1
|
Amin F, Basirat H, Parvaz N, Khademalhosseini M, Hakimizadeh E, Fatemi I. Protective effects of myrtenol against paraquat-induced toxicity in rats. BMC Pulm Med 2025; 25:17. [PMID: 39806385 PMCID: PMC11730473 DOI: 10.1186/s12890-025-03484-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Accepted: 01/06/2025] [Indexed: 01/16/2025] Open
Abstract
BACKGROUND Paraquat (PQ) is a widely used pesticide, can cause severe intoxication and respiratory failure. Myrtenol (Mrl), an essential oil derived in various plants, exhibits several biological properties, including anti-inflammatory and antioxidant activities. This study aims to investigate the protective potential of Mrl against oxidative stress and inflammation caused by PQ exposure. METHODS Twenty-five Wistar albino rats were divided into the following groups (n = 5 in each group): a control group (treated by dimethyl sulfoxide (DMSO)), a PQ group (exposed to 54 mg/m³ aerosol PQ), and two treatment groups that were exposed to PQ aerosol and administered oral Mrl at doses of 25 mg/kg/day and 50 mg/kg/day, respectively. The final group was exposed to PQ aerosol and treated with oral dexamethasone at a dose of 0.03 mg/kg/day. Various hematological, oxidative, inflammatory, and pathological indices were measured at the conclusion of the treatment period. RESULTS PQ decreases the levels or activities of superoxide dismutase (SOD), catalase (CAT), and Thiol, while increasing the levels or activities of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and malondialdehyde (MDA). Mrl restored activites of SOD, and CAT, as well as thiol levels to near-control values while reducing TNF-α, IL-6, and MDA levels. Pathological studies further confirmed the therapeutic effects of Mrl. CONCLUSION The results of this study demonstrate the promising therapeutic effects of Mrl against inhaled PQ in rats.
Collapse
Affiliation(s)
- Fatemeh Amin
- Physiology-Pharmacology Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
- Department of Physiology and Pharmacology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Hosein Basirat
- Student Research Committee, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Najmeh Parvaz
- Department of Clinical Biochemistry, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Morteza Khademalhosseini
- Clinical Research Development Unit (CRDU), Ali-Ibn Abi-Talib Hospital, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
- Department of Pathology, Medical School, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Elham Hakimizadeh
- Physiology-Pharmacology Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Iman Fatemi
- Research Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman, 7618868367, Iran.
| |
Collapse
|
2
|
Behrouz S, Mohammadi M, Sarir H, Boskabady MH. The effects of camel milk in systemic inflammation and oxidative stress of cigarette smoke-induced chronic obstructive pulmonary disease model in rat. Front Vet Sci 2024; 11:1464432. [PMID: 39735585 PMCID: PMC11673985 DOI: 10.3389/fvets.2024.1464432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 11/29/2024] [Indexed: 12/31/2024] Open
Abstract
Background The effects of camel milk in inflammation and systemic oxidative stress of cigarette smoke (CS)-induced chronic obstructive pulmonary disease (COPD) associated with small airway inflammation in rats were investigated. Methods 35 male Wistar rats were randomly divided into five groups: (a) control, (b) CS-exposed rats, c and (d) CS-exposed rats treated with the 4 and 8 mL/kg camel milk, and (e) CS-exposed rats treated with 1 mg/kg dexamethasone. Results Total and differential WBC counts, serum level of TNF-α and malondialdehyde (MDA) level in serum and homogenized tissues of the heart, kidney, liver, and testicle were significantly increased, but catalase (CAT), superoxide dismutase (SOD) and thiol levels were significantly decreased in CS-exposed rats (p < 0.01 to p < 0.001). Treatment with dexamethasone and both doses of camel milk improved all measured variables compared to the COPD group (p < 0.05 to p < 0.001). The improvements of most variables in the treated group with high dose of camel milk were higher than the effect of dexamethasone (p < 0.05 to p < 0.001). These findings suggest that camel milk has a therapeutic potential for treating systemic oxidative stress and inflammatory induced by CS. Conclusion Therefore, camel milk might be effective in attenuating the effects of CS-induced systemic inflammation and oxidative stress.
Collapse
Affiliation(s)
- Sepide Behrouz
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Animal Science, Faculty of Agriculture, University of Birjand, Birjand, Iran
| | - Mahla Mohammadi
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hadi Sarir
- Department of Animal Science, Faculty of Agriculture, University of Birjand, Birjand, Iran
| | - Mohammad Hossein Boskabady
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
3
|
Khosravi R, Beigoli S, Behrouz S, Amirahmadi S, Sarbaz P, Hosseini M, Sarir H, Boskabady MH. The inhibitory influence of carvacrol on behavioral modifications, brain oxidation, and general inflammation triggered by paraquat exposure through inhalation. Neurotoxicology 2024; 105:184-195. [PMID: 39393544 DOI: 10.1016/j.neuro.2024.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 09/28/2024] [Accepted: 10/07/2024] [Indexed: 10/13/2024]
Abstract
The current study investigated how carvacrol (C) can prevent behavioral and brain oxidative changes, along with systemic inflammation caused by inhaled paraquat (PQ). Control rats exposed to saline solution, whereas six rat groups were subjected to PQ aerosols at a concentration of 54 mg/m3 in 16 days. The PQ-exposed groups received saline (PQ group), C at dosages of 20 (C-L) and 80 mg/kg/day (C-H), dexamethasone at a dosage of 0.03 mg/kg/day, pioglitazone at dose of 5 and 10 mg/kg/day (Pio-L and Pio-H), and a combination of C-L + Pio-L. Various parameters were assessed following the end of the treatment duration. There were marked elevation in total and differential white blood cell counts (WBCs), and malondialdehyde levels in the blood, hippocampus, and cerebral tissue but, thiol, superoxide dismutase (SOD), and catalase (CAT) exhibited a notable decrease (p < 0.05 to p < 0.001). The escape delay and traveled distance exhibited enhancement, however, on the probe day, the duration spent in the target quadrant and the time taken to enter the dark room at 3, 24, 48, and 72 hours post an electrical shock, showed a reduction in the PQ group (P<0.05 to P<0.001). Inhaled PQ-induced changes were significantly improved in C, Pio, Dexa, and C-L + Pio-L treated groups (P<0.05 to P<0.001). The effects of C-L + Pio-L on most measured variables were higher than C-L and Pio-L (P<0.05 to P<0.001). C improved PQ-induced changes similar to dexamethasone and C-L showed additive effects when administered in combination with Pio.
Collapse
Affiliation(s)
- Reyhaneh Khosravi
- Department of Animal Science, Faculty of Agriculture, University of Birjand, Birjand, Iran
| | - Sima Beigoli
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sepideh Behrouz
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sabiheh Amirahmadi
- Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Parisa Sarbaz
- Department of Animal Science, Faculty of Agriculture, University of Birjand, Birjand, Iran
| | - Mahmoud Hosseini
- Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hadi Sarir
- Department of Animal Science, Faculty of Agriculture, University of Birjand, Birjand, Iran.
| | - Mohammad Hossein Boskabady
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
4
|
Behrouz S, Mohammadi M, Sarir H, Mohammadian Roshan N, Boskabady MH. Camel milk inhibits pulmonary oxidative stress and inflammation in a rat model of COPD induced by cigarette smoke exposure. Heliyon 2024; 10:e39416. [PMID: 39497967 PMCID: PMC11532301 DOI: 10.1016/j.heliyon.2024.e39416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 09/09/2024] [Accepted: 10/14/2024] [Indexed: 11/07/2024] Open
Abstract
Background One of the main causes of death in the world is chronic obstructive pulmonary disease (COPD) with partially reversible airflow limitation, which is defined as a preventable and treatable pathological condition. Anti-inflammatory and antioxidant properties of camel milk (CM) were indicated previously. The effect of CM in cigarette smoke induced-COPD in rats was evaluated in this study. Methods Five groups of rats including a) control, b) chronic obstructive pulmonary diseases (COPD, cigarette smoke exposed), c) COPD group treated with dexamethasone, d) COPD group treated with low dose of camel milk (CM) and e) COPD group treated with high dose of CM by gavage during the cigarette smoke exposure period (n = 7) were studied. Results In the COPD group, total and differential white blood cells (WBC) count in the bronchoalveolar fluid (BALF), tumor necrosis factor-alpha (TNF-α) level in the lung tissue and malondialdehyde (MDA) level in the BALF and lung tissue, lung pathological changes and tracheal responsiveness to methacholine were significantly increased, but catalase (CAT) and superoxide dismutase (SOD) activities and the level of thiol in the BALF and lung tissue were significantly decreased compared to the control group (all, p < 0.001). However, in the COPD groups treated with both doses of CM and dexamethasone, most variable did not achieved to the control levels and were significantly different with the control group (p < 0.05 to p < 0.001). In the COPD group treated with both doses of CM (dose dependently) and dexamethasone, almost all measured variables were significantly improved (p < 0.05 to p < 0.001). Conclusion The potential effect of CM on lung inflammation and oxidative stress in a rat model of COPD comparable to dexamethasone was demonstrated.
Collapse
Affiliation(s)
- Sepide Behrouz
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahla Mohammadi
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hadi Sarir
- Department of Animal Science, Faculty of Agriculture, University of Birjand, Birjand, Iran
| | - Nema Mohammadian Roshan
- Department of Pathology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Hossein Boskabady
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
5
|
Eshaghi Ghalibaf MH, Taghavi zadeh Yazdi ME, Mansourian M, Mohammadian Roshan N, Boskabady MH. Evaluation of the protective effect of Curcuma longa and PPARγ agonist, pioglitazone on paraquat-induced lung injury in rats. Immun Inflamm Dis 2024; 12:e70001. [PMID: 39172009 PMCID: PMC11340013 DOI: 10.1002/iid3.70001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 07/29/2024] [Accepted: 08/06/2024] [Indexed: 08/23/2024] Open
Abstract
BACKGROUND The inhalation of paraquat (PQ), one of the most widely used herbicides in the world, can result in lung injury. Curcuma longa (Cl) has long history in traditional and folk medicine for the treatment of a wide range of disorders including respiratory diseases. AIM The aim of the present work was to evaluate the preventive effect of Cl on inhaled PQ-induced lung injury in rats. METHODS Male Wistar rats were divided into 8 groups (n = 7), one group exposed to saline (control) and other groups exposed to PQ aerosol. Saline (PQ), Cl extract, (two doses), curcumin (Cu), pioglitazone (Pio), and the combination of Cl-L + Pio and dexamethasone (Dex) were administered during the exposure period to PQ. Total and differential white blood cell (WBC) counts, oxidant and antioxidant indicators in the bronchoalveolar lavage (BALF), interleukin (IL)-10, and tumor necrosis alpha (TNF-α) levels in the lung tissues, lung histologic lesions score, and air way responsiveness to methacholine were evaluated. RESULTS WBC counts (Total and differential), malondialdehyde level, tracheal responsiveness (TR), IL-10, TNF-α and histopathological changes of the lung were markedly elevated but total thiol content and the activities of catalase and superoxide dismutase were decreased in the BALF in the PQ group. Both doses of Cl, Cu, Pio, Cl-L + Pio, and Dex markedly improved all measured variables in comparison with the PQ group. CONCLUSION CI, Pio, and Cl-L + Pio improved PQ-induced lung inflammation and oxidative damage comparable with the effects of Dex.
Collapse
Affiliation(s)
- Mohammad Hossein Eshaghi Ghalibaf
- Applied Biomedical Research CenterMashhad University of Medical SciencesMashhadIran
- Department of Physiology, School of MedicineMashhad University of Medical SciencesMashhadIran
| | | | - Mona Mansourian
- Student Research Committee, Faculty of MedicineMashhad University of Medical SciencesMashhadIran
| | - Nema Mohammadian Roshan
- Department of Pathology, Faculty of MedicineMashhad University of Medical SciencesMashhadIran
| | - Mohammad Hossein Boskabady
- Applied Biomedical Research CenterMashhad University of Medical SciencesMashhadIran
- Department of Physiology, School of MedicineMashhad University of Medical SciencesMashhadIran
| |
Collapse
|
6
|
Amin F, Memarzia A, Kazemi Rad H, Kazerani HR, Ghasemi SZ, Boskabady MH. Inhaled paraquat-induced lung injury in rat, improved by the extract of Zataria multiflora boiss and PPARγ agonist, pioglitazone. Leg Med (Tokyo) 2024; 67:102335. [PMID: 37951808 DOI: 10.1016/j.legalmed.2023.102335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 10/10/2023] [Accepted: 10/17/2023] [Indexed: 11/14/2023]
Abstract
The effects of a PPAR-γ agonist, pioglitazone and Zataria multiflora (Z. multiflora) on inhaled paraquat (PQ)-induced lung oxidative stress, inflammation, pathological changes and tracheal responsiveness were examined. The study was carried out in control rats exposed to normal aerosol of saline, PQl and PQh groups exposed to aerosols of 27 and 54 mg/m3 PQ, groups exposed to high PQ concentration (PQh) and treated with 200 and 800 mg/kg/day Z. multiflora, 5 and 10 mg/kg/day pioglitazone, low doses of Z. multiflora + pioglitazone, and 0.03 mg/kg/day dexamethasone. Increased tracheal responsiveness, transforming growth factor beta (TGF-ß) and lung pathological changes due to PQh were significantly improved by high doses of Z. multiflora and pioglitazone, dexamethasone and extract + pioglitazone, (p < 0.05 to p < 0.001). In group treated with low doses of the extract + pioglitazone, the improvements of most measured variables were significantly higher than the low dose of two agents alone (p < 0.05 to p < 0.001). Z. multiflora improved lung injury induced by inhaled PQ similar to dexamethasone and pioglitazone which could be mediated by PPAR-γ receptor.
Collapse
Affiliation(s)
- Fatemeh Amin
- Department of Physiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Arghavan Memarzia
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamideh Kazemi Rad
- Department of Physiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran.
| | - Hamid Reza Kazerani
- Department of Physiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Seyedeh Zahra Ghasemi
- Department of Physiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Mohammad Hossein Boskabady
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
7
|
Wang C, Jiang C, Yang Y, Xi C, Yin Y, Wu H, Qian C. Therapeutic potential of HUC-MSC-exos primed with IFN-γ against LPS-induced acute lung injury. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2024; 27:375-382. [PMID: 38333754 PMCID: PMC10849211 DOI: 10.22038/ijbms.2023.74372.16156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 10/30/2023] [Indexed: 02/10/2024]
Abstract
Objectives Human umbilical cord mesenchymal stem cells (HUC-MSCs) are pluripotent stem cells with anti-inflammatory and immunomodulatory properties used in the treatment of acute lung injury (ALI). However, the treatment of ALI using exosomes derived from HUC-MSCs (HUC-MSC-exos) primed with interferon-gamma (IFN-γ-exos) has not been described. This study investigated the effects of IFN-γ-exos on ALI. Materials and Methods IFN-γ primed and unprimed HUC-MSC-exos (IFN-γ-exos and CON-exos, respectively) were extracted, identified, and traced. A549 cells and mice subjected to lipopolysaccharide (LPS)-induced inflammation were treated with IFN-γ-exos or CON-exos. Viability; interleukin (IL)-1β, IL-6, tumor necrosis factor (TNF)-α, and reactive oxygen species (ROS) levels; NF-κB p65, and NLRP3 expression and histology and lung injury scores were measured in cell, supernatant or lung tissue. Results Indoleamine 2,3-dioxygenase (IDO) mRNA expression was elevated in HUC-MSCs primed with 5 ng/mL IFN-γ (P<0.001), and IFN-γ-exos and CON-exos were successfully extracted. LPS-induced inflammation resulted in decreased cell viability in A549 cells, and increased IL-1β, IL-6, TNF-α and ROS levels and NF-κB p65 and NLRP3 expression in A549 cells and mice(P<0.05 to P<0.001). Treatment with IFN-γ-exos and CON-exos increased cell viability and decreased the concentrations of IL-1β, and ROS, expression of NF-κB p65 and NLRP3, and the lung injury score, and these effects were more obvious for IFN-γ-exos(P<0.05 to P<0.001). Conclusion IFN-γ-exos reduced oxidative stress and inflammatory responses in LPS-induced A549 cells and mice. The result demonstrated the therapeutic potential of IFN-γ-exos in LPS-induced ALI.
Collapse
Affiliation(s)
- Chun Wang
- Kunming Medical University, Kunming, China
- Department of Emergency Intensive Care Unit, Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650000, China
| | - Chen Jiang
- Kunming Medical University, Kunming, China
| | - Yiran Yang
- Kunming Medical University, Kunming, China
| | - Cheng Xi
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650000, China
| | - Yunxiang Yin
- Department of Emergency Intensive Care Unit, Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650000, China
| | - Haiying Wu
- Department of Emergency, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650000, China
| | - Chuanyun Qian
- Department of Emergency, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650000, China
| |
Collapse
|
8
|
Memarzia A, Ghasemi SZ, Behrouz S, Boskabady MH. The effects of Crocus sativus extract on inhaled paraquat-induced lung inflammation, oxidative stress, pathological changes and tracheal responsiveness in rats. Toxicon 2023; 235:107316. [PMID: 37827264 DOI: 10.1016/j.toxicon.2023.107316] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/27/2023] [Accepted: 10/09/2023] [Indexed: 10/14/2023]
Abstract
Paraquat is a green liquid toxin that is used in agriculture and can induce multi-organ including lung injury. Various pharmacological effects of Crocus sativus (C. sativus) were indicated in previous studies. In this research, the effects of C. sativus extract and pioglitazone on inhaled paraquat-induced lung inflammation, oxidative stress, pathological changes, and tracheal responsiveness were studied in rats. Eight groups of rats (n = 7 in each) including control (Ctrl), untreated paraquat aerosol exposed group (54 mg/m3, 8 times in alternate days), paraquat treated groups with dexamethasone (0.03 mg/kg/day, Dexa) as positive control, two doses of C. sativus extract (20 and 80 mg/kg/day, CS-20 and CS-80), pioglitazone (5 and 10 mg/kg/day, Pio-5 and Pio-10), and the combination of CS-20 + Pio-5 were studied. Total and differential WBC, levels of oxidant and antioxidant biomarkers in the BALF, lung tissue cytokine levels, tracheal responsiveness (TR), and pathological changes were measured. The levels of IFN-γ, IL-10, SOD, CAT, thiol, and EC50 were reduced, but MDA level, total and differential WBC count in the BALF and lung pathological changes were increased in the paraquat group (all, p < 0.001). The levels of IFN-γ, IL-10, SOD, CAT, thiol and EC50 were increased but BALF MDA level, lung pathological changes, total and differential WBC counts were reduced in all treated groups. The effects of C. sativus high dose and combination groups on measured parameters were equal or even higher than dexamethasone (p < 0.05 to p < 0.001). The effects of the combination of CS-20 + Pio-5 on most variables were significantly higher than CS-20 and Pio-5 alone (p < 0.05 to p < 0.001). C. sativus treatment improved inhaled paraquat-induced lung injury similar to dexamethasone and showed a synergistic effect with pioglitazone, suggesting possible PPAR-γ receptor-mediated effects of the plant.
Collapse
Affiliation(s)
- Arghavan Memarzia
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyedeh Zahra Ghasemi
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sepideh Behrouz
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Hossein Boskabady
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
9
|
Xie Y, Zhang Y, Wang T, Liu Y, Ma J, Wu S, Duan C, Qiao W, Cheng K, Lu L, Zhuang R, Bian K. Ablation of CD226 on CD4+ T cells modulates asthma progress associated with altered IL-10 response and gut microbiota. Int Immunopharmacol 2023; 118:110051. [PMID: 36989896 DOI: 10.1016/j.intimp.2023.110051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/06/2023] [Accepted: 03/15/2023] [Indexed: 03/29/2023]
Abstract
To investigate the role of the costimulatory molecule CD226 in asthma pathogenesis, we produced a CD4+ T-cell-specific CD226 knockout mice model (Cd226ΔCD4) and induced airway allergic inflammation by administering ovalbumin (OVA). Our results revealed alleviated lung inflammation, decreased levels of OVA-specific IgE, and increased levels of IL-10 in the serum of Cd226ΔCD4 mice (P < 0.05). Moreover, IL-10 levels in CD4+ T cells were significantly elevated in the mediastinal lymph node, spleen, and Peyer's patches in the Cd226ΔCD4 mice compared with those in controls (P < 0.05 to P < 0.01). Notably, there was a significantly higher IL-10 mRNA levels in the large intestine of the mice (P < 0.05). The protective effect of CD226 deficiency is also associated with the accumulation of gut TCRγδ+ intraepithelial lymphocytes and reversion of the gut microbiome dysbiosis. The Bacteroidetes-to-Firmicutes ratio and the abundance of Akkermansia increased in the absence of CD226 after OVA treatment. Our data reveal the synchronous changes in the lung and intestine in OVA-treated CD226-knockout mice, supporting the gut-lung axis concept and providing evidence for novel therapeutic approaches for asthma.
Collapse
|
10
|
Ghasemi SZ, Beigoli S, Behrouz S, Gholamnezhad Z, Mohammadian Roshan N, Boskabady MH. Evaluation of nano-curcumin against inhaled paraquat-induced lung injury in rats. Pharmacol Rep 2023; 75:671-681. [PMID: 37039972 DOI: 10.1007/s43440-023-00483-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 03/31/2023] [Accepted: 04/03/2023] [Indexed: 04/12/2023]
Abstract
BACKGROUND Acute lung injury (ALI) remains a significant source of morbidity and mortality in critically ill patients and currently there is no efficient therapy for this condition. The aim of this research was to evaluate the protective activity of nano-curcumin (nano-CU) as a natural anti-inflammatory and antioxidant agent, against inhaled paraquat (PQ)-induced lung injury. METHODS One group of rats was exposed to saline (control group, Ctrl) and six groups to PQ aerosol (54 mg/m3 on alternate days 8 times, each time for 30 min) treated with drinking water alone (group PQ), 2 and 8 mg/kg nano-CU (nano + CU(L) and nano + CU(H)), 5 mg/kg pioglitazone (PIO), nano-CU(L) + PIO or 0.03 mg/kg dexamethasone (Dexa) for 16 days after PQ exposure period. PIO and Dexa were intraperitoneal (ip) injected and nano-CU was administered orally (po), (6 rats in each group). RESULTS In the PQ group, total and differential WBC counts, malondialdehyde (MDA) in the bronchoalveolar lavage fluid (BALF), interferon gamma (INF-γ) and interleukin 10 (IL-10) levels in the lung tissues, lung pathological changes, and tracheal responsiveness were increased but the BALF thiol, catalase (CAT) and superoxide dismutase (SOD) levels were reduced. In treated groups with nano-CU(H) and PIO + nano-CU(L), all measured variables, in Dexa and nano-CU(L) treated groups, most variables and in the PIO group only a few variables were improved. The improvement of most variables in the PIO + nano-CU(L) group was significantly higher than in the PIO and nano-CU(L) groups alone. CONCLUSIONS Nano-CU ameliorated lung damage induced by inhaled PQ similar to dexa and a synergic effect between nano-CU and PIO was observed, suggesting, a possible PPAR-γ receptor-mediated effect of curcumin.
Collapse
Affiliation(s)
- Seyedeh Zahra Ghasemi
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, 9177948564, Iran
- Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, 9177948564, Iran
| | - Sima Beigoli
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, 9177948564, Iran
| | - Sepideh Behrouz
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, 9177948564, Iran
- Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, 9177948564, Iran
| | - Zahra Gholamnezhad
- Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, 9177948564, Iran
| | - Nema Mohammadian Roshan
- Department of Pathology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Hossein Boskabady
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, 9177948564, Iran.
- Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, 9177948564, Iran.
| |
Collapse
|
11
|
Ghasemi SZ, Beigoli S, Memarzia A, Behrouz S, Gholamnezhad Z, Darroudi M, Amin F, Boskabady MH. Paraquat-induced systemic inflammation and oxidative stress in rats improved by Curcuma longa ethanolic extract, curcumin and a PPAR agonist. Toxicon 2023; 227:107090. [PMID: 36965712 DOI: 10.1016/j.toxicon.2023.107090] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/14/2023] [Accepted: 03/19/2023] [Indexed: 03/27/2023]
Abstract
The effect of Curcuma longa (Cl) ethanolic extract, nano-curcumin (Cu) and a PPARγ activator, pioglitazone on inhaled paraquat (PQ)-induced systemic inflammation and oxidative stress was examined in the present study. Control rats were exposed to normal saline and PQ groups to 27 and 54 mg/m3 (PQ-L and PQ-H) aerosols. Nine other PQ-H groups were treated with Curcuma longa (Cl, 150 and 600 mg/kg/day), nano-curcumin (Cu, 2 and 8 mg/kg/day), pioglitazone (Pio, 5 and 10 mg/kg), low dose of Pio + Cl and Cu and dexamethasone (0.03 mg/kg/day) for 16 days after PQ exposure period (n = 8). Total and differential WBC counts, malondialdehyde (MDA) and TNF-α levels were increased but thiol, catalase (CAT), superoxide dismutase (SOD), IL-10 and IFN-γ levels were decreased in the blood in the both PQ groups (p < 0.05 to p < 0.001). Treatment with Dexa and both doses of Cl, Cu, and Pio improved all measured variables compared to the PQ-H group (p < 0.05 to p < 0.001). The improvements of most variables in the treated group with low dose of Pio + Cl and Cu were higher than the effects of three agents alone. Systemic inflammation and oxidative stress induced by inhaled PQ were improved by Cl, Cu and Pio. In addition, a synergic effect between Pio with those of Cl and Cu was shown, suggesting PPARγ mediated effects of the plant and its derivative Cu.
Collapse
Affiliation(s)
- Seyedeh Zahra Ghasemi
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, 9177948564, Iran; Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, 9177948564, Iran
| | - Sima Beigoli
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, 9177948564, Iran
| | - Arghavan Memarzia
- Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, 9177948564, Iran
| | - Sepideh Behrouz
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, 9177948564, Iran; Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, 9177948564, Iran
| | - Zahra Gholamnezhad
- Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, 9177948564, Iran
| | - Majid Darroudi
- Nuclear Medicine Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Amin
- Department of Clinical Biochemistry, Faculty of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Mohammad Hossein Boskabady
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, 9177948564, Iran; Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, 9177948564, Iran.
| |
Collapse
|
12
|
Duan HD, Cheng ZF, Zhu JB, Hu R, Li XY. Vernodalin regulated the NF-κβp65 signaling in inflammation of lipopolysaccharide -induced sepsis rats. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
13
|
Interdonato L, D’amico R, Cordaro M, Siracusa R, Fusco R, Peritore AF, Gugliandolo E, Crupi R, Coaccioli S, Genovese T, Impellizzeri D, Di Paola R, Cuzzocrea S. Aerosol-Administered Adelmidrol Attenuates Lung Inflammation in a Murine Model of Acute Lung Injury. Biomolecules 2022; 12:biom12091308. [PMID: 36139146 PMCID: PMC9496587 DOI: 10.3390/biom12091308] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/06/2022] [Accepted: 09/14/2022] [Indexed: 11/16/2022] Open
Abstract
Acute lung injury (ALI) is a common and devastating clinical disorder with a high mortality rate and no specific therapy. The pathophysiology of ALI is characterized by increased alveolar/capillary permeability, lung inflammation, oxidative stress and structural damage to lung tissues, which can progress to acute respiratory distress syndrome (ARDS). Adelmidrol (ADM), an analogue of palmitoylethanolamide (PEA), is known for its anti-inflammatory and antioxidant functions, which are mainly due to down-modulating mast cells (MCs) and promoting endogenous antioxidant defense. The aim of this study is to evaluate the protective effects of ADM in a mice model of ALI, induced by intratracheal administration of lipopolysaccharide (LPS) at the dose of 5 mg/kg. ADM 2% was administered by aerosol 1 and 6 h after LPS instillation. In this study, we clearly demonstrated that ADM reduced lung damage and airway infiltration induced by LPS instillation. At the same time, ADM counteracted the increase in MC number and the expression of specific markers of MC activation, i.e., chymase and tryptase. Moreover, ADM reduced oxidative stress by upregulating antioxidant enzymes as well as modulating the Nf-kB pathway and the resulting pro-inflammatory cytokine release. These results suggest that ADM could be a potential candidate in the management of ALI.
Collapse
Affiliation(s)
- Livia Interdonato
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Ramona D’amico
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Marika Cordaro
- Department of Biomedical, Dental and Morphological and Functional Imaging, University of Messina, Via Consolare Valeria, 98125 Messina, Italy
| | - Rosalba Siracusa
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Roberta Fusco
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Alessio Filippo Peritore
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Enrico Gugliandolo
- Department of Veterinary Science, University of Messina, 98168 Messina, Italy
| | - Rosalia Crupi
- Department of Veterinary Science, University of Messina, 98168 Messina, Italy
| | - Stefano Coaccioli
- General Medical Clinic and Medical Therapy, Rheumatology and Medical Therapy of the Pain, University of Perugia, “Polo di Terni”, “AO Santa Maria” of Terni, 06129 Perugia, Italy
| | - Tiziana Genovese
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Daniela Impellizzeri
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
- Correspondence: ; Tel.: +39-090-676-5208
| | - Rosanna Di Paola
- Department of Veterinary Science, University of Messina, 98168 Messina, Italy
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
| |
Collapse
|
14
|
Inclusion of a Phytomedicinal Flavonoid in Biocompatible Surface-Modified Chylomicron Mimic Nanovesicles with Improved Oral Bioavailability and Virucidal Activity: Molecular Modeling and Pharmacodynamic Studies. Pharmaceutics 2022; 14:pharmaceutics14050905. [PMID: 35631491 PMCID: PMC9144278 DOI: 10.3390/pharmaceutics14050905] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 04/14/2022] [Accepted: 04/16/2022] [Indexed: 11/29/2022] Open
Abstract
Morin hydrate (MH) is a widely-used Asian phytomedicinal flavonoid with a wide range of reported therapeutic activities. However, MH has limited oral bioavailability due to its low aqueous solubility and intestinal permeability, which in turn hinders its potential antiviral activity. The study reported herein was designed to encapsulate MH in polyethyleneglycolated (PEGylated) chylomicrons (PCMs) and to boost its antiviral activity and biological availability for oral administration using a rat experimental model. The PEGylated edge activator combined with the conventional components of chylomicrons (CMs) amplify the transport of the drug across the intestine and its circulation period, hence its therapeutic impact. The implementation of variables in the in vitro characterization of the vesicles was investigated. Using Design Expert® software, a 24 factorial design was conducted, and the resulting PCM formulations were fabricated utilizing a thin-film hydration technique. The efficacy of the formulations was assessed according to their zeta potential (ZP), entrapment efficiency percentage (EE%), amount of drug released after 8 h (Q8h), and particle size (PS) data. Formulation F9, which was deemed to be the optimal formula, used compritol as the lipidic core together in defined amounts with phosphatidylcholine (PC) and Brij52. Computer-aided studies revealed that MH alone in a suspension had both diminished intestinal permeability and absorption, but was enhanced when loaded in PCMs. This was affirmed by the superiority of formulation F9 results in ex vivo permeation and pharmacokinetic studies. Furthermore, formulation F9 had a superior safety profile and antiviral activity over a pure MH suspension. Molecular-docking studies revealed the capability of MH to inhibit MERS-CoV 3CLpro, the enzyme shown to exhibit a crucial role in viral replication. Additionally, F9 suppressed both MERS-CoV-induced histopathological alteration in lung tissue and resulting oxidative and inflammatory biomarkers. Collectively, the results reported herein affirmed the potential of PCMs as nanocarriers for the effective oral administration of MH as an antiviral.
Collapse
|
15
|
Kocherlakota C, Nagaraju B, Arjun N, Srinath A, Kothapalli KSD, Brenna JT. Inhalation of nebulized omega-3 fatty acids mitigate LPS-induced acute lung inflammation in rats: Implications for treatment of COPD and COVID-19. Prostaglandins Leukot Essent Fatty Acids 2022; 179:102426. [PMID: 35381532 PMCID: PMC8964507 DOI: 10.1016/j.plefa.2022.102426] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/25/2022] [Accepted: 03/28/2022] [Indexed: 01/08/2023]
Abstract
Many current treatment options for lung inflammation and thrombosis come with unwanted side effects. The natural omega-3 fatty acids (O3FA) are generally anti-inflammatory and antithrombotic. O3FA are always administered orally and occasionally by intravenous (IV) infusion. The main goal of this study is to determine if O3FA administered by inhalation of a nebulized formulation mitigates LPS-induced acute lung inflammation in male Wistar rats. Inflammation was triggered by intraperitoneal injection of LPS once a day for 14 days. One hour post-injection, rats received nebulized treatments consisting of egg lecithin emulsified O3, Budesonide and Montelukast, and blends of O3 and Melatonin or Montelukast or Cannabidiol; O3 was in the form of free fatty acids for all groups except one group with ethyl esters. Lung histology and cytokines were determined in n = 3 rats per group at day 8 and day 15. All groups had alveolar histiocytosis severity scores half or less than that of the disease control (Cd) treated with LPS and saline only inhalation. IL-6, TNF-α, TGF-β, and IL-10 were attenuated in all O3FA groups. IL-1β was attenuated in most but not all O3 groups. O3 administered as ethyl ester was overall most effective in mitigating LPS effects. No evidence of lipid pneumonia or other chronic distress was observed. These preclinical data suggest that O3FA formulations should be further investigated as treatments in lung inflammation and thrombosis related lung disorders, including asthma, chronic obstructive pulmonary disease, lung cancer and acute respiratory distress such as COVID-19.
Collapse
Affiliation(s)
| | - Banda Nagaraju
- Leiutis Pharmaceuticals LLP, Plot No. 23, TIE 1st Phase, Balanagar, Hyderabad, Telangana 500037, India
| | - Narala Arjun
- Leiutis Pharmaceuticals LLP, Plot No. 23, TIE 1st Phase, Balanagar, Hyderabad, Telangana 500037, India
| | - Akula Srinath
- Leiutis Pharmaceuticals LLP, Plot No. 23, TIE 1st Phase, Balanagar, Hyderabad, Telangana 500037, India
| | - Kumar S D Kothapalli
- Dell Pediatric Research Institute, Dell Medical School, The University of Texas at Austin, 1400 Barbara Jordan Blvd, Austin, TX 78723, United States.
| | - J Thomas Brenna
- Dell Pediatric Research Institute, Dell Medical School, The University of Texas at Austin, 1400 Barbara Jordan Blvd, Austin, TX 78723, United States.
| |
Collapse
|
16
|
Ghasemi SZ, Memarzia A, Behrouz S, Gholamnezhad Z, Boskabady MH. Comparative effects of Curcuma longa and curcumin on paraquat-induced systemic and lung oxidative stress and inflammation in rats. AVICENNA JOURNAL OF PHYTOMEDICINE 2022; 12:414-424. [PMID: 35782772 PMCID: PMC9121257 DOI: 10.22038/ajp.2022.19713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/10/2022] [Accepted: 02/12/2022] [Indexed: 11/22/2022]
Abstract
Objective Comparative effect of Curcuma longa (C. longa) ethanolic extract and curcumin on paraquat (PQ)-induced systemic and lung oxidative stress and inflammation were evaluated in the present study. Materials and Methods Control animals were exposed to normal saline and PQ group to 54 mg/m3 PQ aerosols (8 times, each time for 30 min). Treatment groups were exposed to PQ and treated with 150 and 600 mg/kg/day C. longa, or 30 and 120 mg/kg/day curcumin after PQ exposure period for 16 days. Total and differential white blood cells (WBC) and oxidative markers were measured both in bronchoalveolar lavage (BALF) and blood at the end of the study. Results Total and differential WBC counts as well as malondialdehyde (MDA) level were significantly increased but total thiol content and the activities of catalase (CAT) and superoxide dismutase (SOD) were reduced in both the BALF and blood of the PQ group in comparison with the control group (p<0.05 to p<0.001). Both doses of C. longa and curcumin diminished MDA level, total and differential WBC counts in the blood and BALF but increased CAT and SOD activities in both of them compared to PQ group (p<0.05 to p<0.001). The effects of C. longa and curcumin high dose on most variables were markedly more than low dose (p<0.05 to p<0.001). Furthermore, the effects of curcumin on some variables were markedly more than C. longa (p<0.05 to p<0.001). Conclusion Both C. longa and curcumin improved PQ-induced systemic and lung inflammation and oxidative stress, but the effect of curcumin was more prominent.
Collapse
Affiliation(s)
- Seyedeh Zahra Ghasemi
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran,Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Arghavan Memarzia
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran,Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran,Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sepideh Behrouz
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran,Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Gholamnezhad
- Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Hossein Boskabady
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran,Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran,Corresponding Author: Tel: +98-5138828565, Fax: +98-5138828564,
| |
Collapse
|
17
|
Dikmen N, Cellat M, Etyemez M, İşler CT, Uyar A, Aydın T, Güvenç M. Ameliorative Effects of Oleuropein on Lipopolysaccharide-Induced Acute Lung Injury Model in Rats. Inflammation 2021; 44:2246-2259. [PMID: 34515957 DOI: 10.1007/s10753-021-01496-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 05/24/2021] [Accepted: 05/31/2021] [Indexed: 12/21/2022]
Abstract
Acute lung injury (ALI) is one of the most common causes of death in diseases with septic shock. Oleuropein, one of the important components of olive leaf, has antioxidant and anti-inflammatory effects. The objective of this study was to investigate the effects of oleuropein on lipopolysaccharide (LPS)-induced ALI in rats. Oleuropein was administered to rats at a dose of 200 mg/kg for 20 days and LPS was given through intratracheal administration to induce ALI. The study was terminated after 12 h. The results showed that in the group treated with oleuropein, inflammatory cytokines and oxidative stress decreased in serum, bronchoalveolar lavage fluid (BALF), and lung tissue, and there were significant improvements in the picture of acute interstitial pneumonia (AIP) caused by LPS in histopathological examination. Based on the findings of the present study, oleuropein showed protective effects against LPS-induced ALI.
Collapse
Affiliation(s)
- Nursel Dikmen
- Department of Chest Diseases, Faculty of Medicine, University of Hatay Mustafa Kemal, 31060, Antakya, Hatay, Turkey.
| | - Mustafa Cellat
- Department of Physiology, Faculty of Veterinary Medicine, University of Hatay Mustafa Kemal, Antakya, Hatay, Turkey
| | - Muhammed Etyemez
- Department of Physiology, Faculty of Veterinary Medicine, University of Hatay Mustafa Kemal, Antakya, Hatay, Turkey
| | - Cafer Tayer İşler
- Department of Surgery, Faculty of Veterinary Medicine, University of Hatay Mustafa Kemal, Antakya, Hatay, Turkey
| | - Ahmet Uyar
- Department of Pathology, Faculty of Veterinary Medicine, University of Hatay Mustafa Kemal, Antakya, Hatay, Turkey
| | - Tuba Aydın
- Department of Pharmacognosy, Faculty of Pharmacy, Ağrı İbrahim Çeçen University, Agri, Turkey
| | - Mehmet Güvenç
- Department of Physiology, Faculty of Veterinary Medicine, University of Hatay Mustafa Kemal, Antakya, Hatay, Turkey
| |
Collapse
|
18
|
Saadat S, Boskabady MH. Anti-inflammatory and Antioxidant Effects of Rosuvastatin on Asthmatic, Hyperlipidemic, and Asthmatic-Hyperlipidemic Rat Models. Inflammation 2021; 44:2279-2290. [PMID: 34226988 DOI: 10.1007/s10753-021-01499-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 04/30/2021] [Accepted: 06/04/2021] [Indexed: 10/20/2022]
Abstract
Statins could be of potential therapeutic effect in asthma due to their pleiotropic effects on inflammation process. This study aimed to examine the possible interaction of serum lipids, and evaluate the effect of rosuvastatin treatment on asthma. Seven groups of rats, namely control (C), asthmatic (A), hyperlipidemic (H), asthmatic-hyperlipidemic (AH), rosuvastatin (40 mg/kg)-treated asthmatic (AR), rosuvastatin-treated hyperlipidemic (HR), and rosuvastatin-treated hyperlipidemic-asthmatic (AHR) groups, were studied. Total and differential WBC counts, serum oxidative stress markers, and bronchoalveolar lavage fluid (BALF) levels of IL-6 and IL-10 were evaluated. In the A and AH groups, total and differential WBC counts, and IL-6 and IL-10 levels were higher than in the C group (p<0.05 to p<0.001). An increase in nitrite and malondialdehyde concentrations and a decrease in total thiol content and superoxide dismutase and catalase activities were observed in the A, H, and AH groups compared to the C group (p<0.05 to p<0.001). Beyond lipid lowering, rosuvastatin treatment reduced total and differential WBC counts in the A and AH groups (p<0.05 to p<0.001), IL-6 level in the AH group (p<0.05), and IL-10 level in all treated groups (p<0.05). Rosuvastatin reduced oxidative stress by decreasing nitrite and malondialdehyde concentrations, and increasing total thiol content in all treated groups as well as superoxide dismutase and catalase activities in the H and AH groups (p<0.05 to p<0.01). Rosuvastatin reduced airway inflammation and oxidation through regulating NOS and reducing pro-inflammatory cytokine and inflammatory cells, which indicate a novel insight into the pleiotropic effects of rosuvastatin in treatment of asthma.
Collapse
Affiliation(s)
- Saeideh Saadat
- Department of Physiology, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Hossein Boskabady
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
19
|
Inhibitory Effect of Phellinus baumii Extract on CFA-Induced Inflammation in MH-S Cells through Nuclear Factor- κB and Mitogen-Activated Protein Kinase Signaling Pathways. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:5535630. [PMID: 34733341 PMCID: PMC8560242 DOI: 10.1155/2021/5535630] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 10/01/2021] [Accepted: 10/11/2021] [Indexed: 12/18/2022]
Abstract
Phellinus baumii is a mushroom utilized as a traditional medicine for a wide range of human ailments, including diabetes, hypertension, hypercholesterolemia, and cancer, in Asia. The purpose of this study was to find out whether Phellinus baumii extract (PBE) could reduce inflammation caused by coal fly ash (CFA) in alveolar macrophages (MH-S). The anti-inflammatory effect of PBE was evaluated by measuring the nitric oxide (NO) concentration after the onset of CFA-stimulated inflammation in MH-S cells. Polymerase chain reaction (PCR) was used to examine inflammatory gene expression. Western blotting and immunofluorescence (IF) studies were used to investigate the inflammatory mechanism in MH-S cells. According to our results, the PBE suppressed CFA-induced NO generation in the MH-S cells dose-dependently. Furthermore, PBE inhibited the proinflammatory mediators and cytokines generated by exposure to CFA, including cyclooxygenase 2 (COX-2) and inducible NO synthase (iNOS), interleukin (IL)-1β, IL-6, and tumor necrosis factor-alpha (TNF-α). Real-time PCR was also used to determine the inhibiting effect of the PBE on proinflammatory factors such as COX-2, iNOS, IL-1β, IL-6, and TNF-α. Moreover, Western blot was used to assess the effects of the PBE on the nuclear factor-kappa B (NF-κB) and mitogen-activated protein kinase (MAPK) pathways in the CFA-stimulated MH-S cells. The suppressive effect of the PBE on phosphorylated (p)-NF-κB translocation was also investigated using IF analysis. This study showed that the PBE suppressed the CFA-induced inflammation in the MH-S cells by suppressing the NF-κB and MAPK signaling pathways, which suggests its potential usefulness in reducing lung inflammation.
Collapse
|
20
|
Amin F, Memarzia A, Kazemi Rad H, Shakeri F, Boskabady MH. Systemic inflammation and oxidative stress induced by inhaled paraquat in rat improved by carvacrol, possible role of PPARγ receptors. Biofactors 2021; 47:778-787. [PMID: 34089284 DOI: 10.1002/biof.1761] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 05/17/2021] [Indexed: 12/17/2022]
Abstract
Control rats were exposed to saline aerosol, two groups were exposed to paraquat (PQ), 27 (PQ-L) and 54 (PQ-H) mg/m3 aerosols and six groups were treated with carvacrol, 20 (C-L) and 80 (C-H) mg/kg/day, pioglitazone, 5 (Pio-L) and 10 (Pio-H) mg/kg/day, C-L+Pio-L and dexamethasone, 0.03 mg/kg/day, for 16 days after the end of exposure to PQ-H. Different variables were measured after the end of treatment period. Total and differential white blood cells counts, nitrite, malondialdehyde, interleukin (IL)-10, and interferon-gamma levels were significant increased, but thiol, superoxide dismutase, catalase, IL-17, and tumor necrosis factor alpha were decreased in the blood due to both doses of PQ (p < 0.05-p < 0.001). Most measured parameters were significantly improved in treated groups with both doses of carvacrol, pioglitazone, the combination of C-L+Pio-L and dexamethasone compared to PQ-H group (p < 0.05-p < 0.001). Treatment with C-L+Pio-L showed significantly higher effects compared to each one alone (p < 0.05-p < 0.001). Systemic oxidative stress and inflammation due to inhaled PQ were improved by carvacrol and pioglitazone. Higher effects of C-L+Pio-L than each one alone suggests carvacrol modulating PPAR-γ receptors.
Collapse
Affiliation(s)
- Fatemeh Amin
- Non-Communicable Diseases Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
- Department of Physiology and Pharmacology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Arghavan Memarzia
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamideh Kazemi Rad
- Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farzaneh Shakeri
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
- Department of Physiology and Pharmacology, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Mohammad Hossein Boskabady
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
21
|
Zakaria MY, Fayad E, Althobaiti F, Zaki I, Abu Almaaty AH. Statistical optimization of bile salt deployed nanovesicles as a potential platform for oral delivery of piperine: accentuated antiviral and anti-inflammatory activity in MERS-CoV challenged mice. Drug Deliv 2021; 28:1150-1165. [PMID: 34121561 PMCID: PMC8208124 DOI: 10.1080/10717544.2021.1934190] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The objective of this paper is to confine piperine, a poor oral bioavailable herbal drug into bile salt based nano vesicles for improving its aqueous solubility, hence, its therapeutic activity. Piperine-loaded bilosomes were fabricated adopting thin film hydration technique according to 32.21 full factorial design to investigate the impact of different formulation variables on the characters of bilosomes: entrapment efficiency (EE%), particle size, and % of drug released post 8 h (Q8hr). The selected optimum formula was F2 (enclosing 1% bile salt, brij72 as a surfactant, and ratio of surfactant:cholesterol was 9:1) with desirability value 0.801, exhibiting high EE% (97.2 ± 0.8%) nanosized spherical vesicles (220.2 ± 20.5 nm) and Q8hr (88.2%±5.6). The superiority of the optimized formula (F2) over the drug suspension was revealed via ex vivo permeation study, also pharmacokinetic study denoted to the boosted oral bioavailability of piperine-loaded bilosome compared to piperine suspension. Moreover, antiviral activity and safety margin of F2 was significantly higher than that of the drug suspension. The ability of piperine to interact with the key amino acids in the receptor binding domain 4L3N as indicated by its docking configuration, rationalized its observed activity. Furthermore, F2 significantly reduce oxidant markers, inflammatory cytokines in MERS-CoV-infected mice. Hence, bilosomes can be considered as a carrier of choice for piperine with potential antiviral and anti-inflammatory activities.
Collapse
Affiliation(s)
- Mohamed Y Zakaria
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Port Said University, Port Said, Egypt
| | - Eman Fayad
- Department of Biotechnology, Faculty of Sciences, Taif University, Taif, Saudi Arabia
| | - Fayez Althobaiti
- Department of Biotechnology, Faculty of Sciences, Taif University, Taif, Saudi Arabia
| | - Islam Zaki
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Port Said University, Port Said, Egypt
| | - Ali H Abu Almaaty
- Department of Zoology, Faculty of Science, Port Said University, Port Said, Egypt
| |
Collapse
|
22
|
Honari N, Shaban P, Nasseri S, Hosseini M. Ethanolic extract of Achillea wilhelmsii C. Koch improves pulmonary function and inflammation in LPS-induced acute lung injury mice. JOURNAL OF COMPLEMENTARY & INTEGRATIVE MEDICINE 2021; 19:261-267. [PMID: 33962506 DOI: 10.1515/jcim-2021-0045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 04/06/2021] [Indexed: 11/15/2022]
Abstract
OBJECTIVES Acute lung injury (ALI) is a life-threatening pulmonary dysfunction associated with severe inflammation. There are still no effective pharmacological therapies for the treatment of ALI. In this concern, several anti-inflammatory agents could be used as add-on therapy to inhibit inflammation. Achillea wilhelmsii (AW) C. Koch is a well-known medicinal plant in the Iranian ethnomedical practices with anti-inflammatory activity. This study was aimed to evaluate the efficacy of ethanolic extract of AW on lipopolysaccharide (LPS)-induced ALI in mice. METHODS The ALI model was established via the intra-tracheal (i.t.) administration of LPS (2 mg/kg) to male BALB/c mice. The ALI mice were divided into four groups (n=8 each) which intra-peritoneally (i.p.) treated with repeated doses of saline (model), dexamethasone (2 mg/kg), and AW (150-300 mg/kg) 1, 11 and 23 h post LPS administration. Twenty-four hours after the LPS challenge, bronchoalveolar lavage fluid (BALF) and lung tissue were evaluated for inflammatory cell influx, level of tumor necrosis factor-α (TNF-α) and histopathological changes. RESULTS The AW (150-300 mg/kg) treated mice showed lower inflammatory cells infiltration in BALF and TNF-α level when compared to the model group. In addition, LPS induced several pathological alterations such as edema, alveolar hemorrhage and inflammatory cell infiltration into the interstitium and alveolar spaces. Treatment with AW significantly reduced LPS-induced pathological injury. CONCLUSIONS Taken together, the data here indicated that AW may be considered as a promising add-on therapy for ALI.
Collapse
Affiliation(s)
- Niloofar Honari
- Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran
| | - Parastoo Shaban
- Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran
| | - Saeed Nasseri
- Cellular and Molecular Research Center, Department of Molecular Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Mehran Hosseini
- Cellular and Molecular Research Center, Department of Anatomical Sciences, Birjand University of Medical Sciences, Birjand, Iran
| |
Collapse
|
23
|
Zataria multiflora and Pioglitazone Affect Systemic Inflammation and Oxidative Stress Induced by Inhaled Paraquat in Rats. Mediators Inflamm 2021; 2021:5575059. [PMID: 34054344 PMCID: PMC8112915 DOI: 10.1155/2021/5575059] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/28/2021] [Accepted: 04/23/2021] [Indexed: 11/17/2022] Open
Abstract
The effects of Zataria multiflora (Z. multiflora) and pioglitazone (a PPAR-γ agonist) alone and in combination, on systemic inflammation and oxidative stress induced by inhaled paraquat (PQ) as a herbicide, which induced inflammation in rats, were examined. Rats were exposed to (1) saline (control) and (2) 54 mg/m3 PQ aerosols (8 times, every other day, each time for 30 min) without treatment or treated with (3 and 4) two doses of Z. multiflora (200 and 800 mg/kg/day), (5 and 6) two doses of pioglitazone (5 and 10 mg/kg/day), (7) low doses of Z.multiflora + pioglitazone, (Pio-5+Z-200 mg/kg/day) or (8) dexamethasone (0.03 mg/kg/day) for 16 days, after the last PQ exposure. Different variables were measured at the end of the treatment period. Exposure to PQ significantly increased total and differential white blood cells (WBC) counts, serum levels of nitrite (NO2), malondialdehyde (MDA), interleukin- (IL) 17, and tumor necrosis factor alpha (TNF-α), but reduced thiol, superoxide dismutase (SOD), catalase (CAT), IL-10, and interferon-gamma (INF-γ) (p < 0.05 to p < 0.001). Most measured parameters were significantly improved in groups treated with either doses of the extract, pioglitazone, Pio-5+Z-200 mg/kg/day, or dexamethasone compared to the PQ group (p < 0.05 to p < 0.001). The combination of low doses of Pio-5+Z-200 mg/kg/day showed significantly higher effects compared to each one alone (p < 0.05 to p < 0.001). Systemic oxidative stress and inflammation due to inhaled PQ were improved by Z. multiflora and pioglitazone. Higher effects of Pio-5+Z-200 mg/kg/day compared to each one alone suggest modulation of PPAR-γ receptors by the plant extract, but further studies using PPAR-γ antagonists need to be done in this regard.
Collapse
|
24
|
Ghorani V, Alavinezhad A, Rajabi O, Boskabady MH. Carvacrol improves pulmonary function tests, oxidant/antioxidant parameters and cytokine levels in asthmatic patients: A randomized, double-blind, clinical trial. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 85:153539. [PMID: 33773189 DOI: 10.1016/j.phymed.2021.153539] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 02/28/2021] [Accepted: 03/03/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Carvacrol effects on inflammatory mediators, lung pathology and tracheal responsiveness were indicated in animal models of pulmonary diseases. PURPOSE To evaluate carvacrol effects on respiratory symptoms, pulmonary function tests (PFT), oxidative stress markers and cytokine levels in asthmatic patients. STUDY DESIGN This study was a randomized, placebo-controlled double-blind, clinical trial. METHODS Thirty-three moderate asthmatic patients were divided to the two groups of: placebo group (n = 16) and carvacrol group (1.2 mg/kg/day, n = 17). Prepared capsules were taken for two months along, 3 times/day along with routine medications. Respiratory symptoms, PFT, and oxidative stress markers were evaluated before the treatment (step 0), and one (step I) and two months (step II) after the beginning of the treatment. However, cytokine levels in serum and supernatant of peripheral blood mononuclear cells (PBMC), and their gene expression were evaluated in step 0 and II. RESULTS In carvacrol-treated group, respiratory symptoms significantly decreased after one- and two-month treatment with carvacrol compared to pre-treatment values (p < 0.05 to p < 0.001). Compared to step 0, PFT values were significantly increased in step I and II, in treated group with carvacrol (p < 0.05 to p < 0.001). Most oxidative stress markers were improved following carvacrol treatment (p < 0.05 to p < 0.001). Treatment with carvacrol for two-month also significantly improved cytokine levels in serum and supernatant of PBMC, compared to step 0 (p < 0.05 to p < 0.001). However, no significant changes were observed in the above-noted parameters in the placebo group. CONCLUSION Due to anti-inflammatory and antioxidant effect, carvacrol could be suggested as a therapeutic agent for asthma.
Collapse
Affiliation(s)
- Vahideh Ghorani
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Azam Alavinezhad
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Omid Rajabi
- Department of Drug and Food Control, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Hossein Boskabady
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
25
|
Carvacrol and PPARγ agonist, pioglitazone, affects inhaled paraquat-induced lung injury in rats. Sci Rep 2021; 11:8129. [PMID: 33854134 PMCID: PMC8047048 DOI: 10.1038/s41598-021-87546-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 03/11/2021] [Indexed: 12/26/2022] Open
Abstract
Exposed rats to normal saline and paraquat (PQ) aerosol as control and PQ group, rats exposed to PQ and treated with 20 and 80 mg/kg/day carvacrol, 5 and 10 mg/kg/day pioglitazone, low dose of pioglitazone + carvacrol and 0.03 mg/kg/day dexamethasone (Dexa) for 16 days after the end of PQ exposure were studied (n = 6 in each group). Lung pathological changes, tracheal responsiveness to methacholine and ovalbumin (OVA) as well as transforming growth factor beta (TGF-β) and interleukin (IL)-6 level in the lung tissue homogenize as well as TGF-β, IL-6, oxidant and antioxidant levels oxidant and antioxidants were increased in PQ group (p < 0.01 to p < 0.001). Lung pathological changes, tracheal responsiveness to methacholine and OVA as well as TGF-β, IL-6 oxidant and antioxidant levels were improved in all treated groups except lung pathological changes in treated group with low dose of pioglitazone (p < 0.05 to p < 0.001). The effects of low dose of pioglitazone and carvacrol alone were significantly lower than in the combination group of low dose of pioglitazone + carvacrol (p < 0.05 to p < 0.001). Carvacrol treatment improved inhaled PQ-induced lug injury similar to the effects of dexamethasone. The synergic effect of carvacrol and pioglitazone suggests PPAR-γ receptor mediated effects of carvacrol on inhaled PQ-induced lung injury.
Collapse
|
26
|
Thymoquinone Ameliorates Lung Inflammation and Pathological Changes Observed in Lipopolysaccharide-Induced Lung Injury. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:6681729. [PMID: 33859710 PMCID: PMC8024078 DOI: 10.1155/2021/6681729] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 03/10/2021] [Accepted: 03/18/2021] [Indexed: 02/07/2023]
Abstract
Anti-inflammatory, antioxidant, and immunomodulatory effects of thymoquinone (TQ) have been shown. The effects of TQ on lipopolysaccharide- (LPS-) induced inflammation and pathological changes in rats' lung were investigated in this study. Four groups of rats included (1) control (saline treated); (2) LPS (treated with 1 mg/kg/day i.p. for two weeks); and (3 and 4) 5 or 10 mg/kg TQ i.p. 30 min prior to LPS administration. Total and differential WBC counts in the blood and bronchoalveolar fluid (BALF), TGF-β1, INF-γ, PGE2, and IL-4 levels in the BALF and pathological changes of the lung were evaluated. Total WBC count and eosinophil, neutrophil, and monocyte percentage were increased, but the lymphocyte percentage was reduced in the blood and BALF. The BALF levels of PGE2, TGF-β1, and INF-γ were also increased, but IL-4 level was reduced due to LPS administration. LPS also induced pathological insults in the lung of rats (P < 0.05 to P < 0.001 for all changes in LPS-exposed animals). Treatment with TQ showed a significant improvement in all changes induced by LPS (P < 0.05 to P < 0.05). TQ showed a protective effect on LPS-induced lung inflammation and pathological changes in rats which suggested a therapeutic potential for TQ on lung injury.
Collapse
|
27
|
Lee SY, Cho SS, Bae CS, Bae MS, Park DH. Socheongryongtang suppresses COPD-related changes in the pulmonary system through both cytokines and chemokines in a LPS COPD model. PHARMACEUTICAL BIOLOGY 2020; 58:538-544. [PMID: 32510269 PMCID: PMC8641688 DOI: 10.1080/13880209.2020.1770808] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Context: Socheongryongtang is a traditional Korean medical prescription used to treat pulmonary diseases.Objective: This study investigated the therapeutic mechanism of socheongryongtang for pulmonary diseases.Materials and methods: Seventy BALB/c mice were used: control, 0.8 mg/kg/study LPS intranasal instillation, 1 mg/kg/day Spiriva oral administration for five days, two socheongryongtang groups (150 or 1500 mg/kg/day orally treatment for five days). To illuminate the anti-COPD mechanism, several factors were evaluated such as WBC and differential counts in BALF and IgE in serum, morphological changes, and changes of COPD-related cytokines (TNF-α, IFN-γ, TGF-β) and chemokines (CXCL1, CCL-2, CCR2) in the lung. In order to confirm the statistical significance, all results were compared under p < 0.01 and p < 0.05.Results: LPS induced a high level of WBC, neutrophils and eosinophils in our in vivo study. Additionally, COPD related cytokines and chemokines such as TNF-α, IFN-γ, TGF-β, CXCL1, CCL-2 and CCR2 were induced by LPS. Compared to the LPS treatment group, socheongryongtang significantly controlled the level of WBC, neutrophils and eosinophils as well as the level of IgE. It effectively down-regulated the morphological changes, such as fibrosis near bronchoalveolar spaces, small airway destruction (emphysema), etc. It also inhibited the levels of COPD-related cytokines (TNF-α, IFN-γ, TGF-β) and chemokines (CXCL1, CCL-2, CCR2) compared to the LPS treatment group. In particular, socheongryongtang significantly down-regulated the levels of TNF-α, IFN-γ, and CCR2.Conclusions: Socheongryongtang controlled COPD, but as it has been used as a prescription for respiratory disease, we should additionally evaluate the therapeutic effects against various pulmonary diseases.
Collapse
Affiliation(s)
- Soon-Young Lee
- College of Korean Medicine, Dongshin University, Naju, Republic of Korea
| | - Seung-Sik Cho
- College of Pharmacy, Mokpo National University, Muan, Republic of Korea
| | - Chun-Sik Bae
- College of Veterinary Medicine, Chonnam National University, Gwangju, Republic of Korea
| | - Min-Suk Bae
- Department of Environmental Engineering, College of Engineering, Mokpo National University, Muan, Republic of Korea
| | - Dae-Hun Park
- College of Korean Medicine, Dongshin University, Naju, Republic of Korea
- CONTACT Dae-Hun Park College of Korean Medicine, Dongshin University, 185 Kyunjae-ro, Naju58245, Republic of Korea
| |
Collapse
|
28
|
Adelmidrol: A New Promising Antioxidant and Anti-Inflammatory Therapeutic Tool in Pulmonary Fibrosis. Antioxidants (Basel) 2020; 9:antiox9070601. [PMID: 32660140 PMCID: PMC7402091 DOI: 10.3390/antiox9070601] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/08/2020] [Accepted: 07/08/2020] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Chronic pulmonary diseases are characterized by airway remodeling due to complex multicellular responses and the production of free oxygen radicals. They lead to a progressive decline of pulmonary functions. Adelmidrol is an analogue of palmitoylethanolamide (PEA), which is a well-known anti-inflammatory and anti-oxidant compound. In this study, we investigated the efficacy of adelmidrol (10 mg/Kg) for bleomycin-induced pulmonary fibrosis in mice. METHODS Bleomycin intratracheal administration was performed on the first day and for the following twenty-one days, mice were treated with adelmidrol (10 mg/Kg). RESULTS The survival rate and body weight gain were recorded daily. At the end of the experiment, adelmidrol-administered animals showed reduced airway infiltration by inflammatory cells, Myeloperoxidase (MPO) activity, and pro-inflammatory cytokine overexpression (IL,6 IL-1β, TNF-α, and TGF-1β). Moreover, adelmidrol treatment was able to manage the significant incapacity of antioxidants and elevation of the oxidant burden, as shown by the MDA, SOD, and GSH levels and decreased nitric oxide production. It was also able to significantly modulate the JAK2/STAT3 and IκBα/NF-kB pathway. Histologic examination of the lung tissues showed reduced sample injury, mast cell degranulation, chymase activity, and collagen deposition. CONCLUSIONS In sum, our results propose adelmidrol as a therapeutic approach in the treatment of pulmonary fibrosis.
Collapse
|
29
|
Amin F, Memarzia A, Kazerani HR, Boskabady MH. Carvacrol and Zataria multiflora influenced the PPARγ agonist effects on systemic inflammation and oxidative stress induced by inhaled paraquat in rat. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2020; 23:930-936. [PMID: 32774816 PMCID: PMC7395191 DOI: 10.22038/ijbms.2020.45962.10648] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVES The effects of PPAR-γ agonist alone and in combination with carvacrol and Zataria multiflora on inhaled paraquat (PQ) induced-systemic inflammation and oxidative stress were examined. MATERIALS AND METHODS Control group exposed to normal saline aerosol, one group exposed to 54 mg/m3 PQ aerosol and four groups exposed to PQ aerosol and treated with 5 mg/kg/day pioglitazone, pioglitazone + 200 mg/kg/day Z. multiflora extract, pioglitazone + 20 mg/kg/day carvacrol, and 0.03 mg /kg/day dexamethasone for 16 days after the end of exposure to PQ were studied. Exposure to normal saline or PQ was performed every other days for 30 min (8 times). Different variables were measured after the end of treatment period. RESULTS PQ exposure significantly increased serum levels of NO2, MDA and IL-6 but dexreased CAT and IFN-γ levels and IFN-γ/IL-6 ratio compared to control group (P<0.01 to P<0.001). Treatment with pioglitazone only improved serum level of MDA (P<0.01). Treatment with combination of pioglitazone and carvacrol as well as treatment with dexamethasone improved all measured variables compared to PQ exposed group (P<0.05 to P<0.001). The effects of pioglitazone + Z. multiflura and pioglitazone + carvacrol on almost all measured variables were significantly higher than pioglitazone alone (P<0.05 to P<0.001). CONCLUSION The effects of combination therapy of pioglitazone with Z. multiflora or carvacrol on inhaled paraquat (PQ) induced-oxidative stress and systemic inflammation were higher than the effects of pioglitazone alone. These results suggested that the effects of the extract and carvacrol may mediated through PPAR-γ receptors.
Collapse
Affiliation(s)
- Fatemeh Amin
- Department of Physiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Arghavan Memarzia
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamid Reza Kazerani
- Department of Physiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Mohammad Hossein Boskabady
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
30
|
Curcumin, Alone or in Combination with Aminoguanidine, Increases Antioxidant Defenses and Glycation Product Detoxification in Streptozotocin-Diabetic Rats: A Therapeutic Strategy to Mitigate Glycoxidative Stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:1036360. [PMID: 32566072 PMCID: PMC7260652 DOI: 10.1155/2020/1036360] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 04/03/2020] [Accepted: 04/08/2020] [Indexed: 12/15/2022]
Abstract
Both oxidative stress and the exacerbated generation of advanced glycation end products (AGEs) have crucial roles in the onset and progression of diabetic complications. Curcumin has antioxidant and antidiabetic properties; its combination with compounds capable of preventing the advanced glycation events, such as aminoguanidine, is an interesting therapeutic option to counteract diabetic complications. This study is aimed at investigating the effects of treatments with curcumin or aminoguanidine, alone or in combination, on metabolic alterations in streptozotocin-diabetic rats; the focus was mainly on the potential of these bioactive compounds to oppose the glycoxidative stress. Curcumin (90 mg/kg) or aminoguanidine (50 and 100 mg/kg), alone or in combination, slightly decreased glycemia and the biomarkers of early protein glycation, but markedly decreased AGE levels (biomarkers of advanced glycation) and oxidative damage biomarkers in the plasma, liver, and kidney of diabetic rats. Some novel insights about the in vivo effects of these bioactive compounds are centered on the triggering of cytoprotective machinery. The treatments with curcumin and/or aminoguanidine increased the activities of the antioxidant enzymes (paraoxonase 1, superoxide dismutase, and catalase) and the levels of AGE detoxification system components (AGE-R1 receptor and glyoxalase 1). In addition, combination therapy between curcumin and aminoguanidine effectively prevented dyslipidemia in diabetic rats. These findings demonstrate the combination of curcumin (natural antioxidant) and aminoguanidine (prototype therapeutic agent with anti-AGE activity) as a potential complementary therapeutic option for use with antihyperglycemic agents, which may aggregate beneficial effects against diabetic complications.
Collapse
|
31
|
Mokhtari-Zaer A, Norouzi F, Askari VR, Khazdair MR, Roshan NM, Boskabady M, Hosseini M, Boskabady MH. The protective effect of Nigella sativa extract on lung inflammation and oxidative stress induced by lipopolysaccharide in rats. JOURNAL OF ETHNOPHARMACOLOGY 2020; 253:112653. [PMID: 32035219 DOI: 10.1016/j.jep.2020.112653] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 02/01/2020] [Accepted: 02/04/2020] [Indexed: 05/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Oxidative stress during inflammation can increase inflammation and damage tissue. Nigella sativa L. (NS) showed many pharmacological properties including antioxidant and anti-inflammatory activities. AIM OF THE STUDY In this study, the preventive effect of NS on lung inflammation and oxidative stress induced by lipopolysaccharide (LPS) in the rats was investigated. MATERIALS AND METHODS Male rats were assigned to: Control, LPS (1 mg/kg, i.p.), LPS + NS (100, 200, 400 mg/kg, i.p.), (10 per group). Saline (1 ml/kg) was intra-peritoneal (i.p.) injected instead of LPS in the rats of the control group. LPS dissolved in saline and injected i.p. daily for 14 days. Treatment with NS extracts started two days before LPS administration and treatment continued during LPS administration. White blood cells (WBC), total and differential as well as oxidative stress index in bronchoalveolar fluid (BALF) and serum, TGF-β1, IFN-γ, PGE2, and IL-4 levels in the BALF and lung histopathology were examined. RESULTS LPS administration increased total WBC, eosinophils, neutrophils, basophils, and monocytes counts as well as oxidative stress markers in the BALF and serum as well as TGF-β1, IFN-γ, PGE2, IL-4 levels in the BALF and pathological changes of the lung tissue. All of these effects were reduced by NS extract treatment dose-dependently. CONCLUSION These results suggested the protective effects of NS extract on lung inflammation and oxidative stress as well as its effect on lung pathology induced by LPS dose-dependently.
Collapse
Affiliation(s)
- Amin Mokhtari-Zaer
- Pharmaceutical Sciences Research Center, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Fatemeh Norouzi
- Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vahid Reza Askari
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmacology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Reza Khazdair
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Nama Mohammadian Roshan
- Department of Pathology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mostafa Boskabady
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Hosseini
- Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Division of Neurocognitive Sciences, Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Hossein Boskabady
- Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
32
|
The Cardioprotective Effects of Aminoguanidine on Lipopolysaccharide Induced Inflammation in Rats. Cardiovasc Toxicol 2020; 20:474-481. [DOI: 10.1007/s12012-020-09570-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
33
|
Ghorani V, Rajabi O, Mirsadraee M, Rezaeitalab F, Saadat S, Boskabady MH. A Randomized, Doubled‐Blind Clinical Trial on the Effect of
Zataria multiflora
on Clinical Symptoms, Oxidative Stress, and C‐Reactive Protein in COPD Patients. J Clin Pharmacol 2020; 60:867-878. [DOI: 10.1002/jcph.1586] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 01/13/2020] [Indexed: 12/16/2022]
Affiliation(s)
- Vahideh Ghorani
- Department of Physiology, School of MedicineMashhad University of Medical Sciences Mashhad Iran
- Neurogenic Inflammation Research CenterMashhad University of Medical Sciences Mashhad Iran
| | - Omid Rajabi
- Department of Drug and Food Control, School of PharmacyMashhad University of Medical Sciences Mashhad Iran
| | - Majid Mirsadraee
- Department of Internal Medicine, Faculty of MedicineIslamic Azad University‐Mashhad Branch Mashhad Iran
| | - Fariba Rezaeitalab
- Department of Internal Medicine, Imam Reza Hospital, School of MedicineMashhad University of Medical Sciences Mashhad Iran
| | - Saeideh Saadat
- Department of Physiology, School of MedicineZahedan University of Medical Sciences Zahedan Iran
| | - Mohammad Hossein Boskabady
- Department of Physiology, School of MedicineMashhad University of Medical Sciences Mashhad Iran
- Neurogenic Inflammation Research CenterMashhad University of Medical Sciences Mashhad Iran
| |
Collapse
|
34
|
Rosuvastatin suppresses cytokine production and lung inflammation in asthmatic, hyperlipidemic and asthmatic-hyperlipidemic rat models. Cytokine 2020; 128:154993. [PMID: 32007867 DOI: 10.1016/j.cyto.2020.154993] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 12/31/2019] [Accepted: 01/08/2020] [Indexed: 02/04/2023]
Abstract
BACKGROUND Given the role that T lymphocytes play on the pathogenesis of allergic asthma, drugs targeting Th2 and Th17 cells may be a hopeful therapeutic strategy. This study aimed to evaluate the effect of rosuvastatin treatment on cytokine production and lung inflammation in allergic asthma. METHODS The animals were assigned into control (C), asthmatic (A), hyperlipidemic (H), asthmatic-hyperlipidemic (AH), rosuvastatin (40 mg/kg/day intraperitoneally, for 3 weeks)-treated asthmatic (AR), rosuvastatin-treated hyperlipidemic (HR) and rosuvastatin-treated asthmatic-hyperlipidemic (AHR) groups (n = 6 in each group). The levels of IL-4, IFN-γ and IL-17, total and differential WBC counts in bronchoalveolar lavage fluid (BALF), Th1/Th2 balance, and pathological changes were evaluated. RESULTS The BALF level of IL-4 in A, H and AH groups, and IL-17A in A and AH groups were significantly higher than that in C group (p < 0.05 to p < 0.001). IFN-γ level and Th1/Th2 balance (IFN‑γ/IL-4 ratio) in A and AH groups were significantly decreased (p < 0.05 to p < 0.01). Inflammatory cells infiltration, muscle hypertrophy and emphysema were also observed in A and AH groups. The BALF levels of IL-4 in AR, HR and AHR groups, IFN-γ level in HR group, and IL-17A level in AR and AHR groups showed a significant improvement compared to that of A, H and AH groups (p < 0.05 to p < 0.001). Rosuvastatin treatment increased Th1/Th2 balance in all treated groups (p < 0.05 to p < 0.01), decreased total WBC counts, neutrophilia, eosinophilia and lung inflammation in AR and AHR groups, and improved muscle hypertrophy and emphysema in AHR group. CONCLUSIONS Rosuvastatin treatment improved lung pathological changes by suppression of Th2 and Th17-mediated cytokines which was unrelated to its lipid-lowering activity. Therefore, rosuvastatin might be a candidate immunomodulatory drug for treatment of patients with allergic asthma.
Collapse
|
35
|
Amin F, Roohbakhsh A, Memarzia A, Kazerani HR, Boskabady MH. Paraquat-induced systemic inflammation and increased oxidative markers in rats improved by Zataria multiflora extract and carvacrol. AVICENNA JOURNAL OF PHYTOMEDICINE 2020; 10:513-522. [PMID: 32995329 PMCID: PMC7508324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
OBJECTIVE Paraquat (PQ) is a herbicide which induces oxidative stress and inflammation. Anti-inflammatory and anti-oxidant effects were shown for Zataria multiflora (Z. multiflora) and carvacrol previously. The effects of Z. multiflora hydroalcoholic extract and carvacrol on systemic inflammation and oxidative stress induced by inhaled PQ were examined in this study. MATERIALS AND METHODS Six groups of male rats used in this study were as follows: control group exposed to normal saline aerosol, one group exposed to PQ 54 mg/m3 aerosol, animals exposed to PQ 54 mg/m3 and treated with Z. multiflora (200 and 800 mg/kg/day) or carvacrol (20 and 80 mg/kg/day) for 16 days after the end of exposure to PQ. Exposure to PQ was performed 8 times, every other day, each time for 30 min. After the end of the treatment period, different variables were measured. RESULTS Significant increases in nitrite (NO2), malondialdehyde (MDA) and interleukin (IL)-6 serum levels but significant reduction of interferon-gamma (IFN-γ) serum levels as well as IFN-γ/IL-6 ratio were observed in PQ-exposed compared to control group (p<0.01 for MDA and IL-6, p<0.001 for other cases). Treatment with both doses of the extract and carvacrol specially at high dose, reduced MDA, NO2, and IL-6 but increased IFN-γ and IFN-γ/IL-6 ratio compared to un-treated PQ exposed group (p<0.05 to p<0.001). CONCLUSION Treatment with Z. multiflora and carvacrol improved systemic inflammation oxidative biomarkers induced by inhaled PQ which may indicate therapeutic potential of the plant and its constituent, carvacrol in systemic inflammation and oxidative biomarkers induced by inhaled PQ.
Collapse
Affiliation(s)
- Fatemeh Amin
- Department of Physiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Ali Roohbakhsh
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Arghavan Memarzia
- Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamid Reza Kazerani
- Department of Physiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran,Corresponding Author: Tel: +985138448565, Fax: +98518448564, , ,
| | - Mohammad Hossein Boskabady
- Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran,Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran,Corresponding Author: Tel: +985138448565, Fax: +98518448564, , ,
| |
Collapse
|
36
|
Eftekhar N, Moghimi A, Mohammadian Roshan N, Saadat S, Boskabady MH. Immunomodulatory and anti-inflammatory effects of hydro-ethanolic extract of Ocimum basilicum leaves and its effect on lung pathological changes in an ovalbumin-induced rat model of asthma. Altern Ther Health Med 2019; 19:349. [PMID: 31801507 PMCID: PMC6894265 DOI: 10.1186/s12906-019-2765-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 11/21/2019] [Indexed: 02/06/2023]
Abstract
Background Ocimum species (Lamiaceae) has been traditionally used for treatment of upper respiratory tract infections, bronchitis, coughs, sore throat, and wound healing. The Immunomodulatory and anti-inflammatory effects of hydro-ethanolic extract of Ocimum basilicum (O. basilicum) leaves was examined in ovalbumin sensitized animals. Methods Wistar rats were divided to six groups; non-sensitized, sensitized to ovalbumin, sensitized and treated with dexamethasone (1.25 μg/mL), and O. basilicum extract (0.75, 1.50 and 3.00 mg/mL) in drinking water for 21 days. The levels of interleukin 4 (IL-4), interferon gamma (IFN-γ), IFN-γ/IL-4 ratio, immunoglobulin E (IgE), phospholipase A2 (PLA2) and total protein (TP) in BALF, and lung pathological changes were examined. Results A significant increase in IL-4, IgE, PLA2 and TP levels, all lung pathological indices as well as significant decrease in IFN-γ/IL-4 ratio was seen in the asthmatic compared to the control rats (P < 0.05 to P < 0.001). Treatment with O. basilicum extract resulted in decreased IL-4, IgE, PLA2 and TP levels, but increased IFN-γ/IL-4 ratio compared to untreated sensitized rats (P < 0.01 to P < 0.001). The plant significantly improved the pathological changes of sensitized rats (P < 0.05 to P < 0.01). The improvement effects of higher concentrations of the O. basilicum extract were significantly more than those of dexamethasone (P < 0.05 to P < 0.001). Conclusion The improvement effects of O. basilicum on pathological changes, immunological and inflammatory markers in sensitized rats comparable or even more potent than dexamethasone suggests the therapeutic potential of the plant in asthma.
Collapse
|
37
|
Ellagic acid dose and time-dependently abrogates d-galactose-induced animal model of aging: Investigating the role of PPAR-γ. Life Sci 2019; 232:116595. [PMID: 31238053 DOI: 10.1016/j.lfs.2019.116595] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 06/20/2019] [Accepted: 06/20/2019] [Indexed: 01/08/2023]
Abstract
AIMS The world's population is becoming aged and the proportion of older persons is growing in almost every country in the world. Ellagic acid (EA) shows abundant pharmacological properties. Therefore, we aimed to determine the mechanism of anti-aging effects of low and high doses of EA. MAIN METHODS Aging model was induced by d-galactose (DG), and the anti-aging effect of EA alone or in the presence of PPAR-γ antagonist GW9662, and in combination with metformin were evaluated. The activities of ALT, AST, and AChE, the levels of FBS, HbA1c, testosterone and DHEA-SO4, MDA, GSH, TNF-α, IL-6, advanced glycation end products (AGEs), and BDNF were measured in serum, liver or brain. KEY FINDINGS DG led to increasing in the levels of IL-6, TNF-α, MDA, AChE, AGEs, ALT, AST, FBS, and HbA1c, in which decrease in the levels of body weight, GSH, BDNF, DHEA-SO4 and testosterone. Metformin (300 mg/kg) abrogated the effects of DG-induced aging model. We also found that the low dose of EA (30 mg/kg) decreases the deteriorative effects of DG-induced aging at 10 weeks of treatment only, however, high dose of EA (100 mg/kg) was effective at both 6 and 10 weeks of treatment. The addition of GW9662 completely reversed the effects of the low dose of EA, but not for the high dose, on DG-induced aging model. SIGNIFICANCE We revealed that daily and oral administration of EA provides anti-aging effects at low dose in a PPAR-γ receptor-dependent fashion, but not at the high dose.
Collapse
|