1
|
Li Z, Pei S, Wang Y, Zhang G, Lin H, Dong S. Advancing predictive markers in lung adenocarcinoma: A machine learning-based immunotherapy prognostic prediction signature. ENVIRONMENTAL TOXICOLOGY 2024; 39:4581-4593. [PMID: 38591820 DOI: 10.1002/tox.24284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/19/2024] [Accepted: 03/31/2024] [Indexed: 04/10/2024]
Abstract
The prognosis of lung adenocarcinoma (LUAD) is generally poor. Immunotherapy has emerged as a promising therapeutic modality, demonstrating remarkable potential for substantially prolonging the overall survival of individuals afflicted with LUAD. However, there is currently a lack of reliable signatures for identifying patients who would benefit from immunotherapy. We conducted a comparative analysis of two immunotherapy cohorts (OAK and POPLAR) and utilized single-factor COX regression to identify genes that significantly impact the prognosis of LUAD. Based on the TCGA-LUAD dataset, we employed a combination of 101 machine learning algorithms to construct a model and selected the optimal model. The model was validated on five GEO datasets and compared with 144 previously published signatures to assess its performance. Subsequently, we explored the underlying biological mechanisms through tumor mutation burden analysis, enrichment analysis, and immune infiltration analysis. An immunotherapy prognostic prediction signature (IPPS) was constructed based on 13 genes, showing robust performance in the TCGA-LUAD dataset. IPPS exhibited consistent predictive accuracy in the validation cohorts. Compared to 144 previously published signatures, IPPS consistently ranked among the top in terms of C-index values. Further exploration revealed differences between high and low-IPPS groups in terms of tumor mutation burden, pathway enrichment, and immune infiltration. IPPS demonstrates strong predictive capabilities for the prognosis of LUAD patients, offering the potential to identify suitable candidates for immunotherapy and contribute to precision treatment strategies for LUAD.
Collapse
Affiliation(s)
- Zhongyan Li
- Department of Geriatric Medicine, The Affiliated Huai'an Hospital of Yangzhou University
| | - Shengbin Pei
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yanjuan Wang
- Department of Gastroenterology, The First Afliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ge Zhang
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Haoran Lin
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Shiyang Dong
- Department of Thoracic Surgery, Fuyang Tumor Hospital, Fuyang, China
| |
Collapse
|
2
|
Liu B, Zheng H, Ma G, Shen H, Pang Z, Huang G, Song Q, Wang G, Du J. Involvement of ICAM5 in Carcinostasis Effects on LUAD Based on the ROS1-Related Prognostic Model. J Inflamm Res 2024; 17:6583-6602. [PMID: 39318995 PMCID: PMC11421455 DOI: 10.2147/jir.s475088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 09/07/2024] [Indexed: 09/26/2024] Open
Abstract
Background Lung cancer is the most common type of cancer in the world. In lung adenocarcinoma (LUAD), studies on receptor tyrosine kinase ROS proto-oncogene 1 (ROS1) have mainly focused on the oncogenic effects of its fusion mutations, whereas ROS1 has been reported to be aberrantly expressed in a variety of cancers and can extensively regulate the growth, survival, and proliferation of tumor cells through multiple signaling pathways. The comprehensive analysis of ROS1 expression has not been fully investigated regarding its predictive value for LUAD patients. Methods Gene expression profiles collected from The Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO) databases were used to build and validate prognostic risk models. The association of ROS1 with overall survival and the immune landscape was obtained from the Tumor Immune Estimation Resource (TIMER) database. The following analyses were performed using the R package to determine the model's validity: pathway dysregulation analysis, gene set enrichment analysis, Gene Oncology analysis, immune invasion analysis, chemotherapy, radiotherapy, and immunotherapy sensitivity analysis. Finally, we conducted a pan-cancer analysis and performed in vitro experiments to explore the regulatory role of intercellular adhesion molecule 5 (ICAM5) in the progression of LUAD. Results We constructed a 17-gene model that categorized patients into two risk groups. The model had predictive accuracy for tumor prognosis and was specific for patients with high ROS1 expression. Comprehensive analysis showed that patients in the high-risk group were characterized by marked dysregulation of multiple pathways (eg, unfolded protein response), immune suppression of the tumor microenvironment, and poor benefit from immunotherapy and radiotherapy compared with patients in the low-risk group. PLX4720 may be a suitable treatment for the high-risk patient population. The ICAM5 gene has been demonstrated to inhibit the proliferation, cell cycle, invasion, and migration of LUAD cells. Conclusion We constructed a 17-gene prognostic risk model and found differences in immune-related cells, biological processes, and prognosis among patients in different risk groups based on the correlation between ROS1 and immunity. Personalized therapy may play an essential role in treatment. We further investigated the role of ICAM5 in inhibiting the malignant bioactivity of LUAD cells.
Collapse
Affiliation(s)
- Baoliang Liu
- Department of Thoracic Surgery, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, People's Republic of China
| | - Haotian Zheng
- Department of Thoracic Surgery, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, People's Republic of China
| | - Guoyuan Ma
- Department of Thoracic Surgery, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, People's Republic of China
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, People's Republic of China
| | - Hongchang Shen
- Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, People's Republic of China
| | - Zhaofei Pang
- Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, People's Republic of China
| | - Gemu Huang
- Research and Development Department, Amoy Diagnostics Co., LTD., Xiamen, Fujian, People's Republic of China
| | - Qingtao Song
- Research and Development Department, Amoy Diagnostics Co., LTD., Xiamen, Fujian, People's Republic of China
| | - Guanghui Wang
- Department of Thoracic Surgery, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, People's Republic of China
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, People's Republic of China
| | - Jiajun Du
- Department of Thoracic Surgery, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, People's Republic of China
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, People's Republic of China
| |
Collapse
|
3
|
Li S, Liu Z, Chen Q, Chen Y, Ji S. A novel fatty acid metabolism-related signature identifies MUC4 as a novel therapy target for esophageal squamous cell carcinoma. Sci Rep 2024; 14:12476. [PMID: 38816411 PMCID: PMC11139939 DOI: 10.1038/s41598-024-62917-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/22/2024] [Indexed: 06/01/2024] Open
Abstract
Fatty acid metabolism has been identified as an emerging hallmark of cancer, which was closely associated with cancer prognosis. Whether fatty acid metabolism-related genes (FMGs) signature play a more crucial role in biological behavior of esophageal squamous cell carcinoma (ESCC) prognosis remains unknown. Thus, we aimed to identify a reliable FMGs signature for assisting treatment decisions and prognosis evaluation of ESCC. In the present study, we conducted consensus clustering analysis on 259 publicly available ESCC samples. The clinical information was downloaded from The Cancer Genome Atlas (TCGA, 80 ESCC samples) and Gene Expression Omnibus (GEO) database (GSE53625, 179 ESCC samples). A consensus clustering arithmetic was used to determine the FMGs molecular subtypes, and survival outcomes and immune features were evaluated among the different subtypes. Kaplan-Meier analysis and the receiver operating characteristic (ROC) was applied to evaluate the reliability of the risk model in training cohort, validation cohort and all cohorts. A nomogram to predict patients' 1-year, 3-year and 5-year survival rate was also studied. Finally, CCK-8 assay, wound healing assay, and transwell assay were implemented to evaluate the inherent mechanisms of FMGs for tumorigenesis in ESCC. Two subtypes were identified by consensus clustering, of which cluster 2 is preferentially associated with poor prognosis, lower immune cell infiltration. A fatty acid (FA) metabolism-related risk model containing eight genes (FZD10, TACSTD2, MUC4, PDLIM1, PRSS12, BAALC, DNAJA2 and ALOX12B) was established. High-risk group patients displayed worse survival, higher stromal, immune and ESTIMATE scores than in the low-risk group. Moreover, a nomogram revealed good predictive ability of clinical outcomes in ESCC patients. The results of qRT-PCR analysis revealed that the MUC4 and BAALC had high expression level, and FZD10, PDLIM1, TACSTD2, ALOX12B had low expression level in ESCC cells. In vitro, silencing MUC4 remarkably inhibited ESCC cell proliferation, invasion and migration. Our study fills the gap of FMGs signature in predicting the prognosis of ESCC patients. These findings revealed that cluster subtypes and risk model of FMGs had effects on survival prediction, and were expected to be the potential promising targets for ESCC.
Collapse
Affiliation(s)
- Shanshan Li
- Department of Operating Room, Weifang Traditional Chinese Hospital, Weifang, China
| | - Zhengcao Liu
- Department of Radiotherapy & Oncology, The Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical University, No.16 Baita Road, Suzhou, 215001, China
| | - Qingqing Chen
- Department of Radiotherapy & Oncology, The Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical University, No.16 Baita Road, Suzhou, 215001, China
| | - Yuetong Chen
- Department of Radiotherapy & Oncology, The Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical University, No.16 Baita Road, Suzhou, 215001, China
| | - Shengjun Ji
- Department of Radiotherapy & Oncology, The Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical University, No.16 Baita Road, Suzhou, 215001, China.
| |
Collapse
|
4
|
Tuo Z, Lin Y, Zhang Y, Gao L, Yu D, Wang J, Sun C, Sun X, Wang J, Prasad A, Bheesham N, Meng M, Lv Z, Chen X. Prognostic significance and immune landscape of a cell cycle progression-related risk model in bladder cancer. Discov Oncol 2024; 15:160. [PMID: 38735911 PMCID: PMC11089032 DOI: 10.1007/s12672-024-01008-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 05/03/2024] [Indexed: 05/14/2024] Open
Abstract
BACKGROUND A greater emphasis has been placed on the part of cell cycle progression (CCP) in cancer in recent years. Nevertheless, the precise connection between CCP-related genes and bladder cancer (BCa) has remained elusive. This study endeavors to establish and validate a reliable risk model incorporating CCP-related factors, aiming to predict both the prognosis and immune landscape of BCa. METHODS Clinical information and RNA sequencing data were collected from the GEO and TCGA databases. Univariate and multivariate Cox regression analyses were conducted to construct a risk model associated with CCP. The performance of the model was assessed using ROC and Kaplan-Meier survival analyses. Functional enrichment analysis was employed to investigate potential cellular functions and signaling pathways. The immune landscape was characterized using CIBERSORT algorithms. Integration of the risk model with various clinical variables led to the development of a nomogram. RESULTS To build the risk model, three CCP-related genes (RAD54B, KPNA2, and TPM1) were carefully chosen. ROC and Kaplan-Meier survival analysis confirm that our model has good performance. About immunological infiltration, the high-risk group showed decreased levels of regulatory T cells and dendritic cells coupled with increased levels of activated CD4 + memory T cells, M2 macrophages, and neutrophils. Furthermore, the nomogram showed impressive predictive power for OS at 1, 3, and 5 years. CONCLUSION This study provides new insights into the association between the CCP-related risk model and the prognosis of BCa, as well as its impact on the immune landscape.
Collapse
Affiliation(s)
- Zhouting Tuo
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Yuan Lin
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Ying Zhang
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Liang Gao
- Center for Clinical Medicine, Huatuo Institute of Medical Innovation (HTIMI), Berlin, Germany
| | - Dexin Yu
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Jiani Wang
- Institute for Social Medicine, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin; Berlin Institute of Health, Epidemiology and Health Economics, Berlin, Germany
| | - Chenyu Sun
- Department of General Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Xianchao Sun
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Jinyou Wang
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Apurwa Prasad
- Parkview Regional Medical Center, 11109 Parkview Plaza Dr, Fort Wayne, IN, 46845, USA
| | - Nimarta Bheesham
- Internal Medicine, University of Illinois College of Medicine, One Illini Drive, Peoria, IL, 61605, USA
| | - Muzi Meng
- UK Program Site, American University of the Caribbean School of Medicine, Vernon Building Room 64, Sizer St, Preston, PR1 1JQ, UK
- Bronxcare Health System, 1650 Grand Concourse, The Bronx, NY, 10457, USA
| | - Zhengmei Lv
- Department of Histology and Embryology, School of Basic Medical Sciences, Anhui Medical University, Anhui, China.
| | - Xin Chen
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China.
| |
Collapse
|
5
|
Zhao Q, Ye Y, Zhang Q, Wu Y, Wang G, Gui Z, Zhang M. PANoptosis-related long non-coding RNA signature to predict the prognosis and immune landscapes of pancreatic adenocarcinoma. Biochem Biophys Rep 2024; 37:101600. [PMID: 38371527 PMCID: PMC10873882 DOI: 10.1016/j.bbrep.2023.101600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/25/2023] [Accepted: 11/29/2023] [Indexed: 02/20/2024] Open
Abstract
Background Cancer growth is significantly influenced by processes such as pyroptosis, apoptosis, and necroptosis that underlie PANoptosis, a proinflammatory programmed cell death. Several studies have examined the long non-coding RNAs (lncRNAs) associated with pancreatic adenocarcinoma (PAAD). However, the predictive value of lncRNAs related to PANoptosis for PAAD has not been established. Methods The Clinical Genome Atlas database was used to obtain the transcriptome 、clinical data and the corresponding mutation data of the patients with PAAD in this study. The least absolute shrinkage and selection operator regression analysis was employed to obtain prognosis-related lncRNAs for constructing a risk signature. According to the median risk score of the signature, patients with PAAD were grouped into low- and high-risk groups to further compare the survival prognosis of different risk groups. Time-dependent receiver operating characteristic curves, c-index analysis, nomograms, principal component analysis and univariate Cox and multivariate Cox regression were performed for the internal validation of the signature. In addition, enrichment analysis of different genes was performed using gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. Lastly, differences in tumor mutation burden (TMB), immune function, tumor immune dysfunction and rejection (TIDE), and drug response were determined for the two risk groups. Results The signature was constructed with six PANoptosis-related lncRNAs (AC067817.2、LINC02004、AC243829.1、AC092171.5、AP005233.2、AC004687.1) that predicted the prognosis of the patients with PAAD. Survival curves showed that patients in the two risk groups had statistically significant differences in prognosis (P < 0.05), and multi-cox regression analysis identified risk score as an independent risk factor for PAAD prognosis, and internal validation of nomograms showed high confidence in the signature. GO and KEGG enrichment analysis showed functional and pathway differences between the high- and low-risk groups. TMB evaluation demonstrated that patients in the high-risk group had a higher frequency of mutations. The TIDE score indicated that the high-risk group had a lower risk of immunotherapy escape and better immunotherapy outcomes. Additionally, the two risk groups revealed significantly different responses to 11 anticancer drugs. Conclusion We identified a novel risk signature for PANoptosis-related lncRNAs, which is a standalone prognostic indicator for PAAD. The PANoptosis-related lncRNA risk signature may be relevant for immunotherapy and a therapeutic target for PAAD.
Collapse
Affiliation(s)
- Qinying Zhao
- Oncology Department of Integrated Traditional Chinese and Western Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- The Traditional and Western Medicine (TCM)-Integrated Cancer Center of Anhui Medical University, Hefei, China
| | - Yingquan Ye
- Oncology Department of Integrated Traditional Chinese and Western Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- The Traditional and Western Medicine (TCM)-Integrated Cancer Center of Anhui Medical University, Hefei, China
| | - Quan Zhang
- Oncology Department of Integrated Traditional Chinese and Western Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- The Traditional and Western Medicine (TCM)-Integrated Cancer Center of Anhui Medical University, Hefei, China
| | - Yue Wu
- Oncology Department of Integrated Traditional Chinese and Western Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- The Traditional and Western Medicine (TCM)-Integrated Cancer Center of Anhui Medical University, Hefei, China
| | - Gaoxiang Wang
- Oncology Department of Integrated Traditional Chinese and Western Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- The Traditional and Western Medicine (TCM)-Integrated Cancer Center of Anhui Medical University, Hefei, China
| | - Zhongxuan Gui
- Oncology Department of Integrated Traditional Chinese and Western Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- The Traditional and Western Medicine (TCM)-Integrated Cancer Center of Anhui Medical University, Hefei, China
| | - Mei Zhang
- Oncology Department of Integrated Traditional Chinese and Western Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- The Traditional and Western Medicine (TCM)-Integrated Cancer Center of Anhui Medical University, Hefei, China
- Graduate School of Anhui University of Chinese Medicine, Hefei, China
| |
Collapse
|
6
|
Wang T, Ji M, Liu W, Sun J. Development and validation of a novel DNA damage repair-related long non-coding RNA signature in predicting prognosis, immunity, and drug sensitivity in uterine corpus endometrial carcinoma. Comput Struct Biotechnol J 2023; 21:4944-4959. [PMID: 37876625 PMCID: PMC10590872 DOI: 10.1016/j.csbj.2023.10.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/13/2023] [Accepted: 10/13/2023] [Indexed: 10/26/2023] Open
Abstract
Background DNA damage response (DDR) confer resistance to chemoradiotherapy in cancer cells. However, the role of DDR-related lncRNAs (DRLs) in uterine corpus endometrial carcinoma (UCEC) is poorly understood. In this study, we aimed to identify a DRL-related prognostic signature that could guide the clinical treatment of UCEC. Methods We extracted transcriptome and clinical data of patients with UCEC from The Cancer Genome Atlas (TCGA) database and identified DRLs using Spearman correlation analysis. Univariate and multivariate Cox analyses were used to determine candidate prognostic DRLs. The samples were randomly divided into training and test cohorts in a 1:1 ratio. A DRL-related risk signature was constructed from the training cohort data using the least absolute shrinkage and selection operator (LASSO) algorithm, and validated using the test and entire cohorts. Subsequently, a prognostic nomogram was developed using a multivariate Cox regression analysis. The functional annotation, immune microenvironment, tumor mutation burden (TMB), immune checkpoint blockade (ICB) efficacy, and drug sensitivity were also comprehensively analyzed between different risk groups. Finally, the function of AC019069.1 was validated in vitro. Results A novel risk signature was developed based on nine DRLs. The risk score efficiently predicted the prognosis of patients with UCEC. Based on the median risk score, two subgroups were identified. The DDR-related pathways were upregulated in the high-risk group. Additionally, high-risk patients have low immune activity, poor response to ICB, and weak sensitivity to chemotherapeutic agents, possibly because of the proficient DDR system. Finally, we demonstrated AC019069.1 could promote cell proliferation, decrease apoptosis and maintain genome stability of UCEC cells. Conclusions The developed DRL-related signature can predict the prognosis, immune microenvironment, immunotherapy, and chemoradiotherapy responsiveness of UCEC. Our study also revealed the potential value of DDR-targeted therapy in treating high-risk patients with UCEC.
Collapse
Affiliation(s)
- Tao Wang
- Department of Gynecology, Shanghai Key Laboratory of Maternal-Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Mei Ji
- Department of Gynecology, Shanghai Key Laboratory of Maternal-Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Wenwen Liu
- Department of Gynecology, Shanghai Key Laboratory of Maternal-Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Jing Sun
- Department of Gynecology, Shanghai Key Laboratory of Maternal-Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| |
Collapse
|
7
|
Zhao Z, Mak TK, Shi Y, Huang H, Huo M, Zhang C. The DNA damage repair-related lncRNAs signature predicts the prognosis and immunotherapy response in gastric cancer. Front Immunol 2023; 14:1117255. [PMID: 37457685 PMCID: PMC10339815 DOI: 10.3389/fimmu.2023.1117255] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 06/16/2023] [Indexed: 07/18/2023] Open
Abstract
Background Gastric cancer (GC) is one of the most prevalent cancers, and it has unsatisfactory overall treatment outcomes. DNA damage repair (DDR) is a complicated process for signal transduction that causes cancer. lncRNAs can influence the formation and incidence of cancers by influencing DDR-related mRNAs/miRNAs. A DDR-related lncRNA prognostic model is urgently needed to improve treatment strategies. Methods The data of GC samples were obtained from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) datasets. A total of 588 mRNAs involved in DDR were selected from MSigDB, 62 differentially expressed mRNAs from TCGA-STAD were obtained, and 137 lncRNAs were correlated with these mRNAs. Univariate Cox regression and least absolute shrinkage and selection operator (LASSO) regression analyses were used to develop a DDR-related lncRNA prognostic model. Based on the risk model, the differentially expressed gene signature A/B in the low-risk and high-risk groups of TCGA-STAD was identified for further validation. Results The prognosis model of 5 genes (AC145285.6, MAGI2-AS3, AL590705.3, AC007405.3, and LINC00106) was constructed and classified into two risk groups. We found that GC patients with a low-risk score had a better OS than those with a high-risk score. We found that the high-risk group tended to have higher TME scores. We also found that patients in the high-risk group had a higher proportion of resting CD4 T cells, monocytes, M2 macrophages, resting dendritic cells, and resting mast cells, whereas the low-risk subgroup had a greater abundance of activated CD4 T cells, follicular helper T cells, M0 macrophages, and M1 macrophages. We observed significant differences in the T-cell exclusion score, T-cell dysfunction, MSI, and TMB between the two risk groups. In addition, we found that patients treated with immunotherapy in the low-RS score group had a longer survival and a better prognosis than those in the high-RS score group. Conclusion The prognostic model has a significant role in the TME, clinicopathological characteristics, prognosis, MSI, and drug sensitivity. We also discovered that patients treated with immunotherapy in the low-RS score group had a better prognosis. This work provides a foundation for improving the prognosis and response to immunotherapy among patients with GC.
Collapse
Affiliation(s)
- Zidan Zhao
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Tsz Kin Mak
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Yuntao Shi
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Huaping Huang
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Mingyu Huo
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Changhua Zhang
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| |
Collapse
|
8
|
Guo D, Zhang X, Du X, Yao W, Shen W, Zhu S. A novel DNA damage repair gene-related prognostic model for evaluating the prognosis and tumor microenvironment infiltration of esophageal squamous cell carcinoma. BMC Med Genomics 2023; 16:27. [PMID: 36803971 PMCID: PMC9940400 DOI: 10.1186/s12920-023-01459-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 02/13/2023] [Indexed: 02/22/2023] Open
Abstract
BACKGROUND This study aimed to investigate the potential prognostic value of DNA damage repair genes (DDRGs) in esophageal squamous cell carcinoma (ESCC) and their relationship with immune-related characteristics. METHODS We analyzed DDRGs of the Gene Expression Omnibus database (GSE53625). Subsequently, the GSE53625 cohort was used to construct a prognostic model based on least absolute shrinkage and selection operator regression, and Cox regression analysis was used to construct a nomogram. The immunological analysis algorithms explored the differences between the potential mechanism, tumor immune activity, and immunosuppressive genes in the high- and low-risk groups. Of the prognosis model-related DDRGs, we selected PPP2R2A for further investigation. Functional experiments were conducted to evaluate the effect on ESCC cells in vitro. RESULTS A 5-DDRG (ERCC5, POLK, PPP2R2A, TNP1 and ZNF350) prediction signature was established for ESCC, stratifying patients into two risk groups. Multivariate Cox regression analysis showed that the 5-DDRG signature was an independent predictor of overall survival. Immune cells such as CD4 T cells and monocytes displayed lower infiltration levels in the high-risk group. Additionally, the immune, ESTIMATE, and stromal scores in the high-risk group were all considerably higher than those in the low-risk group. Functionally, knockdown of PPP2R2A significantly suppressed cell proliferation, migration and invasion in two ESCC cell lines (ECA109 and TE1). CONCLUSION The clustered subtypes and prognostic model of DDRGs could effectively predict the prognosis and immune activity of ESCC patients.
Collapse
Affiliation(s)
- Dong Guo
- grid.452582.cDepartment of Radiation Oncology, Fourth Hospital of Hebei Medical University, Shijiazhuang, 050000 China
| | - Xueyuan Zhang
- grid.452582.cDepartment of Radiation Oncology, Fourth Hospital of Hebei Medical University, Shijiazhuang, 050000 China
| | - Xingyu Du
- grid.452582.cDepartment of Radiation Oncology, Fourth Hospital of Hebei Medical University, Shijiazhuang, 050000 China
| | - Weinan Yao
- grid.452582.cDepartment of Radiation Oncology, Fourth Hospital of Hebei Medical University, Shijiazhuang, 050000 China
| | - Wenbin Shen
- grid.452582.cDepartment of Radiation Oncology, Fourth Hospital of Hebei Medical University, Shijiazhuang, 050000 China
| | - Shuchai Zhu
- Department of Radiation Oncology, Fourth Hospital of Hebei Medical University, Shijiazhuang, 050000, China.
| |
Collapse
|
9
|
Zhang P, Li Q, Zhang Y, Wang Q, Yan J, Shen A, Hu B. Identification of a Novel Gene Signature with DDR and EMT Difunctionalities for Predicting Prognosis, Immune Activity, and Drug Response in Breast Cancer. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:1221. [PMID: 36673982 PMCID: PMC9859620 DOI: 10.3390/ijerph20021221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/02/2023] [Accepted: 01/07/2023] [Indexed: 06/17/2023]
Abstract
Breast cancer, with an overall poor clinical prognosis, is one of the most heterogeneous cancers. DNA damage repair (DDR) and epithelial-mesenchymal transition (EMT) have been identified to be associated with cancer's progression. Our study aimed to explore whether genes with both functions play a more crucial role in the prognosis, immune, and therapy response of breast cancer patients. Based on the Cancer Genome Atlas (TCGA) cancer database, we used LASSO regression analysis to identify the six prognostic-related genes with both DDR and EMT functions, including TP63, YWHAZ, BRCA1, CCND2, YWHAG, and HIPK2. Based on the six genes, we defined the risk scores of the patients and reasonably analyzed the overall survival rate between the patients with the different risk scores. We found that overall survival in higher-risk-score patients was lower than in lower-risk-score patients. Subsequently, further GO and KEGG analyses for patients revealed that the levels of immune infiltration varied for patients with high and low risk scores, and the high-risk-score patients had lower immune infiltration's levels and were insensitive to treatment with chemotherapeutic agents. Furthermore, the Gene Expression Omnibus (GEO) database validated our findings. Our data suggest that TP63, YWHAZ, BRCA1, CCND2, YWHAG, and HIPK2 can be potential genetic markers of prognostic assessment, immune infiltration and chemotherapeutic drug sensitivity in breast cancer patients.
Collapse
Affiliation(s)
- Pan Zhang
- Department of Radiation Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, China
- Key Laboratory of Watershed Science and Health of Zhejiang Province, School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, China
| | - Quan Li
- Department of Radiation Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, China
- Key Laboratory of Watershed Science and Health of Zhejiang Province, School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, China
| | - Yuni Zhang
- Department of Radiation Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, China
- Key Laboratory of Watershed Science and Health of Zhejiang Province, School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, China
| | - Qianqian Wang
- Department of Radiation Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, China
- Key Laboratory of Watershed Science and Health of Zhejiang Province, School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, China
| | - Junfang Yan
- Department of Radiation Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, China
- Key Laboratory of Watershed Science and Health of Zhejiang Province, School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, China
| | - Aihua Shen
- Department of Radiation Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, China
- Key Laboratory of Watershed Science and Health of Zhejiang Province, School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, China
| | - Burong Hu
- Department of Radiation Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, China
- Key Laboratory of Watershed Science and Health of Zhejiang Province, School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, China
| |
Collapse
|
10
|
Zhu J, Cao K, Zhang P, Ma J. LINC00669 promotes lung adenocarcinoma growth by stimulating the Wnt/β-catenin signaling pathway. Cancer Med 2023; 12:9005-9023. [PMID: 36621836 PMCID: PMC10134358 DOI: 10.1002/cam4.5604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 12/12/2022] [Accepted: 12/21/2022] [Indexed: 01/10/2023] Open
Abstract
Lung cancer poses severe threats to human health. It is indispensable to discover more druggable molecular targets. We identified a novel dysregulated long non-coding RNA (lncRNA), LINC00669, in lung adenocarcinoma (LUAD) by analyzing the TCGA and GEO databases. Pan-cancer analysis indicated significantly upregulated LINC00669 across 33 cancer types. GSEA revealed a tight association of LINC00669 with the cell cycle. We next attempted to improve the prognostic accuracy of this lncRNA by establishing a risk signature in reliance on cell cycle genes associated with LINC00669. The resulting risk score combined with LINC00669 and stage showed an AUC of 0.746. The risk score significantly stratified LUAD patients into low- and high-risk subgroups, independently predicting prognosis. Its performance was verified by nomogram (C-index = 0.736) and decision curve analysis. Gene set variation analysis disclosed the two groups' molecular characteristics. We also evaluated the tumor immune microenvironment by dissecting 28 infiltrated immune cells, 47 immune checkpoint gene expressions, and immunophenoscore within the two subgroups. Furthermore, the risk signature could predict sensitivity to immune checkpoint inhibitors and other anticancer therapies. Eventually, in vitro and in vivo experiments were conducted to validate LINC00669's function using qRT-PCR, CCK8, flow cytometry, western blot, and immunofluorescence staining. The gain- and loss-of-function study substantiated LINC00669's oncogenic effects, which stimulated non-small cell lung cancer cell proliferation but reduced apoptosis via activating the Wnt/β-catenin pathway. Its oncogenic potentials were validated in the xenograft mouse model. Overall, we identified a novel oncogenic large intergenic non-coding RNA (lincRNA), LINC00669. The resulting signature may facilitate predicting prognosis and therapy responses in LUAD.
Collapse
Affiliation(s)
- Jinhong Zhu
- Department of Clinical Laboratory, Biobank, Harbin Medical University Cancer Hospital, Harbin, China
| | - Kui Cao
- Department of Thoracic Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Ping Zhang
- Department of Clinical Laboratory, Biobank, Harbin Medical University Cancer Hospital, Harbin, China
| | - Jianqun Ma
- Department of Thoracic Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| |
Collapse
|