherche Scientifique (CNRS) UMR 7104, Illkirch, France
| | - Isabelle M L Billas
- Centre for Integrative Biology (CBI), Department of Integrated Structural Biology, Institute of Genetics and of Molecular and Cellular Biology (IGBMC), Illkirch, France
- Université de Strasbourg, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), Illkirch, France
- Centre National de la Recherche Scientifique (CNRS) UMR 7104, Illkirch, France
| | - Karl Edman
- Mechanistic & Structural Biology, Discovery Sciences, R&D, AstraZeneca, Gothenburg, Sweden.
| |
Collapse
|
5
|
A glucocorticoid-receptor agonist ameliorates bleomycin-induced alveolar simplification in newborn rats. Pediatr Res 2022; 93:1551-1558. [PMID: 36068343 DOI: 10.1038/s41390-022-02257-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 07/13/2022] [Accepted: 07/24/2022] [Indexed: 11/09/2022]
Abstract
BACKGROUND Glucocorticoids (GCs) are highly effective yet problematic agents against bronchopulmonary dysplasia (BPD). The dimeric trans-activation of GCs induces unfavorable effects, while monomeric trans-repression suppresses inflammation-related genes. Recently, non-steroidal-selective glucocorticoid-receptor agonists and modulators (SEGRAMs) with only the trans-repressive action have been designed. METHODS Using a bleomycin (Bleo)-induced alveolar simplification newborn rat model (recapitulating arrested alveolarization during BPD), we evaluated the therapeutic effects of compound-A (CpdA), a SEGRAM. Sprague-Dawley rats were administered Bleo from postnatal day (PD) 0 to 10 and treated with dexamethasone (Dex) or CpdA from PD 0 to 13. The morphological changes and mRNA expression of inflammatory mediators, including interleukin (IL)-1β, C-X-C motif chemokine ligand 1 (CXCL1), and C-C motif chemokine 2 (CCL2) were investigated. RESULTS Similar to the effects of Dex, CpdA exerted protective effects on morphological derangements and inhibited macrophage infiltration and production of pro-inflammatory mediators in Bleo-treated animals. The effects of CpdA were probably mediated by GC receptor (GR)-dependent trans-repression, because unlike the Dex-treated group, anti-inflammatory genes specifically induced by GR-dependent trans-activation (such as "glucocorticoid-induced leucine zipper, GILZ") were not upregulated. CONCLUSIONS CpdA improved lung inflammation, inhibited the arrest of alveolar maturation, and restored histological and biochemical changes in a Bleo-induced alveolar simplification model. IMPACT SEGRAMs have attracted widespread attention because they are expected to not exhibit unfavorable effects of GCs. Compound A, one of the SEGRAMs, improved lung morphometric changes and decreased lung inflammation in a bleomycin-induced arrested alveolarization, a newborn rat model representing one of the main features of BPD pathology. Compound A did not elicit bleomycin-induced poor weight gain, in contrast to dexamethasone treatment. SEGRAMs, including compound A, may be promising candidates for the therapy of BPD with less adverse effects compared with GCs.
Collapse
|
6
|
Cazzola M, Rogliani P, Naviglio S, Calzetta L, Matera MG. An update on the currently available and emerging synthetic pharmacotherapy for uncontrolled asthma. Expert Opin Pharmacother 2022; 23:1205-1216. [PMID: 35621331 DOI: 10.1080/14656566.2022.2083955] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
INTRODUCTION : The treatment of uncontrolled asthma has improved because of triple therapy that includes a long-acting muscarinic antagonist (LAMA) and biological drugs, but several patients are resistant to corticosteroids and/or cannot achieve adequate asthma control using such therapies. AREAS COVERED : Herein, the authors review the current and emerging synthetic pharmacotherapy for uncontrolled asthma to overcome obstacles and limitations of biological therapies. The authors also provide their expert perspectives and opinion on the treatment of uncontrolled asthma. EXPERT OPINION : LAMAs should be added to inhaled corticosteroid/long-acting β2-agonist combinations much earlier than currently recommended by the Global Initiative for Asthma strategy because they can influence the course of small airways disease, reducing lung hyperinflation and improving asthma control. Biological therapies are a major advance in the treatment of severe asthma, but their use is still very limited for several reasons. An alternative to overcome the use of biological therapies is to synthesise compounds that target inflammation-signalling pathways. Several pathways have been identified as potential targets to design either therapeutic or prophylactic drugs against asthma. Some new compounds have already been tested in humans, but results have often been disappointing probably because existing phenotypic and endotypic variants may unpredictably limit the therapeutic value of blocking a specific pathway in most asthmatics, although there may be a substantial benefit for a subgroup of patients.
Collapse
Affiliation(s)
- Mario Cazzola
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Paola Rogliani
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Silvio Naviglio
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Luigino Calzetta
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Maria Gabriella Matera
- Department of Experimental Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
| |
Collapse
|
7
|
Lesovaya EA, Chudakova D, Baida G, Zhidkova EM, Kirsanov KI, Yakubovskaya MG, Budunova IV. The long winding road to the safer glucocorticoid receptor (GR) targeting therapies. Oncotarget 2022; 13:408-424. [PMID: 35198100 PMCID: PMC8858080 DOI: 10.18632/oncotarget.28191] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 01/25/2022] [Indexed: 11/25/2022] Open
Abstract
Glucocorticoids (Gcs) are widely used to treat inflammatory diseases and hematological malignancies, and despite the introduction of novel anti-inflammatory and anti-cancer biologics, the use of inexpensive and effective Gcs is expected to grow. Unfortunately, chronic treatment with Gcs results in multiple atrophic and metabolic side effects. Thus, the search for safer glucocorticoid receptor (GR)-targeted therapies that preserve therapeutic potential of Gcs but result in fewer adverse effects remains highly relevant. Development of selective GR agonists/modulators (SEGRAM) with reduced side effects, based on the concept of dissociation of GR transactivation and transrepression functions, resulted in limited success, and currently focus has shifted towards partial GR agonists. Additional approach is the identification and inhibition of genes associated with Gcs specific side effects. Others and we recently identified GR target genes REDD1 and FKBP51 as key mediators of Gcs-induced atrophy, and selected and validated candidate molecules for REDD1 blockage including PI3K/Akt/mTOR inhibitors. In this review, we summarized classic and contemporary approaches to safer GR-mediated therapies including unique concept of Gcs combination with REDD1 inhibitors. We discussed protective effects of REDD1 inhibitors against Gcs–induced atrophy in skin and bone and underlined the translational potential of this combination for further development of safer and effective Gcs-based therapies.
Collapse
Affiliation(s)
- Ekaterina A. Lesovaya
- Deparment of Chemical Carcinogenesis, Institute of Carcinogenesis, N.N. Blokhin NMRCO, Moscow, Russia
- Department of Oncology, I.P. Pavlov Ryazan State Medical University, Ryazan, Russia
| | - Daria Chudakova
- Department of Dermatology, Northwestern University, Chicago, IL, USA
| | - Gleb Baida
- Department of Dermatology, Northwestern University, Chicago, IL, USA
| | - Ekaterina M. Zhidkova
- Deparment of Chemical Carcinogenesis, Institute of Carcinogenesis, N.N. Blokhin NMRCO, Moscow, Russia
| | - Kirill I. Kirsanov
- Deparment of Chemical Carcinogenesis, Institute of Carcinogenesis, N.N. Blokhin NMRCO, Moscow, Russia
- Deparment of General Medical Practice, RUDN University, Moscow, Russia
| | - Marianna G. Yakubovskaya
- Deparment of Chemical Carcinogenesis, Institute of Carcinogenesis, N.N. Blokhin NMRCO, Moscow, Russia
| | - Irina V. Budunova
- Department of Dermatology, Northwestern University, Chicago, IL, USA
| |
Collapse
|
8
|
Prothon S, Aurivillius M, Tehler U, Eriksson UG, Aggarwal A, Chen Y. Safety, Pharmacokinetics and Pharmacodynamics of the Selective Glucocorticoid Receptor Modulator Velsecorat (AZD7594) Following Inhalation in Healthy Volunteers. Drug Des Devel Ther 2022; 16:485-497. [PMID: 35264846 PMCID: PMC8901234 DOI: 10.2147/dddt.s334960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 01/06/2022] [Indexed: 11/23/2022] Open
Abstract
Introduction Velsecorat (AZD7594) is a non-steroidal, selective, glucocorticoid receptor modulator (SGRM), being developed for the treatment of asthma. This article reports the initial, first-in-human, single and repeat dose-escalating study in healthy male volunteers. Methods The study comprised two parts, a single ascending dose part (n=47) and a multiple ascending dose part (n=26). Inhaled velsecorat was administered by nebulization as one single dose in the first part of the study and as a single dose with subsequent multiple daily doses (day 5–16) for 12 days once daily in the second part of the study. At each dose level, participants were randomized to velsecorat (n=6) or placebo (n=2/3). The safety, pharmacokinetics (PK) and pharmacodynamics (PD) of velsecorat were evaluated. Results Inhaled velsecorat was safe and well tolerated up to and including the highest dose tested (1872 µg). Plasma exposure suggested dose proportional PK. The terminal half-life following repeated dosing was 25–31 hours and steady state conditions for velsecorat in plasma were generally reached within 4 doses. The accumulation ratio was low (≤2), and data did not indicate any time-dependent PK. There were dose-related effects on 24-hour plasma cortisol, plasma cortisol after ACTH stimulation and osteocalcin, systemic PD markers of glucocorticoid activity. There were no effects on other biomarkers tested (DHEA-S and 4βOH-cholesterol). Conclusion The early clinical evaluation of inhaled velsecorat suggests that this novel SGRM is well tolerated in the dose range investigated. It shows dose proportional plasma exposure, low accumulation, and has dose-dependent effects on markers of glucocorticoid activity.
Collapse
Affiliation(s)
- Susanne Prothon
- Clinical Pharmacology and Quantitative Pharmacology, Clinical Pharmacology & Safety Sciences, R&D, AstraZeneca, Gothenburg, Sweden
- Correspondence: Susanne Prothon, Clinical Pharmacology and Quantitative Pharmacology, Clinical Pharmacology & Safety Sciences, R&D, AstraZeneca, Pepparedsleden 1, Mölndal, Gothenburg, 431 83, Sweden, Email
| | - Magnus Aurivillius
- Late Stage Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Ulrika Tehler
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Ulf G Eriksson
- Clinical Pharmacology and Quantitative Pharmacology, Clinical Pharmacology & Safety Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Ajay Aggarwal
- Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Boston, MA, USA
| | - Yingxue Chen
- Clinical Pharmacology and Quantitative Pharmacology, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Boston, MA, USA
| |
Collapse
|
9
|
Holmberg AA, Weidolf L, Necander S, Bold P, Sidhu S, Pelay-Gimeno M, de Ligt RAF, Verheij ER, Jauhiainen A, Psallidas I, Wählby Hamrén U, Prothon S. Characterization of clinical ADME and pharmacokinetics of velsecorat using an intravenous microtracer combined with an inhaled dose in healthy subjects. Drug Metab Dispos 2021; 50:150-157. [PMID: 34853068 DOI: 10.1124/dmd.121.000632] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 11/23/2021] [Indexed: 11/22/2022] Open
Abstract
This open-label, single-period study describes the human absorption, distribution, metabolism, excretion and pharmacokinetics of velsecorat (AZD7594). Healthy subjects received inhaled velsecorat (non-radiolabeled; 720 µg) followed by intravenous (IV) infusion of 14C-velsecorat (30 µg). Plasma, urine and feces were collected up to 168 hours post-dose. Objectives included identification and quantification of velsecorat and its metabolites (i.e. drug-related material; DRM) in plasma and excreta, and determining the elimination pathways of velsecorat by measuring the rate and route of excretion, plasma half-life (t1/2), clearance, volume of distribution and mean recovery of radioactivity. On average, 76.0% of administered 14C dose was recovered by the end of the sampling period (urine=24.4%; feces=51.6%), with no unchanged compound recovered in excreta, suggesting biliary excretion is the main elimination route. Compared with IV 14C-velsecorat, inhaled velsecorat had a longer t1/2 (27 vs 2 hours), confirming that plasma elimination is absorption-rate-limited from the lungs. Following IV administration, t1/2 of 14C-DRM was longer than for unchanged velsecorat and 20% of the 14C plasma content was related to unchanged velsecorat. The geometric mean plasma clearance of velsecorat was high (70.7 L/h) and the geometric mean volume of distribution at steady state was 113 L. Velsecorat was substantially metabolized via O-dealkylation of the indazole ether followed by sulfate conjugation, forming the M1 metabolite, the major metabolite in plasma. There were 15 minor metabolites. Velsecorat was well tolerated, and these results support the progression of velsecorat to phase 3 studies. Significance Statement This study describes the human pharmacokinetics and metabolism of velsecorat, a selective glucocorticoid receptor modulator, evaluated via co-administration of a radiolabeled intravenous microtracer dose and a non-radiolabeled inhaled dose. This study provides a comprehensive assessment of the disposition of velsecorat in humans. It also highlights a number of complexities associated with determining human absorption, distribution, metabolism and excretion for velsecorat, related to the inhaled route, the high metabolic clearance, sequential metabolite formation and the low intravenous dose.
Collapse
Affiliation(s)
| | | | - Sofia Necander
- Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Sweden
| | - Peter Bold
- Drug Metabolism and Pharmacokinetics, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Sweden
| | | | | | | | | | - Alexandra Jauhiainen
- BioPharma Early Biometrics and Statistical Innovation, Data Science & AI, BioPharmaceuticals R&D, AstraZeneca, Sweden
| | - Ioannis Psallidas
- Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, United Kingdom
| | - Ulrika Wählby Hamrén
- Clinical Pharmacology and Quantitative Pharmacology, Clinical Pharmacology & Safety Science, R&D, AstraZeneca, Sweden
| | - Susanne Prothon
- Clinical Pharmacology and Quantitative Pharmacology, Clinical Pharmacology & Safety Science, R&D, AstraZeneca, Sweden
| |
Collapse
|
10
|
Damiański P, Kardas G, Panek M, Kuna P, Kupczyk M. Improving the risk-to-benefit ratio of inhaled corticosteroids through delivery and dose: current progress and future directions. Expert Opin Drug Saf 2021; 21:499-515. [PMID: 34720035 DOI: 10.1080/14740338.2022.1999926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
INTRODUCTION Inhaled corticosteroids (ICS) are known to increase the risk of systemic and local adverse effects, especially with high doses and long-term use. Hence, considerable resources are invested to improve pharmacokinetic/pharmacodynamic (PK/PD) properties of ICS, effective delivery systems and novel combination therapies to enhance the risk-to-benefit ratio of ICS. AREAS COVERED There is an unmet need for new solutions to achieve optimal clinical outcomes with minimal dose of ICS. This paper gives an overview of novel treatment strategies regarding the safety of ICS therapy on the basis of the three most recent molecules introduced to our everyday clinical practice - ciclesonide, mometasone furoate, and fluticasone furoate. Advances in aerosol devices and new areas of inhalation therapy are also discussed. EXPERT OPINION Current progress in improving the risk-to-benefit ratio of ICS through dose and delivery probably established pathways for further developments. This applies both to the improvement of the PK/PD properties of ICS molecules but also includes technical aspects that lead to simplified applicability of the device with simultaneous optimal drug deposition in the lungs. Indubitably, the future of medicine lies not only in the development of new molecules but also in technology and digital revolution.
Collapse
Affiliation(s)
- Piotr Damiański
- Clinical Department of Internal Medicine, Asthma and Allergy, Medical University of Lodz, Lodz, Poland
| | - Grzegorz Kardas
- Clinical Department of Internal Medicine, Asthma and Allergy, Medical University of Lodz, Lodz, Poland
| | - Michał Panek
- Clinical Department of Internal Medicine, Asthma and Allergy, Medical University of Lodz, Lodz, Poland
| | - Piotr Kuna
- Clinical Department of Internal Medicine, Asthma and Allergy, Medical University of Lodz, Lodz, Poland
| | - Maciej Kupczyk
- Clinical Department of Internal Medicine, Asthma and Allergy, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
11
|
Kurimoto T, Tamai I, Nakagawa T, Miyai A, Yamamoto Y, Kosugi Y, Deai K, Hata T, Ohta T, Matsushita M, Yamada T. JTP-117968, a novel selective glucocorticoid receptor modulator, exhibits significant anti-inflammatory effect while maintaining bone mineral density in mice. Eur J Pharmacol 2021; 895:173880. [PMID: 33476654 DOI: 10.1016/j.ejphar.2021.173880] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 12/25/2020] [Accepted: 01/12/2021] [Indexed: 01/10/2023]
Abstract
Classic glucocorticoids have been prescribed for various inflammatory diseases, such as rheumatoid arthritis, due to their outstanding anti-inflammatory effects. However, glucocorticoids cause numerous unwanted side effects, including osteoporosis and diabetes. Hence, selective glucocorticoid receptor modulators (SGRMs), which retain anti-inflammatory effects with minimized side effects, are among the most anticipated drugs in the clinical field. The assumption is that there are two major mechanisms of action via glucocorticoid receptors, transrepression (TR) and transactivation (TA). In general, anti-inflammatory effects of glucocorticoids are largely due to TR, while the side effects associated with glucocorticoids are mostly mediated through TA. We previously reported that JTP-117968, a novel SGRM, maintained partial TR activity while remarkably reducing the TA activity. In this study, we investigated the anti-inflammatory effect of JTP-117968 on a lipopolysaccharide (LPS) challenge model and collagen-induced arthritis (CIA) model in mice. Meanwhile, we tested the effect of JTP-117968 on the bone mineral density (BMD) in mouse femur to evaluate the side effect. Based on the evaluation, JTP-117968 reduced the plasma levels of tumor necrosis factor α induced by LPS challenge in mice significantly. Remarkably, CIA development was suppressed by JTP-117968 comparably with prednisolone and PF-802, an active form of fosdagrocorat that has been developed clinically as an orally available SGRM. Strikingly, the side effect of JTP-117968 on mouse femoral BMD was much lower than those of PF-802 and prednisolone. Therefore, JTP-117968 has attractive potential as a new therapeutic option against inflammatory diseases with minimized side effects compared to classic glucocorticoids.
Collapse
Affiliation(s)
- Takafumi Kurimoto
- Central Pharmaceutical Research Institute, Japan Tobacco Inc., Osaka, Japan; Faculty of Agriculture, Department of Agrobiology, Niigata University, Niigata, Japan.
| | - Isao Tamai
- Central Pharmaceutical Research Institute, Japan Tobacco Inc., Osaka, Japan
| | - Takashi Nakagawa
- Central Pharmaceutical Research Institute, Japan Tobacco Inc., Osaka, Japan
| | - Atsuko Miyai
- Central Pharmaceutical Research Institute, Japan Tobacco Inc., Osaka, Japan
| | - Yasuo Yamamoto
- Central Pharmaceutical Research Institute, Japan Tobacco Inc., Osaka, Japan
| | - Yoshinori Kosugi
- Central Pharmaceutical Research Institute, Japan Tobacco Inc., Osaka, Japan
| | - Katsuya Deai
- Central Pharmaceutical Research Institute, Japan Tobacco Inc., Osaka, Japan
| | - Takahiro Hata
- Central Pharmaceutical Research Institute, Japan Tobacco Inc., Osaka, Japan
| | - Takeshi Ohta
- Laboratory of Animal Physiology and Functional Anatomy, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | | | - Takahisa Yamada
- Faculty of Agriculture, Department of Agrobiology, Niigata University, Niigata, Japan
| |
Collapse
|
12
|
Rogliani P, Ritondo BL, Puxeddu E, Pane G, Cazzola M, Calzetta L. Experimental Glucocorticoid Receptor Agonists for the Treatment of Asthma: A Systematic Review. J Exp Pharmacol 2020; 12:233-254. [PMID: 32982485 PMCID: PMC7495344 DOI: 10.2147/jep.s237480] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 07/02/2020] [Indexed: 12/25/2022] Open
Abstract
Inhaled corticosteroids (ICSs) are considered the cornerstone of asthma treatment. Despite the solid evidence documenting the efficacy and safety of ICSs at the level of the airways, their use can be affected by pulmonary and systemic adverse events (AEs) when administered chronically and/or at high doses. Thus, there is a pharmacological and medical need for new glucocorticoid (GC) receptor (GR) ligands with a more favorable therapeutic index, in order to overcome the shortcomings of currently available ICSs. The therapeutic profile of GCs can be improved by enhancing genomic mechanisms mediated by transrepression, which is assumed to be responsible for several anti-inflammatory and immunomodulatory actions, rather than transactivation, which causes most of the GC-associated AEs. It was assumed that an independent modulation of the molecular mechanisms underlying transactivation and transrepression could translate into the dissociation of beneficial effects from AEs. Therefore, current research is looking for GCs that are able to elicit prevalently transrepression with negligible transactivating activity. These compounds are known as selective glucocorticoid receptor agonists (SEGRAs). In this review, experimental GR agonists currently in pre-clinical and clinical development for the treatment of asthma have been systematically assessed. Several compounds are currently under pre-clinical development, but only three novel experimental GR agonists (GW870086X, AZD5423, AZD7594) seem to have some potential therapeutic relevance and have entered clinical trials for the treatment of asthma. Since data from pre-clinical studies have not always been confirmed in clinical investigations, well-designed randomized controlled trials are needed in asthmatic patients to confirm the potentially positive benefit/risk ratio of each specific SEGRA and to optimize the development strategy of these agents in respiratory medicine.
Collapse
Affiliation(s)
- Paola Rogliani
- Unit of Respiratory Medicine, Department of Experimental Medicine, University of Rome "Tor Vergata", Rome, Italy.,Division of Respiratory Medicine, University Hospital "Tor Vergata", Rome, Italy
| | - Beatrice Ludovica Ritondo
- Unit of Respiratory Medicine, Department of Experimental Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Ermanno Puxeddu
- Division of Respiratory Medicine, University Hospital "Tor Vergata", Rome, Italy
| | - Gloria Pane
- Division of Respiratory Medicine, University Hospital "Tor Vergata", Rome, Italy
| | - Mario Cazzola
- Unit of Respiratory Medicine, Department of Experimental Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Luigino Calzetta
- Department of Medicine and Surgery, Respiratory Disease and Lung Function Unit, University of Parma, Parma, Italy
| |
Collapse
|
13
|
Van Moortel L, Gevaert K, De Bosscher K. Improved Glucocorticoid Receptor Ligands: Fantastic Beasts, but How to Find Them? Front Endocrinol (Lausanne) 2020; 11:559673. [PMID: 33071974 PMCID: PMC7541956 DOI: 10.3389/fendo.2020.559673] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 08/26/2020] [Indexed: 01/01/2023] Open
Abstract
Exogenous glucocorticoids are widely used in the clinic for the treatment of inflammatory disorders and hematological cancers. Unfortunately, their use is associated with debilitating side effects, including hyperglycemia, osteoporosis, mood swings, and weight gain. Despite the continued efforts of pharma as well as academia, the search for so-called selective glucocorticoid receptor modulators (SEGRMs), compounds with strong anti-inflammatory or anti-cancer properties but a reduced number or level of side effects, has had limited success so far. Although monoclonal antibody therapies have been successfully introduced for the treatment of certain disorders (such as anti-TNF for rheumatoid arthritis), glucocorticoids remain the first-in-line option for many other chronic diseases including asthma, multiple sclerosis, and multiple myeloma. This perspective offers our opinion on why a continued search for SEGRMs remains highly relevant in an era where small molecules are sometimes unrightfully considered old-fashioned. Besides a discussion on which bottlenecks and pitfalls might have been overlooked in the past, we elaborate on potential solutions and recent developments that may push future research in the right direction.
Collapse
Affiliation(s)
- Laura Van Moortel
- Translational Nuclear Receptor Research (TNRR) Laboratory, VIB, Ghent, Belgium
- VIB Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Kris Gevaert
- VIB Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Karolien De Bosscher
- Translational Nuclear Receptor Research (TNRR) Laboratory, VIB, Ghent, Belgium
- VIB Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- *Correspondence: Karolien De Bosscher
| |
Collapse
|
14
|
Prothon S, Wählby Hamrén U, Tehler U, Yoon E, Forsman H, Arfvidsson C, Aggarwal A, Chen Y. Safety, pharmacokinetics and pharmacodynamics of the selective glucocorticoid receptor modulator AZD7594, following inhalation in healthy Japanese volunteers. DRUG DESIGN DEVELOPMENT AND THERAPY 2019; 13:3845-3853. [PMID: 31814707 PMCID: PMC6858834 DOI: 10.2147/dddt.s215170] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Accepted: 08/28/2019] [Indexed: 11/23/2022]
Abstract
Introduction AZD7594 is a non-steroidal, selective, glucocorticoid receptor modulator (SGRM), currently in development for the treatment of asthma and chronic obstructive pulmonary disease. This paper reports a randomized placebo-controlled dose escalation study in healthy Japanese male subjects. Methods Inhaled AZD7594 was administered as one single dose at day 1 (day 1-4), with subsequent multiple daily doses (day 5-16) via a multiple-dose dry powder inhaler for 12 days of once-daily treatment. At each dose level, subjects were randomized to AZD7594 (n=7) or placebo (n=2). The safety, pharmacokinetics (PK) and pharmacodynamics (PD) of AZD7594 were evaluated. Results Inhaled AZD7594 was safe and well tolerated up to and including the highest dose 1600 µg tested. Plasma exposure suggested dose-proportional PK. The urinary excretion of AZD7594 was negligible (<0.02%). Dose-related effects were observed for 24 hrs plasma cortisol; however, significant cortisol suppression (25%) was only seen at the highest dose level following multiple doses. There were no or only marginal effects on other biomarkers tested (dehydroepiandrosterone sulfate [DHEA-S] and osteocalcin). Conclusion In conclusion, the early clinical evaluation of inhaled AZD7594 suggests that this novel SGRM is well tolerated in the dose range investigated and also in a Japanese population. It shows dose-proportional plasma exposure, moderate accumulation and has limited impact on systemic markers of glucocorticoid activity.
Collapse
Affiliation(s)
- Susanne Prothon
- Clinical Pharmacology, ADME, and AI, Clinical Pharmacology & Safety Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Ulrika Wählby Hamrén
- Clinical Pharmacology, ADME, and AI, Clinical Pharmacology & Safety Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Ulrika Tehler
- Early Product Development, Pharmaceutical Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Esther Yoon
- Early Phase Clinical Unit, PAREXEL, Glendale, CA, USA
| | - Henrik Forsman
- Research and Early Development, Respiratory, Inflammation and Autoimmune (RIA), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Cecilia Arfvidsson
- Clinical Sample and Bioanalytical Science, Clinical Pharmacology & Safety Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Ajay Aggarwal
- Research and Early Development, Respiratory, Inflammation and Autoimmune (RIA), BioPharmaceuticals R&D, AstraZeneca, Boston, MA, USA
| | - Yingxue Chen
- Clinical Pharmacology, ADME, and AI, Clinical Pharmacology & Safety Sciences, R&D, AstraZeneca, Boston, MA, USA
| |
Collapse
|
15
|
Carter HL, Connor AW, Hart R, McCabe J, McIntyre AC, McMillan AE, Monks NR, Mullen AK, Ronson TO, Steven A, Tomasi S, Yates SD. Rapid route design of AZD7594. REACT CHEM ENG 2019. [DOI: 10.1039/c9re00118b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Multidisciplinary collaboration enables the rapid and efficient design and selection of an improved manufacturing route to a new potential medicine for the treatment of asthma.
Collapse
Affiliation(s)
- Holly L. Carter
- Pharmaceutical Technology and Development
- AstraZeneca
- Macclesfield
- UK
| | - Amand W. Connor
- Pharmaceutical Technology and Development
- AstraZeneca
- Macclesfield
- UK
| | - Richard Hart
- Pharmaceutical Technology and Development
- AstraZeneca
- Macclesfield
- UK
| | - James McCabe
- Early Product Development
- Pharmaceutical Sciences
- IMED Biotech Unit
- AstraZeneca
- Macclesfield
| | | | | | - Natalie R. Monks
- Pharmaceutical Technology and Development
- AstraZeneca
- Macclesfield
- UK
| | | | - Thomas O. Ronson
- Pharmaceutical Technology and Development
- AstraZeneca
- Macclesfield
- UK
| | - Alan Steven
- Pharmaceutical Technology and Development
- AstraZeneca
- Macclesfield
- UK
| | - Simone Tomasi
- Pharmaceutical Technology and Development
- AstraZeneca
- Macclesfield
- UK
| | - Simon D. Yates
- Pharmaceutical Technology and Development
- AstraZeneca
- Macclesfield
- UK
| |
Collapse
|