1
|
Kim J, Eo EY, Kim B, Lee H, Kim J, Koo BK, Kim HJ, Cho S, Kim J, Cho YJ. Transcriptomic Analysis of Air-Liquid Interface Culture in Human Lung Organoids Reveals Regulators of Epithelial Differentiation. Cells 2024; 13:1991. [PMID: 39682739 DOI: 10.3390/cells13231991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/17/2024] [Accepted: 11/29/2024] [Indexed: 12/18/2024] Open
Abstract
To develop in vitro respiratory models, it is crucial to identify the factors involved in epithelial cell differentiation. In this study, we comprehensively analyzed the effects of air-liquid interface (ALI) culture on epithelial cell differentiation using single-cell RNA sequencing (scRNA-seq). ALI culture induced a pronounced shift in cell composition, marked by a fivefold increase in ciliated cells and a reduction of more than half in basal cells. Transcriptional signatures associated with epithelial cell differentiation, analyzed using iPathwayGuide software, revealed the downregulation of VEGFA and upregulation of CDKN1A as key signals for epithelial differentiation. Our findings highlight the efficacy of the ALI culture for replicating the human lung airway epithelium and provide valuable insights into the crucial factors that influence human ciliated cell differentiation.
Collapse
Affiliation(s)
- Jieun Kim
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam 13620, Republic of Korea
- Department of Biomedical Science, CHA University, Seongnam 13488, Republic of Korea
| | - Eun-Young Eo
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam 13620, Republic of Korea
| | - Bokyong Kim
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam 13620, Republic of Korea
| | - Heetak Lee
- Center for Genome Engineering, Institute for Basic Science, Daejeon 34126, Republic of Korea
| | - Jihoon Kim
- Center for Genome Engineering, Institute for Basic Science, Daejeon 34126, Republic of Korea
- Department of Medical and Biological Sciences, The Catholic University of Korea, Bucheon 14662, Republic of Korea
| | - Bon-Kyoung Koo
- Center for Genome Engineering, Institute for Basic Science, Daejeon 34126, Republic of Korea
| | - Hyung-Jun Kim
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam 13620, Republic of Korea
| | - Sukki Cho
- Department of Thoracic and Cardiovascular Surgery, Seoul National University Bundang Hospital, Seongnam 13620, Republic of Korea
| | - Jinho Kim
- Department of Genomic Medicine, Seoul National University Bundang Hospital, Seongnam 13620, Republic of Korea
- Precision Medicine Center, Future Innovation Research Division, Seoul National University Bundang Hospital, Seongnam 13620, Republic of Korea
- Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam 13620, Republic of Korea
| | - Young-Jae Cho
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam 13620, Republic of Korea
| |
Collapse
|
2
|
Yao Y, Ritzmann F, Miethe S, Kattler-Lackes K, Colakoglu B, Herr C, Kamyschnikow A, Brand M, Garn H, Yildiz D, Langer F, Bals R, Beisswenger C. Co-culture of human AT2 cells with fibroblasts reveals a MUC5B phenotype: insights from an organoid model. Mol Med 2024; 30:227. [PMID: 39578767 PMCID: PMC11585087 DOI: 10.1186/s10020-024-00990-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 11/05/2024] [Indexed: 11/24/2024] Open
Abstract
Impaired interaction of fibroblasts with pneumocytes contributes to the progression of chronic lung disease such as idiopathic pulmonary fibrosis (IPF). Mucin 5B (MUC5B) is associated with IPF. Here we analyzed the interaction of primary fibroblasts and alveolar type 2 (AT2) pneumocytes in the organoid model. Single-cell analysis, histology, and qRT-PCR revealed that fibroblasts expressing high levels of fibrosis markers regulate STAT3 signaling in AT2 cells, which is accompanied by cystic organoid growth and MUC5B expression. Cystic growth and MUC5B expression were also caused by the cytokine IL-6. The PI3K-Akt signaling pathway was activated in fibroblasts. The drug dasatinib prevented the formation of MUC5B-expressing cystic organoids. MUC5B associated with AT2 cells in samples obtained from IPF patients. Our model shows that fibrotic primary fibroblasts induce impaired differentiation of AT2 cells via STAT3 signaling pathways, as observed in IPF patients. It can be used for mechanistic studies and drug development.
Collapse
Affiliation(s)
- Yiwen Yao
- Department of Internal Medicine V - Pulmonology, Allergology and Critical Care Medicine, Saarland University, 66421, Homburg, Germany
- Department of Clinical Medicine, Shanghai Tongji Hospital, School of Medicine, Tongji University, 200065, Shanghai, China
| | - Felix Ritzmann
- Department of Internal Medicine V - Pulmonology, Allergology and Critical Care Medicine, Saarland University, 66421, Homburg, Germany
| | - Sarah Miethe
- Translational Inflammation Research Division & Core Facility for Single Cell Multiomics, Medical Faculty, Member of the German Center for Lung Research (DZL) and the Universities of Giessen and Marburg Lung Center, Philipps University of Marburg, D-35043, Marburg, Germany
| | | | - Betül Colakoglu
- Department of Internal Medicine V - Pulmonology, Allergology and Critical Care Medicine, Saarland University, 66421, Homburg, Germany
| | - Christian Herr
- Department of Internal Medicine V - Pulmonology, Allergology and Critical Care Medicine, Saarland University, 66421, Homburg, Germany
| | - Andreas Kamyschnikow
- Department of Internal Medicine V - Pulmonology, Allergology and Critical Care Medicine, Saarland University, 66421, Homburg, Germany
| | - Michelle Brand
- Department of Internal Medicine V - Pulmonology, Allergology and Critical Care Medicine, Saarland University, 66421, Homburg, Germany
| | - Holger Garn
- Translational Inflammation Research Division & Core Facility for Single Cell Multiomics, Medical Faculty, Member of the German Center for Lung Research (DZL) and the Universities of Giessen and Marburg Lung Center, Philipps University of Marburg, D-35043, Marburg, Germany
| | - Daniela Yildiz
- Experimental and Clinical Pharmacology and Toxicology, PZMS, Saarland University, 66421, Homburg, Germany
| | - Frank Langer
- Department of Thoracic- and Cardiovascular Surgery, Saarland University Hospital, Homburg/Saar, Germany
| | - Robert Bals
- Department of Internal Medicine V - Pulmonology, Allergology and Critical Care Medicine, Saarland University, 66421, Homburg, Germany
- Department of Drug Delivery (DDEL), Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarbrücken, Germany
| | - Christoph Beisswenger
- Department of Internal Medicine V - Pulmonology, Allergology and Critical Care Medicine, Saarland University, 66421, Homburg, Germany.
| |
Collapse
|
3
|
Zhou Y, Li C, Chen Y, Yu Y, Diao X, Chiu R, Fang J, Shen Y, Wang J, Zhu L, Zhou J, Cai Z. Human Airway Organoids and Multimodal Imaging-Based Toxicity Evaluation of 1-Nitropyrene. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:6083-6092. [PMID: 38547129 PMCID: PMC11008236 DOI: 10.1021/acs.est.3c07195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 02/29/2024] [Accepted: 03/14/2024] [Indexed: 04/10/2024]
Abstract
Despite significant advances in understanding the general health impacts of air pollution, the toxic effects of air pollution on cells in the human respiratory tract are still elusive. A robust, biologically relevant in vitro model for recapitulating the physiological response of the human airway is needed to obtain a thorough understanding of the molecular mechanisms of air pollutants. In this study, by using 1-nitropyrene (1-NP) as a proof-of-concept, we demonstrate the effectiveness and reliability of evaluating environmental pollutants in physiologically active human airway organoids. Multimodal imaging tools, including live cell imaging, fluorescence microscopy, and MALDI-mass spectrometry imaging (MSI), were implemented to evaluate the cytotoxicity of 1-NP for airway organoids. In addition, lipidomic alterations upon 1-NP treatment were quantitatively analyzed by nontargeted lipidomics. 1-NP exposure was found to be associated with the overproduction of reactive oxygen species (ROS), and dysregulation of lipid pathways, including the SM-Cer conversion, as well as cardiolipin in our organoids. Compared with that of cell lines, a higher tolerance of 1-NP toxicity was observed in the human airway organoids, which might reflect a more physiologically relevant response in the native airway epithelium. Collectively, we have established a novel system for evaluating and investigating molecular mechanisms of environmental pollutants in the human airways via the combinatory use of human airway organoids, multimodal imaging analysis, and MS-based analyses.
Collapse
Affiliation(s)
- Yingyan Zhou
- State
Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong 999077, China
| | - Cun Li
- Department
of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty
of Medicine, The University of Hong Kong, Hong Kong 999077, China
| | - Yanyan Chen
- State
Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong 999077, China
| | - Yifei Yu
- Department
of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty
of Medicine, The University of Hong Kong, Hong Kong 999077, China
| | - Xin Diao
- State
Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong 999077, China
| | - Raymond Chiu
- Department
of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty
of Medicine, The University of Hong Kong, Hong Kong 999077, China
| | - Jiacheng Fang
- State
Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong 999077, China
| | - Yuting Shen
- State
Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong 999077, China
| | - Jianing Wang
- State
Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong 999077, China
| | - Lin Zhu
- State
Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong 999077, China
| | - Jie Zhou
- Department
of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty
of Medicine, The University of Hong Kong, Hong Kong 999077, China
| | - Zongwei Cai
- State
Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong 999077, China
| |
Collapse
|