1
|
Yang H, Chen H, Ma Y, Dong Z, Ni M, Lin Y, Zhang L, Zhou D, Zhang Q. Effects of 25-hydroxy vitamin D on T lymphocyte subsets and sputum smear conversion during anti-tuberculosis treatment. Int J Infect Dis 2022; 121:17-23. [PMID: 35490953 DOI: 10.1016/j.ijid.2022.04.056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 04/02/2022] [Accepted: 04/22/2022] [Indexed: 11/30/2022] Open
Abstract
Objectives This study was aimed to explore the effects of 25-hydroxy vitamin D [25(OH)D] on T lymphocyte subsets and sputum smear conversion during anti-tuberculosis (TB) treatment. Methods 120 newly diagnosed active pulmonary TB patients were collected and classified into vitamin D sufficiency group, vitamin D insufficiency group, and vitamin D deficiency group according to serum 25(OH)D levels. The clinical data and sputum smear conversion were collected, serum 25(OH)D and T lymphocyte subsets were also measured and compared. Results Our data showed that 25(OH)D levels reached the lowest point at 2 months of anti-TB treatment. Significant differences existed in the increase of CD4+ and CD8+ T cells based on vitamin D levels. Vitamin D sufficiency group had a significantly higher increase of CD4+ T cells during 6 months of anti-TB treatment and CD8+ T cells after 4 months of anti-TB treatment than the other groups. Vitamin D had no effect on the time to sputum smear conversion [vitamin D sufficiency group: adjusted hazard ratio (HR): 1.27 (95% CI: 0.78 - 2.06); vitamin D insufficiency group: adjusted HR: 1.05 (95% CI: 0.63 - 1.75)]. Conclusions Through null effects on sputum smear conversion, vitamin D may have a beneficial effect on the increase of CD4+ and CD8+ T cells during anti-TB treatment.
Collapse
Affiliation(s)
- Haibo Yang
- Department of Occupational Disease, Linyi People's Hospital, Linyi, 276000, China
| | - Hongyu Chen
- Dean's Office, Linyi People's Hospital, Linyi, 276000, China
| | - Yingmei Ma
- Department of Infection Management, Linyi People's Hospital, Linyi, 276000, China
| | - Zhen Dong
- Department of Prevention, Linyi People's Hospital, Linyi, 276000, China
| | - Mingde Ni
- Department of Tuberculosis, Linyi People's Hospital, Linyi, 276000, China
| | - Yuefu Lin
- Department of Prevention, Linyi People's Hospital, Linyi, 276000, China
| | - Laiyin Zhang
- Dean's Office, Linyi People's Hospital, Linyi, 276000, China
| | - Donghao Zhou
- Department of Clinical Nutrition, Linyi People's Hospital, Linyi, 276000, China.
| | - Qinghua Zhang
- Dean's Office, Linyi People's Hospital, Linyi, 276000, China.
| |
Collapse
|
2
|
Cho H, Myung SK, Cho HE. Efficacy of Vitamin D Supplements in Treatment of Acute Respiratory Infection: A Meta-Analysis for Randomized Controlled Trials. Nutrients 2022; 14:nu14061144. [PMID: 35334804 PMCID: PMC8955452 DOI: 10.3390/nu14061144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 02/28/2022] [Accepted: 03/03/2022] [Indexed: 12/10/2022] Open
Abstract
BACKGROUND Recent randomized controlled trials (RCTs) have reported inconsistent findings regarding the efficacy of vitamin D supplementation in the treatment of acute respiratory infections (ARIs). This study aimed to investigate the efficacy of vitamin D supplementation in the treatment of ARIs using a meta-analysis of RCTs. METHODS PubMed, EMBASE, and the Cochrane Library were searched for relevant articles in June 2021. Two of the authors independently assessed the eligibility of the trials. RESULTS Out of 390 articles retrieved from the databases, we included 18 RCTs, which involved 3648 participants, with 1838 in an intervention group and 1810 in a control group in the final analysis. In the meta-analysis of all the trials, vitamin D supplements had a beneficial effect in the treatment of ARIs (relative risk (RR) = 1.07; 95% confidence interval (CI), 1.01-1.13; I2 = 66.9%). Publication bias was observed in the funnel plot. In the subgroup meta-analysis of high-quality RCTs, no significant efficacy of vitamin D supplements was found (RR = 1.02; 95% CI, 0.98-1.06; I2 = 24.0%). Although statistically significant changes of 7% in the treatment effects were observed, they are not considered as clinically substantial ones. CONCLUSIONS The current meta-analysis suggests that vitamin D supplements are not clinically effective in the treatment of ARIs.
Collapse
Affiliation(s)
- Herim Cho
- Department of Medicine, College of Medicine, Ewha Womans University, Seoul 07804, Korea; (H.C.); (H.-E.C.)
| | - Seung-Kwon Myung
- Department of Cancer Biomedical Science, National Cancer Center Graduate School of Cancer Science and Policy, Goyang 10408, Korea
- Cancer Epidemiology Branch, Division of Cancer Data Science, National Cancer Center Research Institute, Goyang 10408, Korea
- Department of Family Medicine and Center for Cancer Prevention and Detection, National Cancer Center Hospital, Goyang 10408, Korea
- Correspondence: ; Tel.: +82-31-920-0479
| | - Hae-Eun Cho
- Department of Medicine, College of Medicine, Ewha Womans University, Seoul 07804, Korea; (H.C.); (H.-E.C.)
| |
Collapse
|
3
|
Nguyen TK, Niaz Z, Kruzel ML, Actor JK. Recombinant Human Lactoferrin Reduces Inflammation and Increases Fluoroquinolone Penetration to Primary Granulomas During Mycobacterial Infection of C57Bl/6 Mice. Arch Immunol Ther Exp (Warsz) 2022; 70:9. [PMID: 35226195 PMCID: PMC8922470 DOI: 10.1007/s00005-022-00648-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 11/18/2021] [Indexed: 12/15/2022]
Abstract
Infection with Mycobacterium tuberculosis (Mtb) results in the primary formation of a densely packed inflammatory foci that limits entry of therapeutic agents into pulmonary sites where organisms reside. No current therapeutic regimens exist that modulate host immune responses to permit increased drug penetration to regions of pathological damage during tuberculosis disease. Lactoferrin is a natural iron-binding protein previously demonstrated to modulate inflammation and granuloma cohesiveness, while maintaining control of pathogenic burden. Studies were designed to examine recombinant human lactoferrin (rHLF) to modulate histological progression of Mtb-induced pathology in a non-necrotic model using C57Bl/6 mice. The rHLF was oral administered at times corresponding to initiation of primary granulomatous response, or during granuloma maintenance. Treatment with rHLF demonstrated significant reduction in size of primary inflammatory foci following Mtb challenge, and permitted penetration of ofloxacin fluoroquinolone therapeutic to sites of pathological disruption where activated (foamy) macrophages reside. Increased drug penetration was accompanied by retention of endothelial cell integrity. Immunohistochemistry revealed altered patterns of M1-like and M2-like phenotypic cell localization post infectious challenge, with increased presence of M2-like markers found evenly distributed throughout regions of pulmonary inflammatory foci in rHLF-treated mice.
Collapse
Affiliation(s)
- Thao K.T. Nguyen
- Department of Pathology and Laboratory Medicine, UTHealth McGovern Medical School, Houston, TX, USA,The University of Texas MD Anderson Cancer Center – UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Zainab Niaz
- Department of Pathology and Laboratory Medicine, UTHealth McGovern Medical School, Houston, TX, USA
| | - Marian L. Kruzel
- Department of Pathology and Laboratory Medicine, UTHealth McGovern Medical School, Houston, TX, USA
| | - Jeffrey K. Actor
- Department of Pathology and Laboratory Medicine, UTHealth McGovern Medical School, Houston, TX, USA
| |
Collapse
|
4
|
Cahill C, Cox DJ, O’Connell F, Basdeo SA, Gogan KM, Ó’Maoldomhnaigh C, O’Sullivan J, Keane J, Phelan JJ. The Effect of Tuberculosis Antimicrobials on the Immunometabolic Profiles of Primary Human Macrophages Stimulated with Mycobacterium tuberculosis. Int J Mol Sci 2021; 22:ijms222212189. [PMID: 34830070 PMCID: PMC8624646 DOI: 10.3390/ijms222212189] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 11/07/2021] [Accepted: 11/08/2021] [Indexed: 12/22/2022] Open
Abstract
Tuberculosis (TB) remains a global health challenge. Patients with drug-sensitive and drug-resistant TB undergo long, arduous, and complex treatment regimens, often involving multiple antimicrobials. While these drugs were initially implemented based on their bactericidal effects, some studies show that TB antimicrobials can also directly affect cells of the immune system, altering their immune function. As use of these antimicrobials has been the mainstay of TB therapy for over fifty years now, it is more important than ever to understand how these antimicrobials affect key pathways of the immune system. One such central pathway, which underpins the immune response to a variety of infections, is immunometabolism, namely glycolysis and oxidative phosphorylation (OXPHOS). We hypothesise that in addition to their direct bactericidal effect on Mycobacterium tuberculosis (Mtb), current TB antimicrobials can modulate immunometabolic profiles and alter mitochondrial function in primary human macrophages. Human monocyte-derived macrophages (hMDMs) were differentiated from PBMCs isolated from healthy blood donors, and treated with four first-line and six second-line TB antimicrobials three hours post stimulation with either iH37Rv-Mtb or lipopolysaccharide (LPS). 24 h post stimulation, baseline metabolism and mitochondrial function were determined using the Seahorse Extracellular Flux Analyser. The effect of these antimicrobials on cytokine and chemokine production was also assayed using Meso Scale Discovery Multi-Array technology. We show that some of the TB antimicrobials tested can significantly alter OXPHOS and glycolysis in uninfected, iH37Rv-Mtb, and LPS-stimulated hMDMs. We also demonstrate how these antimicrobial-induced immunometabolic effects are linked with alterations in mitochondrial function. Our results show that TB antimicrobials, specifically clofazimine, can modify host immunometabolism and mitochondrial function. Moreover, clofazimine significantly increased the production of IL-6 in human macrophages that were stimulated with iH37Rv-Mtb. This provides further insight into the use of some of these TB antimicrobials as potential host-directed therapies in patients with early and active disease, which could help to inform TB treatment strategies in the future.
Collapse
Affiliation(s)
- Christina Cahill
- TB Immunology Group, Department of Clinical Medicine, Trinity Translational Medicine Institute, Trinity College, Dublin, Ireland; (C.C.); (D.J.C.); (S.A.B.); (K.M.G.); (C.Ó.); (J.K.)
| | - Dónal J. Cox
- TB Immunology Group, Department of Clinical Medicine, Trinity Translational Medicine Institute, Trinity College, Dublin, Ireland; (C.C.); (D.J.C.); (S.A.B.); (K.M.G.); (C.Ó.); (J.K.)
| | - Fiona O’Connell
- Department of Surgery, Trinity Translational Medicine Institute, Trinity College Dublin, St James’s Hospital, Dublin 8, Ireland; (F.O.); (J.O.)
| | - Sharee A. Basdeo
- TB Immunology Group, Department of Clinical Medicine, Trinity Translational Medicine Institute, Trinity College, Dublin, Ireland; (C.C.); (D.J.C.); (S.A.B.); (K.M.G.); (C.Ó.); (J.K.)
| | - Karl M. Gogan
- TB Immunology Group, Department of Clinical Medicine, Trinity Translational Medicine Institute, Trinity College, Dublin, Ireland; (C.C.); (D.J.C.); (S.A.B.); (K.M.G.); (C.Ó.); (J.K.)
| | - Cilian Ó’Maoldomhnaigh
- TB Immunology Group, Department of Clinical Medicine, Trinity Translational Medicine Institute, Trinity College, Dublin, Ireland; (C.C.); (D.J.C.); (S.A.B.); (K.M.G.); (C.Ó.); (J.K.)
| | - Jacintha O’Sullivan
- Department of Surgery, Trinity Translational Medicine Institute, Trinity College Dublin, St James’s Hospital, Dublin 8, Ireland; (F.O.); (J.O.)
| | - Joseph Keane
- TB Immunology Group, Department of Clinical Medicine, Trinity Translational Medicine Institute, Trinity College, Dublin, Ireland; (C.C.); (D.J.C.); (S.A.B.); (K.M.G.); (C.Ó.); (J.K.)
| | - James J. Phelan
- TB Immunology Group, Department of Clinical Medicine, Trinity Translational Medicine Institute, Trinity College, Dublin, Ireland; (C.C.); (D.J.C.); (S.A.B.); (K.M.G.); (C.Ó.); (J.K.)
- Correspondence: ; Tel.: +35-318-963-265
| |
Collapse
|
5
|
Saifullah B, Arulselvan P, El Zowalaty ME, Tan WS, Fakurazi S, Webster TJ, Baby R, Hussein MZ. A Novel Para-Amino Salicylic Acid Magnesium Layered Hydroxide Nanocomposite Anti-Tuberculosis Drug Delivery System with Enhanced in vitro Therapeutic and Anti-Inflammatory Properties. Int J Nanomedicine 2021; 16:7035-7050. [PMID: 34703226 PMCID: PMC8526802 DOI: 10.2147/ijn.s297040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 06/09/2021] [Indexed: 12/15/2022] Open
Abstract
INTRODUCTION Mycobacterium tuberculosis infections are associated with severe local inflammatory reactions, which may be life-threatening and lead to tuberculosis pathogenesis and associated complications. Inorganic nanolayers have been vastly exploited for biomedical applications (especially in drug delivery) because of their biocompatible and biodegradable nature with the ability to release a drug in a sustained manner. Herein, we report a new nanodelivery system of inorganic nanolayers based on magnesium layered hydroxides (MgLH) and a successfully intercalated anti-tuberculosis drug para-aminosalicylic acid (PAS). METHODS The designed anti-tuberculosis nanodelivery composite, MgLH-PAS, was prepared by a novel co-precipitation method using MgNO3 as well MgO as starting materials. RESULTS The designed nano-formulation, PAS-MgLH, showed good antimycobacterial and antimicrobial activities with significant synergistic anti-inflammatory effects on the suppression of lipopolysaccharide (LPS) stimulated inflammatory mediators in RAW 264.7 macrophages. The designed nano-formulation was also found to be biocompatible with human normal lung cells (MRC-5) and 3T3 fibroblast cells. Furthermore, the in vitro release of PAS from PAS-MgLH was found to be sustained in human body simulated phosphate buffer saline (PBS) solutions of pH 7.4 and pH 4.8. DISCUSSION The results of the present study are highly encouraging for further in vivo studies. This new nanodelivery system, MgLH, can be exploited in the delivery of other drugs and in numerous other biomedical applications as well.
Collapse
Affiliation(s)
- Bullo Saifullah
- Materials Synthesis and Characterization Laboratory, Institute of Advanced Technology (ITMA), Universiti Putra Malaysia, Serdang, Selangor, Malaysia
- Department of Management Sciences and Technology, The Begum Nusrat Bhutto Women University Sukkur, Sukkur, Sindh, 65170, Pakistan
| | - Palanisamy Arulselvan
- Laboratory for Vaccine and Immunotherapeutics, Institute of Biosciences, University Putra Malaysia, Serdang, Selangor, 43400, Malaysia
- Muthayammal Centre for Advanced Research, Muthayammal College of Arts and Science, Namakkal, Tamil Nadu, 637408, India
| | - Mohamed E El Zowalaty
- Laboratory for Vaccine and Immunotherapeutics, Institute of Biosciences, University Putra Malaysia, Serdang, Selangor, 43400, Malaysia
- Zoonosis Science Center, Department of Microbiology and Immunology, Uppsala University, Uppsala, Sweden
| | - Woan Sean Tan
- Laboratory for Vaccine and Immunotherapeutics, Institute of Biosciences, University Putra Malaysia, Serdang, Selangor, 43400, Malaysia
| | - Sharida Fakurazi
- Department of Human Anatomy, Faculty of Medicine and Health Science, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Thomas J Webster
- Department of Chemical Engineering, Northeastern University, Boston, MA, USA
| | - Rabia Baby
- Materials Synthesis and Characterization Laboratory, Institute of Advanced Technology (ITMA), Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Mohd Zobir Hussein
- Materials Synthesis and Characterization Laboratory, Institute of Advanced Technology (ITMA), Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| |
Collapse
|
6
|
Bhatt K, Bhagavathula M, Verma S, Timmins GS, Deretic VP, Ellner JJ, Salgame P. Rapamycin modulates pulmonary pathology in a murine model of Mycobacterium tuberculosis infection. Dis Model Mech 2021; 14:272048. [PMID: 34486033 PMCID: PMC8560501 DOI: 10.1242/dmm.049018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 09/01/2021] [Indexed: 12/14/2022] Open
Abstract
Tuberculosis (TB) treatment regimens are lengthy, causing non-adherence to treatment. Inadequate treatment can lead to relapse and the development of drug resistance TB. Furthermore, patients often exhibit residual lung damage even after cure, increasing the risk for relapse and development of other chronic respiratory illnesses. Host-directed therapeutics are emerging as an attractive means to augment the success of TB treatment. In this study, we used C3HeB/FeJ mice as an experimental model to investigate the potential role of rapamycin, a mammalian target of rapamycin inhibitor, as an adjunctive therapy candidate during the treatment of Mycobacterium tuberculosis infection with moxifloxacin. We report that administration of rapamycin with or without moxifloxacin reduced infection-induced lung inflammation, and the number and size of caseating necrotic granulomas. Results from this study strengthen the potential use of rapamycin and its analogs as adjunct TB therapy, and importantly underscore the utility of the C3HeB/FeJ mouse model as a preclinical tool for evaluating host-directed therapy candidates for the treatment of TB. Summary: Rapamycin, an mTOR inhibitor, with or without moxifloxacin, reduces lung inflammation and the number and size of caseating necrotic granulomas in Mycobacterium tuberculosis-infected C3HeB/FeJ mice.
Collapse
Affiliation(s)
- Kamlesh Bhatt
- Center for Emerging Pathogens, Department of Medicine, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Madhuri Bhagavathula
- Center for Emerging Pathogens, Department of Medicine, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Sheetal Verma
- Center for Emerging Pathogens, Department of Medicine, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Graham S Timmins
- Department of Pharmaceutical Sciences, University of New Mexico, Albuquerque, NM 87131, USA
| | - Vojo P Deretic
- Autophagy Inflammation and Metabolism (AIM) Center of Biomedical Research Excellence University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA.,Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | - Jerrold J Ellner
- Center for Emerging Pathogens, Department of Medicine, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Padmini Salgame
- Center for Emerging Pathogens, Department of Medicine, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| |
Collapse
|
7
|
Mo S, Liu X, Zhang K, Wang W, Cai Y, Ouyang Q, Zhu C, Lin D, Wan H, Li D, Wen Z, Chen X. Flunarizine suppresses Mycobacterium tuberculosis growth via calmodulin-dependent phagosome maturation. J Leukoc Biol 2021; 111:1021-1029. [PMID: 34533236 DOI: 10.1002/jlb.4a0221-119rr] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Tuberculosis (TB), an infectious bacterial disease caused by Mycobacterium tuberculosis (Mtb), is a major cause of death worldwide. Multidrug-resistant TB remains a public health crisis and thus novel effective treatments, such as host-directed therapies (HDTs), are urgently required to overcome the challenges of TB infection. In this study, we evaluated 4 calcium modulators for their effects on Mtb growth in macrophages. Only flunarizine enhanced the bactericidal ability of macrophages against Mtb, which was induced by an increase in phosphorylated calcium/calmodulin (CaM)-dependent protein kinase II (pCaMKII) levels. We further discovered that the expression of CaM was decreased in Mtb-infected macrophages and restored following flunarizine treatment; this was associated with phagolysosome maturation and acidification. Consistent with these findings, the anti-TB ability of macrophages was reduced following the silencing of CaM or inhibition of CAMKII activity. In conclusion, our results demonstrated that flunarizine enhanced the bactericidal ability of macrophages and clarified its CaM-pCAMKII-dependent mechanism. Therefore, our findings strongly support further studies of this currently approved drug as an HDT candidate for TB therapy.
Collapse
Affiliation(s)
- Siwei Mo
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Pathogen Biology, School of Medicine, Shenzhen University, Shenzhen, China
| | - Xiaoqian Liu
- Department of Infectious Disease, Shenzhen People's Hospital, Second Clinical Medical College of Jinan University, Shenzhen, Guangdong Province, China.,Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou, Guangdong Province, China
| | - Kehong Zhang
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Pathogen Biology, School of Medicine, Shenzhen University, Shenzhen, China.,Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University, Jena, Germany
| | - Wenfei Wang
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Pathogen Biology, School of Medicine, Shenzhen University, Shenzhen, China.,Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University, Jena, Germany
| | - Yi Cai
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Pathogen Biology, School of Medicine, Shenzhen University, Shenzhen, China
| | - Qi Ouyang
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Pathogen Biology, School of Medicine, Shenzhen University, Shenzhen, China
| | - Chuanzhi Zhu
- Laboratory of Molecular Biology, Beijing Key Laboratory for Drug Resistance Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Dachuan Lin
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Pathogen Biology, School of Medicine, Shenzhen University, Shenzhen, China
| | - Haoqiang Wan
- Department of Infectious Disease, Shenzhen People's Hospital, Second Clinical Medical College of Jinan University, Shenzhen, Guangdong Province, China
| | - Dechang Li
- Yuebei Second People's Hospital, Shaoguan, Guangdong, China
| | - Zhihua Wen
- Yuebei Second People's Hospital, Shaoguan, Guangdong, China
| | - Xinchun Chen
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Pathogen Biology, School of Medicine, Shenzhen University, Shenzhen, China
| |
Collapse
|
8
|
Hayford FEA, Dolman RC, Ozturk M, Nienaber A, Ricci C, Loots DT, Brombacher F, Blaauw R, Smuts CM, Parihar SP, Malan L. Adjunct n-3 Long-Chain Polyunsaturated Fatty Acid Treatment in Tuberculosis Reduces Inflammation and Improves Anemia of Infection More in C3HeB/FeJ Mice With Low n-3 Fatty Acid Status Than Sufficient n-3 Fatty Acid Status. Front Nutr 2021; 8:695452. [PMID: 34504860 PMCID: PMC8421789 DOI: 10.3389/fnut.2021.695452] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 07/23/2021] [Indexed: 02/02/2023] Open
Abstract
Populations at risk for tuberculosis (TB) may have a low n-3 polyunsaturated fatty acid (PUFA) status. Our research previously showed that post-infection supplementation of n-3 long-chain PUFA (LCPUFA) in TB without TB medication was beneficial in n-3 PUFA sufficient but not in low-status C3HeB/FeJ mice. In this study, we investigated the effect of n-3 LCPUFA adjunct to TB medication in TB mice with a low compared to a sufficient n-3 PUFA status. Mice were conditioned on an n-3 PUFA-deficient (n-3FAD) or n-3 PUFA-sufficient (n-3FAS) diet for 6 weeks before TB infection. Post-infection at 2 weeks, both groups were switched to an n-3 LCPUFA [eicosapentaenoic acid (EPA)/docosahexaenoic acid (DHA)] supplemented diet and euthanized at 4- and 14- days post-treatment. Iron and anemia status, bacterial loads, lung pathology, lung cytokines/chemokines, and lung lipid mediators were measured. Following 14 days of treatment, hemoglobin (Hb) was higher in the n-3FAD than the untreated n-3FAS group (p = 0.022), whereas the n-3FAS (drug) treated control and n-3FAS groups were not. Pro-inflammatory lung cytokines; interleukin-6 (IL-6) (p = 0.011), IL-1α (p = 0.039), MCP1 (p = 0.003), MIP1- α (p = 0.043), and RANTES (p = 0.034); were lower, and the anti-inflammatory cytokine IL-4 (p = 0.002) and growth factor GMCSF (p = 0.007) were higher in the n-3FAD compared with the n-3FAS mice after 14 days. These results suggest that n-3 LCPUFA therapy in TB-infected mice, in combination with TB medication, may improve anemia of infection more in low n-3 fatty acid status than sufficient status mice. Furthermore, the low n-3 fatty acid status TB mice supplemented with n-3 LCPUFA showed comparatively lower cytokine-mediated inflammation despite presenting with lower pro-resolving lipid mediators.
Collapse
Affiliation(s)
- Frank E. A. Hayford
- Centre of Excellence for Nutrition, North-West University, Potchefstroom, South Africa
- Department of Dietetics, School of Biomedical and Allied Health Sciences, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Robin C. Dolman
- Centre of Excellence for Nutrition, North-West University, Potchefstroom, South Africa
| | - Mumin Ozturk
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town-Component, University of Cape Town, Cape Town, South Africa
- Institute of Infectious Diseases and Molecular Medicine (IDM), Division of Immunology and South African Medical Research Council (SAMRC) Immunology of Infectious Diseases, University of Cape Town, Cape Town, South Africa
| | - Arista Nienaber
- Centre of Excellence for Nutrition, North-West University, Potchefstroom, South Africa
| | - Cristian Ricci
- Pediatric Epidemiology, Department of Pediatrics, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Du Toit Loots
- Laboratory of Infectious Disease Metabolomics, Human Metabolomics, North-West University, Potchefstroom, South Africa
| | - Frank Brombacher
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town-Component, University of Cape Town, Cape Town, South Africa
- Institute of Infectious Diseases and Molecular Medicine (IDM), Division of Immunology and South African Medical Research Council (SAMRC) Immunology of Infectious Diseases, University of Cape Town, Cape Town, South Africa
- Wellcome Centre for Infectious Diseases Research in Africa (CIDRI-Africa) and Institute of Infectious Diseases and Molecular Medicine (IDM), University of Cape Town, Cape Town, South Africa
| | - Renée Blaauw
- Division of Human Nutrition, Stellenbosch University, Cape Town, South Africa
| | - Cornelius M. Smuts
- Centre of Excellence for Nutrition, North-West University, Potchefstroom, South Africa
| | - Suraj P. Parihar
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town-Component, University of Cape Town, Cape Town, South Africa
- Institute of Infectious Diseases and Molecular Medicine (IDM), Division of Immunology and South African Medical Research Council (SAMRC) Immunology of Infectious Diseases, University of Cape Town, Cape Town, South Africa
- Wellcome Centre for Infectious Diseases Research in Africa (CIDRI-Africa) and Institute of Infectious Diseases and Molecular Medicine (IDM), University of Cape Town, Cape Town, South Africa
- Division of Medical Microbiology, Institute of Infectious Diseases and Molecular Medicine (IDM), Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Linda Malan
- Centre of Excellence for Nutrition, North-West University, Potchefstroom, South Africa
| |
Collapse
|
9
|
Nienaber A, Hayford FEA, Variava E, Martinson N, Malan L. The Manipulation of the Lipid Mediator Metabolism as Adjunct Host-Directed Therapy in Tuberculosis. Front Immunol 2021; 12:623941. [PMID: 33777003 PMCID: PMC7994275 DOI: 10.3389/fimmu.2021.623941] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 02/22/2021] [Indexed: 12/11/2022] Open
Abstract
Host-directed therapies (HDTs) enhance the host response to tuberculosis (TB) infection to reduce disease severity. For instance, the manipulation of lipid mediator production diminishes the hyperactive immune response which is a known pathological feature of TB that generates lung tissue damage. Non-steroidal anti-inflammatory drugs (NSAIDs) and omega-3 long-chain polyunsaturated fatty acids (n-3 LCPUFA) are examples of such HDTs. In this mini-review, we recapitulate the literature available on the effects of NSAIDs and n-3 LCPUFA in TB as well as the immunological pathways underpinning these effects. Many NSAIDs have a great deal of data describing their effects and safety and in many jurisdictions are inexpensive, and sold over the counter in neighborhood convenience stores and supermarkets. The potential benefits of NSAIDs in TB are well-documented in pre-clinical studies. The reduction of pro-inflammatory lipid mediator production by inhibiting cyclooxygenase (COX) pathways with NSAIDs has been found to improve lung histopathology, bacterial control, and survival. Additionally, n-3 LCPUFA and its novel bioactive metabolites produced by COX and lipoxygenase (LOX) have been identified as safe and effective pro-resolving and antibacterial pharmaconutrients. Nevertheless, heterogeneous results have been reported in pre-clinical TB studies. Recently, the importance of the correct timing of NSAIDs and n-3 LCPUFA administration in TB has also been highlighted. This mini-review will provide a better understanding of the potential contribution of these therapies toward reducing inflammatory lung damage and improving bactericidal activity, especially during later stages of TB infection. It further highlights that clinical trials are required to confirm benefit and safety in TB patients.
Collapse
Affiliation(s)
- Arista Nienaber
- Centre of Excellence for Nutrition, North-West University, Potchefstroom, South Africa
| | - Frank E A Hayford
- Centre of Excellence for Nutrition, North-West University, Potchefstroom, South Africa.,Department of Nutrition and Dietetics, School of Biomedical and Allied Health Sciences, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Ebrahim Variava
- Perinatal HIV Research Unit, University of Witwatersrand, Soweto, South Africa.,Department of Internal Medicine, Klerksdorp Tshepong Hospital Complex, North West Department of Health, Klerksdorp, South Africa
| | - Neil Martinson
- Perinatal HIV Research Unit, University of Witwatersrand, Soweto, South Africa
| | - Linda Malan
- Centre of Excellence for Nutrition, North-West University, Potchefstroom, South Africa
| |
Collapse
|