1
|
Ding X, Liu Z, Li H, Yue P, Jia Y, Li E, Lv N, Chen T, Fang R, Zhou H, Song X. Binding with HSP90β, cimifugin ameliorates fibrotic cataracts in vitro and in vivo by inhibiting TGFβ signaling pathways. Exp Eye Res 2024; 249:110127. [PMID: 39424221 DOI: 10.1016/j.exer.2024.110127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/09/2024] [Accepted: 10/13/2024] [Indexed: 10/21/2024]
Abstract
Fibrotic cataracts, the most frequent complications after phacoemulsification, cannot be cured by drugs in clinic. The primary mechanism underlying the disease is the epithelial-mesenchymal transition (EMT). Cimifugin is a natural monomer component of traditional Chinese medicines. Previous researches have demonstrated the effect of cimifugin inhibiting EMT in the lung. The purpose of this work is to evaluate the impact of cimifugin on EMT in the lens and elucidate its precise mechanism. The pathogenesis of fibrotic cataracts was simulated using TGFβ2-induced cell model of EMT and the injury-induced anterior subcapsular cataract animal model. Through H&E staining and immunofluorescence of mice eyeballs, we discovered that cimifugin can inhibit the expansion of fibrotic lesions in vivo. Furthermore, at mRNA and protein levels, we confirmed that cimifugin can allay EMT of lens epithelial cells (LECs) in vitro and in vivo. Additionally, the inhibition of cimifugin on the activation of TGFβ-related signaling pathways was certified by immunoblot. HSP90β, the target of cimifugin, was predicted by network pharmacology and verified by drug affinity responsive target stability, the cellular thermal shift assay, and microscale thermophoresis. Moreover, co-immunoprecipitation revealed the interaction between HSP90β and TGFβ receptor (TGFβR) II. Together, our findings showed that by weakening the binding of HSP90β and TGFβRII, cimifugin suppressed the TGFβ signaling pathways to alleviate fibrotic cataracts. Cimifugin is a promising medication for the treatment of fibrotic cataracts.
Collapse
Affiliation(s)
- Xuefei Ding
- Beijing Tongren Hospital, Beijing, 100730, China; Capital Medical University, Beijing, 100730, China
| | - Zhaochuan Liu
- Beijing Tongren Hospital, Beijing, 100730, China; Capital Medical University, Beijing, 100730, China
| | - Hailong Li
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Key Laboratory of Molecular Drug Research, Nan kai University, Tianjin, 300071, China
| | - Peilin Yue
- Beijing Tongren Hospital, Beijing, 100730, China; Capital Medical University, Beijing, 100730, China
| | - Yuxuan Jia
- Beijing Tongren Hospital, Beijing, 100730, China; Capital Medical University, Beijing, 100730, China
| | - Enjie Li
- Beijing Tongren Hospital, Beijing, 100730, China; Capital Medical University, Beijing, 100730, China
| | - Ningxin Lv
- Beijing Tongren Hospital, Beijing, 100730, China; Capital Medical University, Beijing, 100730, China
| | - Ting Chen
- Beijing Tongren Hospital, Beijing, 100730, China; Capital Medical University, Beijing, 100730, China
| | - Rui Fang
- Beijing Tongren Hospital, Beijing, 100730, China; Capital Medical University, Beijing, 100730, China
| | - Honggang Zhou
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Key Laboratory of Molecular Drug Research, Nan kai University, Tianjin, 300071, China.
| | - Xudong Song
- Beijing Tongren Hospital, Beijing, 100730, China; Capital Medical University, Beijing, 100730, China; Beijing Tongren Eye Center, Beijing, 100730, China; Beijing Ophthalmology&Visual Sciences Key Lab, Beijing, 100730, China.
| |
Collapse
|
2
|
Wu X, Xu H, Zhang Z, Ma Z, Zhang L, Wang C, Lan K, Li R, Chen M. Disulfiram Alleviates MTX-Induced Pulmonary Fibrosis by Inhibiting EMT in Type 2 Alveolar Epithelial Cells. Lung 2024; 203:4. [PMID: 39601871 DOI: 10.1007/s00408-024-00764-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Accepted: 10/14/2024] [Indexed: 11/29/2024]
Abstract
PURPOSE Methotrexate (MTX)-induced pulmonary fibrosis is associated with high morbidity and mortality, with limited treatment options available. This study investigates whether disulfiram (DSF) can mitigate MTX-induced pulmonary fibrosis and explores the underlying mechanisms. METHODS Eight-week-old male mice were divided into control, DSF, MTX, and MTX+DSF groups and treated for 8 weeks. Weight, food, and water intake were monitored. Post-treatment, lung tissues were analyzed using HE and Masson staining, and electron microscopy. Real-time qPCR and ELISA were employed to assess inflammatory markers such as IL-1β and TNF-α in lung tissues and serum. PCR, ELISA, and Western blot were used for fibrotic markers including Col1α1, α-SMA, and hydroxyproline. Type 2 alveolar epithelial cell line MLE12 cells were similarly grouped, followed by RNA sequencing and bioinformatics analysis to elucidate the mechanisms by which DSF exerts anti-MTX-induced pulmonary fibrosis effects. ELISA and Western blot were used to measure E-cadherin and α-SMA expression. RESULTS DSF significantly reduced MTX-induced alveolar septal thickening, pulmonary fibrosis, and inflammatory cell infiltration. It also decreased the expression of inflammatory factors IL-1β and TNF-α, as well as the expression of Col1α1, α-SMA, and others. RNA-seq revealed that DSF induces changes in multiple signaling pathways associated with pulmonary fibrosis, particularly in extracellular matrix-related genes. ELISA and Western blot showed decreased E-cadherin and increased α-SMA in the MTX group, which was partially restored with DSF treatment. CONCLUSION DSF alleviates MTX-induced pulmonary fibrosis by reducing epithelial-mesenchymal transition (EMT) in type 2 alveolar epithelial cells. Disulfiram shows potential as a therapeutic agent for MTX-induced pulmonary fibrosis.
Collapse
Affiliation(s)
- Xiaohui Wu
- Clinical Medical School, Xi'an Medical University, Xi'an, 710021, Shaanxi, China.
| | - Hong Xu
- Department of Pathology, State Key Laboratory of Cancer Biology, Xijing Hospital and School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Zhaohua Zhang
- Pharmacy School, Xi'an Medical University, Xi'an, 710021, Shaanxi, China
| | - Ziyi Ma
- Clinical Medical School, Xi'an Medical University, Xi'an, 710021, Shaanxi, China
| | - Linyi Zhang
- Clinical Medical School, Xi'an Medical University, Xi'an, 710021, Shaanxi, China
| | - Chunyang Wang
- Clinical Medical School, Xi'an Medical University, Xi'an, 710021, Shaanxi, China
| | - Kai Lan
- Clinical Medical School, Xi'an Medical University, Xi'an, 710021, Shaanxi, China
| | - Rong Li
- Clinical Medical School, Xi'an Medical University, Xi'an, 710021, Shaanxi, China
| | - Min Chen
- Clinical Medical School, Xi'an Medical University, Xi'an, 710021, Shaanxi, China
| |
Collapse
|