1
|
Zimmermann EJ, Das A, Huber A, Gawlitta N, Kuhn E, Schlager C, Gutmann B, Krebs T, Schnelle-Kreis J, Delaval MN, Zimmermann R. Toxicological effects of long-term continuous exposure to ambient air on human bronchial epithelial Calu-3 cells exposed at the air-liquid interface. ENVIRONMENTAL RESEARCH 2025; 269:120759. [PMID: 39755196 DOI: 10.1016/j.envres.2025.120759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 12/18/2024] [Accepted: 01/02/2025] [Indexed: 01/06/2025]
Abstract
Air pollution significantly contributes to the global burden of respiratory and cardiovascular diseases. While single source/compound studies dominate current research, long-term, multi-pollutant studies are crucial to understanding the health impacts of environmental aerosols. Our study aimed to use the first air-liquid interface (ALI) aerosol exposure system adapted for long-term in vitro exposures for ambient air in vitro exposure. The automated exposure system was adapted to enable long-term cell exposure. ALI human bronchial epithelial cells (Calu-3) were continuously exposed for 72 h to the ambient air from a European urban area (3 independent exposures). Experimental evaluation included comprehensive toxicological assessments coupled to physical and chemical characterization of the aerosol. Exposure to ambient air resulted in increased significant cytotoxicity and a non-significant decrease in cell viability. Differential gene expressions were indicated for genes related to inflammation (IL1B, IL6) and to xenobiotic metabolism (CYP1A1, CYP1B1) with possible correlations to the PM2.5 content. Common air pollutants were identified such as the carcinogenic benz[a]pyrene (≤3.4 ng m-3/24h) and PM2.5 (≤11.6 μg m-3/24h) with a maximum particle number mean of 4.4 × 10-3 m3/24h. For the first time, ALI human lung epithelial cells were exposed for 72 h to continuous airflow of ambient air. Despite direct exposure to ambient aerosols, only small decrease in cell viability and gene expression changes was observed. We propose this experimental set-up combining comprehensive aerosol characterization and long-term continuous ALI cell exposure for the identification of hazardous compounds or compound mixtures in ambient air.
Collapse
Affiliation(s)
- E J Zimmermann
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Munich, 85764, Germany; Joint Mass Spectrometry Center (JMSC) at Analytical Chemistry, Institute of Chemistry, University of Rostock, Rostock, 18051, Germany
| | - A Das
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Munich, 85764, Germany; Joint Mass Spectrometry Center (JMSC) at Analytical Chemistry, Institute of Chemistry, University of Rostock, Rostock, 18051, Germany
| | - A Huber
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Munich, 85764, Germany; Joint Mass Spectrometry Center (JMSC) at Analytical Chemistry, Institute of Chemistry, University of Rostock, Rostock, 18051, Germany
| | - N Gawlitta
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Munich, 85764, Germany
| | - E Kuhn
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Munich, 85764, Germany
| | - C Schlager
- Vitrocell Systems GmbH, 79183, Waldkirch, Germany
| | - B Gutmann
- Vitrocell Systems GmbH, 79183, Waldkirch, Germany
| | - T Krebs
- Vitrocell Systems GmbH, 79183, Waldkirch, Germany
| | - J Schnelle-Kreis
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Munich, 85764, Germany
| | - M N Delaval
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Munich, 85764, Germany.
| | - R Zimmermann
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Munich, 85764, Germany; Joint Mass Spectrometry Center (JMSC) at Analytical Chemistry, Institute of Chemistry, University of Rostock, Rostock, 18051, Germany
| |
Collapse
|
2
|
Park BS, Bang E, Hwangbo H, Kim GY, Cheong J, Choi YH. Urban aerosol particulate matter promotes cellular senescence through mitochondrial ROS-mediated Akt/Nrf2 downregulation in human retinal pigment epithelial cells. Free Radic Res 2024; 58:841-853. [PMID: 39645666 DOI: 10.1080/10715762.2024.2438919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 11/28/2024] [Accepted: 12/01/2024] [Indexed: 12/10/2024]
Abstract
Urban aerosol particulate matter (UPM) is widespread in the environment, and its concentration continues to increase. Several recent studies have reported that UPM results in premature cellular senescence, but few studies have investigated the molecular basis of UPM-induced senescence in retinal pigment epithelial (RPE) cells. In this study, we primarily evaluated UPM-induced premature senescence and the protective function of nuclear factor erythroid 2-related factor 2 (Nrf2) in human RPE ARPE-19 cells. The findings indicated that UPM exposure substantially induced premature cellular senescence in ARPE-19 cells, as observed by increased β-galactosidase activity, expression levels of senescence-associated marker proteins, and senescence-associated phenotypes. Such UPM-induced senescence is associated with mitochondrial oxidative stress-mediated phosphatidylinositol 3'-kinase/Akt/Nrf2 downregulation. Sulforaphane-mediated Nrf2 activation Sulforaphane-mediated upregulation of phosphorylated Nrf2 suppressed the decrease in its target antioxidant gene, NAD(P)H quinone oxidoreductase 1, under UPM, which notably prevented ARPE-19 cells from UPM-induced cellular senescence. By contrast, Nrf2 knockdown exacerbated cellular senescence and promoted oxidative stress. Collectively, our results demonstrate the regulatory role of Nrf2 in UPM-induced senescence of RPE cells and suggest that Nrf2 is a potential molecular target.
Collapse
Affiliation(s)
- Beom Su Park
- Basic Research Laboratory for the Regulation of Microplastic-Mediated Diseases and Anti-Aging Research Center, Dong-eui University, Busan, Republic of Korea
- Department of Molecular Biology, Pusan National University, Busan, Republic of Korea
| | - EunJin Bang
- Basic Research Laboratory for the Regulation of Microplastic-Mediated Diseases and Anti-Aging Research Center, Dong-eui University, Busan, Republic of Korea
- Department of Biochemistry, Dong-eui University College of Korean Medicine, Busan, Republic of Korea
| | - Hyun Hwangbo
- Basic Research Laboratory for the Regulation of Microplastic-Mediated Diseases and Anti-Aging Research Center, Dong-eui University, Busan, Republic of Korea
- Department of Biochemistry, Dong-eui University College of Korean Medicine, Busan, Republic of Korea
| | - Gi-Young Kim
- Department of Marine Life Science, Jeju National University, Jeju, Republic of Korea
| | - JaeHun Cheong
- Department of Molecular Biology, Pusan National University, Busan, Republic of Korea
| | - Yung Hyun Choi
- Basic Research Laboratory for the Regulation of Microplastic-Mediated Diseases and Anti-Aging Research Center, Dong-eui University, Busan, Republic of Korea
- Department of Biochemistry, Dong-eui University College of Korean Medicine, Busan, Republic of Korea
| |
Collapse
|
3
|
Zhang P, Zheng Z, Sun H, Gao T, Xiao X. A review of common influencing factors and possible mechanisms associated with allergic diseases complicating tic disorders in children. Front Pediatr 2024; 12:1360420. [PMID: 38957776 PMCID: PMC11218626 DOI: 10.3389/fped.2024.1360420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 05/31/2024] [Indexed: 07/04/2024] Open
Abstract
Over the past few decades, the incidence of childhood allergic diseases has increased globally, and their impact on the affected child extends beyond the allergy itself. There is evidence of an association between childhood allergic diseases and the development of neurological disorders. Several studies have shown a correlation between allergic diseases and tic disorders (TD), and allergic diseases may be an important risk factor for TD. Possible factors influencing the development of these disorders include neurotransmitter imbalance, maternal anxiety or depression, gut microbial disorders, sleep disturbances, maternal allergic status, exposure to tobacco, and environmental factors. Moreover, gut microbial disturbances, altered immunological profiles, and DNA methylation in patients with allergic diseases may be potential mechanisms contributing to the development of TD. An in-depth investigation of the relationship between allergic diseases and TD in children will be important for preventing and treating TD.
Collapse
Affiliation(s)
- Panpan Zhang
- Department of Child Health, Dalian Municipal Women and Children’s Medical Center (Group), Dalian, Liaoning, China
- Dalian Medical University, Dalian, Liaoning, China
| | - Zhimin Zheng
- Department of Child Health, Dalian Municipal Women and Children’s Medical Center (Group), Dalian, Liaoning, China
- Dalian Medical University, Dalian, Liaoning, China
| | - Hao Sun
- Department of Child Health, Dalian Municipal Women and Children’s Medical Center (Group), Dalian, Liaoning, China
- Dalian Medical University, Dalian, Liaoning, China
| | - Tieying Gao
- Department of Child Health, Dalian Municipal Women and Children’s Medical Center (Group), Dalian, Liaoning, China
- Dalian Medical University, Dalian, Liaoning, China
| | - Xuwu Xiao
- Department of Child Health, Dalian Municipal Women and Children’s Medical Center (Group), Dalian, Liaoning, China
- Dalian Medical University, Dalian, Liaoning, China
| |
Collapse
|
4
|
Upaphong P, Thonusin C, Wanichthanaolan O, Chattipakorn N, Chattipakorn SC. Consequences of exposure to particulate matter on the ocular surface: Mechanistic insights from cellular mechanisms to epidemiological findings. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 345:123488. [PMID: 38311159 DOI: 10.1016/j.envpol.2024.123488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/28/2024] [Accepted: 01/31/2024] [Indexed: 02/10/2024]
Abstract
Exposure to air pollutants, especially in the case of particulate matter (PM), poses significant health risks throughout the body. The ocular surface is directly exposed to atmospheric PM making it challenging to avoid. This constant exposure makes the ocular surface a valuable model for investigating the impact of air pollutants on the eyes. This comprehensive review assembles evidence from across the spectrum, from in vitro and in vivo investigations to clinical studies and epidemiological studies, offering a thorough understanding of how PM10 and PM2.5 affect the health of the ocular surface. PM has been primarily found to induce inflammatory responses, allergic reactions, oxidative stress, DNA damage, mitochondrial impairment, and inhibit the proliferation and migration of ocular surface cells. In toto these effects ultimately lead to impaired wound healing and ocular surface damage. In addition, PM can alter tear composition. These events contribute to ocular diseases such as dry eye disease, blepharitis, conjunctivitis, keratitis, limbal stem cell deficiency and pterygium. Importantly, preexisting ocular conditions such as dry eye, allergic conjunctivitis, and infectious keratitis can be worsened by PM exposure. Adaptive responses may partially alleviate the mentioned insults, resulting in morphological and physiological changes that could be different between periods of short-term and long-term exposure. Particle size is not the only determinant of the ocular effect of PM, the composition and solubility of PM also play critical roles. Increasing awareness of how PM affects the ocular surface is crucial in the field of public health, and mechanistic insights of these adverse effects may provide guidelines for preventive and therapeutic strategies in dealing with a polluted environment.
Collapse
Affiliation(s)
- Phit Upaphong
- Department of Ophthalmology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Chanisa Thonusin
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | | | - Nipon Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Siriporn C Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand; Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand.
| |
Collapse
|