1
|
Li HB, Wang D, Zhang Y, Shen D, Che YQ. Long noncoding RNA XIST: a novel independent prognostic biomarker for patients with ABC-DLBCL receiving R-CHOP treatment. Carcinogenesis 2024; 45:500-509. [PMID: 38426786 DOI: 10.1093/carcin/bgae017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 02/01/2024] [Accepted: 02/27/2024] [Indexed: 03/02/2024] Open
Abstract
Approximately one-third of activated B-cell-like diffuse large B-cell lymphoma (ABC-DLBCL) cases were unresponsive to standard first-line therapy; thus, identifying biomarkers to evaluate therapeutic efficacy and assessing the emergence of drug resistance is crucial. Through early-stage screening, long noncoding RNA (lncRNA) X-inactive specific transcript (XIST) was found to be correlated with the R-CHOP treatment response. This study aimed to clarify the characteristics of XIST in ABC-DLBCL. The expression level of XIST in 161 patients with ABC-DLBCL receiving R-CHOP therapy was examined via RNA in situ hybridization, and the association between XIST expression and clinicopathological features, treatment response and prognosis was analyzed in the study cohort and validated in the Gene Expression Omnibus cohort. Cell biological experiments and bioinformatics analyses were conducted to reveal aberrant signaling. The proportion of complete response in patients with high XIST expression was lower than that in patients with low XIST expression (53.8% versus 77.1%) (P = 0.002). High XIST expression was remarkably associated with the characteristics of tumor progression and was an independent prognostic element for overall survival (P = 0.039) and progression-free survival (P = 0.027) in ABC-DLBCL. XIST was proven to be involved in m6A-related methylation and ATF6-associated autophagy. XIST knockdown repressed ABC-DLBCL cellular proliferation by regulating Raf/MEK/ERK signaling. High XIST expression was associated with ABC-DLBCL tumorigenesis and development and contributed to R-CHOP treatment resistance. XIST may be a promising signal to predict ABC-DLBCL prognosis.
Collapse
MESH Headings
- Humans
- RNA, Long Noncoding/genetics
- Male
- Vincristine/therapeutic use
- Female
- Cyclophosphamide/therapeutic use
- Prognosis
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Middle Aged
- Prednisone/therapeutic use
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- Rituximab/therapeutic use
- Lymphoma, Large B-Cell, Diffuse/genetics
- Lymphoma, Large B-Cell, Diffuse/drug therapy
- Lymphoma, Large B-Cell, Diffuse/pathology
- Lymphoma, Large B-Cell, Diffuse/mortality
- Doxorubicin/therapeutic use
- Gene Expression Regulation, Neoplastic
- Aged
- Adult
- Cell Proliferation
- Drug Resistance, Neoplasm/genetics
Collapse
Affiliation(s)
- Han-Bing Li
- Department of Clinical Laboratory, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| | - Di Wang
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, P.R. China
| | - Yue Zhang
- Department of Clinical Laboratory, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, P.R. China
| | - Di Shen
- Department of Clinical Laboratory, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| | - Yi-Qun Che
- Center for Clinical Laboratory, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, P.R. China
| |
Collapse
|
2
|
Li Z, Yan G, Yang M, Liu X, Lian Y, Sun M, Pan W. CBLC promotes the development of colorectal cancer by promoting ABI1 degradation to activate the ERK signaling pathway. Transl Oncol 2024; 45:101992. [PMID: 38743987 PMCID: PMC11109901 DOI: 10.1016/j.tranon.2024.101992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 04/11/2024] [Accepted: 05/07/2024] [Indexed: 05/16/2024] Open
Abstract
CBLC (CBL proto-oncogene C) is an E3 ubiquitin protein ligase that plays a key role in cancers. However, the function and mechanism of CBLC in colorectal cancer (CRC) has not been fully elucidated. The aim of this study was to investigate the function of CBLC in CRC and its underlying molecular mechanism. High CBLC levels were certified in tumor tissues of CRC patients, and its expression was positively associated with TNM stage. Next, we explored the role of CBLC in CRC using gain or loss of function. For biological function analysis, CCK-8 cell proliferation, colony formation, flow cytometry, scratch, and transwell assays collectively suggested that CBLC overexpression promoted cell proliferation, cell cycle progression, migration and invasion. As observed, CBLC knockdown exhibited exactly opposite effects, resulting in impaired tumorigenicity in vitro. Xenograft studies displayed that CBLC overexpression accelerated tumor growth and promoted tumor metastasis to the lung, while the inhibitory effects of CBLC knockdown on tumorigenicity and metastasis ability of CRC cells was also confirmed. Furthermore, the molecular mechanism of CBLC in CRC was explored. CBLC induced the activation of ERK signaling pathway, further leading to its pro-tumor role. Notably, CBLC decreased ABI1 (Abelson interactor protein-1, a candidate tumor suppressor) protein levels through its ubiquitin ligase activity, while ABI1 upregulation abolished the effects of CBLC on the tumorigenesis of CRC. Taken together, these results demonstrate that CBLC acts as a tumor promoter in CRC through triggering the ubiquitination and degradation of ABI1 and activating the ERK signaling pathway. CBLC may be a potential novel target for CRC.
Collapse
Affiliation(s)
- Zhan Li
- Department of General Surgery, Liaoyang City Central Hospital, Liaoyang, Liaoning Province, China
| | - Guanyu Yan
- Department of Gastroenterology, The First Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Meiqi Yang
- Department of Gastroenterology, The First Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Xingwu Liu
- Department of Gastroenterology, The First Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Yuan Lian
- General Hospital of Fuxin Mining Industry Group of Liaoning Health Industry Group, Fuxin, Liaoning Province, China
| | - Mingjun Sun
- Department of Gastroenterology, The First Hospital of China Medical University, Shenyang, Liaoning Province, China.
| | - Wenjun Pan
- Department of General Surgery, Liaoyang City Central Hospital, Liaoyang, Liaoning Province, China.
| |
Collapse
|
3
|
Zhang Y, Lu Q, Li N, Xu M, Miyamoto T, Liu J. Sulforaphane suppresses metastasis of triple-negative breast cancer cells by targeting the RAF/MEK/ERK pathway. NPJ Breast Cancer 2022; 8:40. [PMID: 35332167 PMCID: PMC8948359 DOI: 10.1038/s41523-022-00402-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 02/22/2022] [Indexed: 12/15/2022] Open
Abstract
Breast cancer metastasis is the main cause of cancer death in women, so far, no effective treatment has inhibited breast cancer metastasis. Sulforaphane (SFN), a natural compound derived from broccoli, has shown potential health benefits in many cancers. However, research on breast cancer metastasis is still insufficient. Here, we showed that SFN, including its two isomers of R-SFN and S-SFN, significantly inhibited TGF-β1-induced migration and invasion in breast cancer cells. Proteomic and phosphoproteomic analysis showed that SFN affected the formation of the cytoskeleton. Subsequent experiments confirmed that SFN significantly inhibited TGF-β1-induced actin stress fiber formation and the expression of actin stress fiber formation-associated proteins, including paxillin, IQGAP1, FAK, PAK2, and ROCK. Additionally, SFN is directly bound to RAF family proteins (including ARAF, BRAF, and CRAF) and inhibited MEK and ERK phosphorylation. These in vitro results indicate that SFN targets the RAF/MEK/ERK signaling pathway to inhibit the formation of actin stress fibers, thereby inhibiting breast cancer cell metastasis.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Molecular and Cellular Physiology, Yamaguchi University, Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan.
| | - Qian Lu
- Department of Molecular and Cellular Physiology, Yamaguchi University, Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Nan Li
- Department of Molecular and Cellular Physiology, Yamaguchi University, Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Ming Xu
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University, Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Tatsuo Miyamoto
- Department of Molecular and Cellular Physiology, Yamaguchi University, Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Jing Liu
- College of Pharmacy, Dalian Medical University, No.9 West Section Lvshun South Road, Dalian, 116044, China.
| |
Collapse
|
4
|
He Y, Xu Y, Yu X, Sun Z, Guo W. The Vital Roles of LINC00662 in Human Cancers. Front Cell Dev Biol 2021; 9:711352. [PMID: 34354995 PMCID: PMC8329443 DOI: 10.3389/fcell.2021.711352] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 06/29/2021] [Indexed: 12/17/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) play crucial roles in many human diseases, particularly in tumorigenicity and progression. Although lncRNA research studies are increasing rapidly, our understanding of lncRNA mechanisms is still incomplete. The long intergenic non-protein coding RNA 662 (LINC00662) is a novel lncRNA, and accumulating evidence suggests that it is related to a variety of tumors in multiple systems, including the respiratory, reproductive, nervous, and digestive systems. LINC00662 has been shown to be upregulated in malignant tumors and has been confirmed to promote the development of malignant tumors. LINC00662 has also been reported to facilitate a variety of cellular events, such as tumor-cell proliferation, invasion, and migration, and its expression has been correlated to clinicopathological characteristics in patients with tumors. In terms of mechanisms, LINC00662 regulates gene expression by interacting with both proteins and with RNAs, so it may be a potential biomarker for cancer diagnosis, prognosis, and treatment. This article reviews the expression patterns, biological functions, and underlying molecular mechanisms of LINC00662 in tumors.
Collapse
Affiliation(s)
- Yuting He
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ, Transplantation at Henan Universities, Zhengzhou, China.,Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, China
| | - Yating Xu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ, Transplantation at Henan Universities, Zhengzhou, China.,Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, China
| | - Xiao Yu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ, Transplantation at Henan Universities, Zhengzhou, China.,Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, China
| | - Zongzong Sun
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wenzhi Guo
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ, Transplantation at Henan Universities, Zhengzhou, China.,Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, China
| |
Collapse
|
5
|
Bhatt M, Patel M, Adnan M, Reddy MN. Anti-Metastatic Effects of Lupeol via the Inhibition of MAPK/ERK Pathway in Lung Cancer. Anticancer Agents Med Chem 2021; 21:201-206. [PMID: 32329697 DOI: 10.2174/1871520620666200424131548] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 01/25/2020] [Accepted: 02/10/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND AND OBJECTIVE ERK pathway is one of the most crucial pathways in lung cancer metastasis. Targeting its pathway is decisive in lung cancer research. Thus, this study demonstrated for the first time for significant and selective anti-metastatic effects of lupeol against lung cancer A549 cells via perturbations in the ERK signaling pathway. MATERIALS AND METHODS Human protein targets of lupeol were predicted in silico. Migration and cytotoxicity assays were carried out in vitro. Expression levels of proteins Erk1/2 and pErk1/2 were ensured using Enzyme- Linked Immunosorbent Assay (ELISA). Semi-quantitative RT-PCR technique was used to estimate changes in crucial mesenchymal marker gene expression levels of N-cadherin and vimentin. RESULTS Lupeol was found to target ERK and MEK proteins effectively. Despite having no cytotoxic effects, lupeol also significantly inhibited cell migration in A549 cells with decreased expression of the pErk1/2 protein along with N-cadherin and vimentin genes. CONCLUSION Lupeol inhibits cell migration, showed no cytotoxic effects on A549 cells, decreased pErk1/2 and EMT gene expression. Thus, it can serve as a potential ERK pathway inhibitor in lung cancer therapeutics.
Collapse
Affiliation(s)
- Mital Bhatt
- Bapalal Vaidya Botanical Research Centre, Department of Biosciences, Veer Narmad South Gujarat University, Surat, Gujarat, India
| | - Mitesh Patel
- Bapalal Vaidya Botanical Research Centre, Department of Biosciences, Veer Narmad South Gujarat University, Surat, Gujarat, India
| | - Mohd Adnan
- Department of Biology, College of Science, University of Ha'il, Ha'il, P O Box 2440, Saudi Arabia
| | - Mandadi N Reddy
- Bapalal Vaidya Botanical Research Centre, Department of Biosciences, Veer Narmad South Gujarat University, Surat, Gujarat, India
| |
Collapse
|
6
|
Zhu L, Wu M, Li P, Zhou Y, Zhong J, Zhang Z, Li Y, Yao W, Xu J. High-Pressure Supercritical CO 2 Extracts of Ganoderma lucidum Fruiting Body and Their Anti-hepatoma Effect Associated With the Ras/Raf/MEK/ERK Signaling Pathway. Front Pharmacol 2021; 11:602702. [PMID: 33381043 PMCID: PMC7768272 DOI: 10.3389/fphar.2020.602702] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 11/19/2020] [Indexed: 12/15/2022] Open
Abstract
As a noted medicinal mushroom, Ganoderma lucidum (G. lucidum) has been reported to have a number of pharmacological effects such as anti-tumor and liver protection. Compared with the common ethanol reflux method, supercritical CO2 extraction has obvious advantages in obtaining antitumor extracts from G. lucidum fruiting body such as short extraction time, low temperature and no solvent residue. However, Using high-pressure supercritical CO2 without entrainer to obtain the antitumor extracts from G. lucidum and studying their anti-hepatoma effect have not been reported. In this study, high-pressure supercritical CO2 extracts obtained under 65, 85, and 105 MPa pressure named as G65, G85, G105 respectively and ethanol reflux extract (GLE) were used to investigate their anti-hepatoma activity and the underlying molecular mechanism. The total triterpenoid content of G85 was significantly higher than that of G65 and GLE, but did not differ significantly from that of G105 by UV and high-performance liquid chromatography. GLE, G65, and G85 could inhibit cell proliferation, arrest cell cycle in G2/M phase, and induce apoptosis in two liver cancer cell lines (QGY7703 and SK-Hep1), of which G85 had the strongest effect. The results showed that the potency of their cytotoxicity of the high-pressure supercritical CO2 extracts on human hepatoma carcinoma cells in vitro was consistent with their total triterpenoid content. G85 exhibited significant anti-hepatoma effect with low toxicity In vivo. Further mechanistic investigation revealed that the anti-tumor effect of these extracts was associated with their inhibition of Ras/Raf/MEK/ERK signaling pathway. Our findings suggest that the high-pressure supercritical CO2 extraction of G. lucidum fruiting body can be used to obtain a triterpenoid-rich anti-tumor agent, which may have potential clinical significance for the treatment of human hepatoma.
Collapse
Affiliation(s)
- Liping Zhu
- Department of Pharmacology, Department of Natural Medicine, School of Pharmacy, Fujian Provincial Key Laboratory of Natural Medicine Pharmacology, Fujian Medical University, Fuzhou, China.,Fujian Xianzhilou Biological and Technology Co., Ltd., Fuzhou, China
| | - Min Wu
- Department of Pharmacology, Department of Natural Medicine, School of Pharmacy, Fujian Provincial Key Laboratory of Natural Medicine Pharmacology, Fujian Medical University, Fuzhou, China
| | - Peng Li
- Department of Pharmacology, Department of Natural Medicine, School of Pharmacy, Fujian Provincial Key Laboratory of Natural Medicine Pharmacology, Fujian Medical University, Fuzhou, China
| | - Yanfei Zhou
- Fujian Xianzhilou Biological and Technology Co., Ltd., Fuzhou, China
| | - Jinyi Zhong
- Department of Pharmacology, Department of Natural Medicine, School of Pharmacy, Fujian Provincial Key Laboratory of Natural Medicine Pharmacology, Fujian Medical University, Fuzhou, China
| | - Zhiqiang Zhang
- Department of Pharmacology, Department of Natural Medicine, School of Pharmacy, Fujian Provincial Key Laboratory of Natural Medicine Pharmacology, Fujian Medical University, Fuzhou, China
| | - Ye Li
- Fujian Xianzhilou Biological and Technology Co., Ltd., Fuzhou, China
| | - Weixi Yao
- Fujian Xianzhilou Biological and Technology Co., Ltd., Fuzhou, China
| | - Jianhua Xu
- Department of Pharmacology, Department of Natural Medicine, School of Pharmacy, Fujian Provincial Key Laboratory of Natural Medicine Pharmacology, Fujian Medical University, Fuzhou, China
| |
Collapse
|
7
|
Unraveling the blood transcriptome after real-life exposure of Wistar-rats to PM2.5, PM1 and water-soluble metals in the ambient air. Toxicol Rep 2020; 7:1469-1479. [PMID: 33194559 PMCID: PMC7645421 DOI: 10.1016/j.toxrep.2020.10.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 10/15/2020] [Accepted: 10/16/2020] [Indexed: 12/24/2022] Open
Abstract
Development of a “real-life” exposure system to ambient PM1 and PM2.5 particles for Wistar rats. Blood transcriptome analysis identified differentially expressed genes as candidate biomarkers in PM1 and PM2.5 groups. Pathway analysis revealed differentially regulated gene expression in inflammation signaling. Identification of candidate metals for possible correlation with the identified candidate genes leading to the development of AOPs.
Exposure to particulate matter (PM) is one of the most important environmental issues in Europe with major health impact. Various sizes of PM are suspended in the atmosphere and contributes to ambient air pollution. The current study aimed to explore the differential gene expression in blood, and the effect on the respective biological signaling pathways in Wistar rats, after exposure to PM2.5 and PM1 ambient air particles for an eight-week period. A control group was included with animals breathing non-filtered atmospheric air. In parallel, filtered PM2.5 and PM1 was collected in separate samplers. The results after whole genome microarray analysis showed 23 differentially expressed genes (DEGs) between control and PM2.5 group. In addition, pairwise comparison between control and PM1 group displayed 5635 DEGs linked to 69 biological pathways involved in inflammatory response, cell cycle and carcinogenicity. The smaller the size of the inhaled particles, the more gene alterations are triggered compared to non-filtered air group. More specifically, in inflammation signaling procedures differentially regulated gene expression was shown for interleukin-4 (IL-4), IL-7, IL-1, IL-5, IL-9, IL-6 and IL-2. We have identified that RASGFR1, TRIM65, TRIM33, PLEKHB1, CAR4, S100A8, S100A9, ALPL, NP4 and the PROK2 genes are potential targets for the development of adverse outcome pathways (AOPs) due to “real-life” exposure of Wistar rats. Particle measurements during the exposure period showed elevated concentrations of Fe, Mn and Zn in both PM1 and PM2.5 filter fractions, and of Cu in PM2.5. In addition, water-soluble concentration of metals showed significant differences between PM1 and PM2.5 fractions for V, Zn, As, Pb and Mn. In summary, in this study specific gene biomarkers of exposure to ambient air have been identified and heavy metals that are possibly linked to their altered regulation have been found. The results of this research will pave the way for the development of novel AOPs concerning the health effects of the environmental pollution.
Collapse
|
8
|
Cheng B, Rong A, Zhou Q, Li W. LncRNA LINC00662 promotes colon cancer tumor growth and metastasis by competitively binding with miR-340-5p to regulate CLDN8/IL22 co-expression and activating ERK signaling pathway. J Exp Clin Cancer Res 2020; 39:5. [PMID: 31900207 PMCID: PMC6942292 DOI: 10.1186/s13046-019-1510-7] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 12/17/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND LncRNA LINC00662 is closely related to the occurrence and development of cancer. This study aims to explore the effect of LINC00662 on colon cancer tumor growth and metastasis and its molecular mechanism. METHODS CCK8, colony formation, transwell, scratch wound, TUNEL, flow cytometry, RT-PCR, western blotting and immunohistochemistry assays were used to detect the proliferation, apoptosis, invasion and migration of colon cancer cell and mRNA and protein expressions. Luciferase reporter and RNA pull down assays were used to detect the combination of LINC00662 and miR-340-5p or IL22 and the combination of miR-340-5p and CLDN8/IL22. Co-immunoprecipitation were used to detect the co-expression of CLDN8 and IL22 in colon cell lines. The targets of LINC00662 were predicated by Starbase v2.0. The target genes of miR-340-5p were predicated by miRDB and TargetScan. GO and KEGG enrichment analysis were performed by DAVID website. RESULTS LINC00662 was up-regulation in colon cancer tissues and cell lines. Univariate Cox regression analysis showed that the LINC00662 expression level was related to the poor prognosis. LINC00662-WT and miR-340-5p mimics co-transfection depressed luciferase activity and IL22/CLDN8-WT and miR-340-5p inhibitors co-transfection memorably motivated luciferase activity. LINC00662 overexpression promoted cell proliferation, invasion and migration, and inhibited cell apoptosis in colon cancer. In vivo xenograft studies in nude mice manifested that LINC00662 overexpression prominently accelerate tumor growth. There was an opposite reaction in the biological functions of colon cells and tumor growth between LINC00662 overexpression and LINC00662 inhibition in vitro and in vivo. The functions of miR-340-5p mimics regulating the biological functions of colon cells and tumor growth were consistent with those of LINC00662 inhibition. CLDN8 and IL22, as target genes of miR-340-5p, reversed the functions of LINC00662 affecting the biological functions of colon cells and the protein levels of Bax, Bcl-2, XIAP, VEGF, MMP-2, E-cadherin and N-cadherin. Co-immunoprecipitation experiments indicated that CLDN8 directly interact with IL22 in colon cell lines. LINC00662 regulated CLDN8 and IL22 expressions and the activation of ERK signaling pathway via targeting miR-340-5p. CONCLUSION LINC00662 overexpression promoted the occurrence and development of colon cancer by competitively binding with miR-340-5p to regulate CLDN8/IL22 co-expression and activating ERK signaling pathway.
Collapse
Affiliation(s)
- Bo Cheng
- Department of Emergency Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East Road, Zhengzhou City, 410008 Henan Province China
| | - Aimei Rong
- Department of Gastroenterology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou City, 45000 Henan Province China
| | - Quanbo Zhou
- Department of Anus and Intestine Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou City, 45000 Henan Province China
| | - Wenlu Li
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou City, 45000 Henan Province China
| |
Collapse
|