1
|
Qin N, Li L, Wan X, Ji X, Chen Y, Li C, Liu P, Zhang Y, Yang W, Jiang J, Xia J, Shi S, Tan T, Nielsen J, Chen Y, Liu Z. Increased CO 2 fixation enables high carbon-yield production of 3-hydroxypropionic acid in yeast. Nat Commun 2024; 15:1591. [PMID: 38383540 PMCID: PMC10881976 DOI: 10.1038/s41467-024-45557-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 01/28/2024] [Indexed: 02/23/2024] Open
Abstract
CO2 fixation plays a key role to make biobased production cost competitive. Here, we use 3-hydroxypropionic acid (3-HP) to showcase how CO2 fixation enables approaching theoretical-yield production. Using genome-scale metabolic models to calculate the production envelope, we demonstrate that the provision of bicarbonate, formed from CO2, restricts previous attempts for high yield production of 3-HP. We thus develop multiple strategies for bicarbonate uptake, including the identification of Sul1 as a potential bicarbonate transporter, domain swapping of malonyl-CoA reductase, identification of Esbp6 as a potential 3-HP exporter, and deletion of Uga1 to prevent 3-HP degradation. The combined rational engineering increases 3-HP production from 0.14 g/L to 11.25 g/L in shake flask using 20 g/L glucose, approaching the maximum theoretical yield with concurrent biomass formation. The engineered yeast forms the basis for commercialization of bio-acrylic acid, while our CO2 fixation strategies pave the way for CO2 being used as the sole carbon source.
Collapse
Affiliation(s)
- Ning Qin
- College of Life Science and Technology, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Lingyun Li
- College of Life Science and Technology, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
- Department of Life Sciences, Chalmers University of Technology, SE412 96, Gothenburg, Sweden
| | - Xiaozhen Wan
- College of Life Science and Technology, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xu Ji
- College of Life Science and Technology, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yu Chen
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Chaokun Li
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, 00014, Helsinki, Finland
| | - Ping Liu
- The State Key Laboratory of Chemical Resource Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yijie Zhang
- College of Life Science and Technology, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Weijie Yang
- College of Life Science and Technology, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Junfeng Jiang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Jianye Xia
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Shuobo Shi
- College of Life Science and Technology, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Tianwei Tan
- College of Life Science and Technology, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Jens Nielsen
- College of Life Science and Technology, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
- Department of Life Sciences, Chalmers University of Technology, SE412 96, Gothenburg, Sweden.
- BioInnovation Institute, Ole Maaløes Vej 3, DK2200, Copenhagen, Denmark.
| | - Yun Chen
- Department of Life Sciences, Chalmers University of Technology, SE412 96, Gothenburg, Sweden.
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kongens, Lyngby, Denmark.
| | - Zihe Liu
- College of Life Science and Technology, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| |
Collapse
|
2
|
Li M, Chu Y, Dong X, Ji H. General mechanisms of weak acid-tolerance and current strategies for the development of tolerant yeasts. World J Microbiol Biotechnol 2023; 40:49. [PMID: 38133718 DOI: 10.1007/s11274-023-03875-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 12/16/2023] [Indexed: 12/23/2023]
Abstract
Yeast cells are often subjected to various types of weak acid stress in the process of industrial production, food processing, and preservation, resulting in growth inhibition and reduced fermentation performance. Under acidic conditions, weak acids enter the near-neutral yeast cytoplasm and dissociate into protons and anions, leading to cytoplasmic acidification and cell damage. Although some yeast strains have developed the ability to survive weak acids, the complexity and diversity of stresses during industrial production still require the application of appropriate strategies for phenotypes improvement. In this review, we summarized current knowledge concerning weak acid stress response and resistance, which may suggest important targets for further construction of more robust strains. We also highlight current feasible strategies for improving the weak acid resistance of yeasts, such as adaptive laboratory evolution, transcription factors engineering, and cell membrane/wall engineering. Moreover, the challenges and perspectives associated with improving the competitiveness of industrial strains are also discussed. This review provides effective strategies for improving the industrial phenotypes of yeast from multiple dimensions in future studies.
Collapse
Affiliation(s)
- Mengmeng Li
- Institute of Life Sciences, College of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang, 325035, PR China
- Biomedical Collaborative Innovation Center of Zhejiang Province & Engineering Laboratory of Zhejiang Province for Pharmaceutical Development of Growth Factors, Wenzhou University, Wenzhou, Zhejiang, 325035, PR China
| | - Yunfei Chu
- Institute of Life Sciences, College of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang, 325035, PR China
- Biomedical Collaborative Innovation Center of Zhejiang Province & Engineering Laboratory of Zhejiang Province for Pharmaceutical Development of Growth Factors, Wenzhou University, Wenzhou, Zhejiang, 325035, PR China
| | - Xiameng Dong
- Department of Agriculture and Biotechnology, Wenzhou Vocational College of Science and Technology, Wenzhou, Zhejiang, 325006, PR China.
| | - Hao Ji
- Institute of Life Sciences, College of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang, 325035, PR China.
- Biomedical Collaborative Innovation Center of Zhejiang Province & Engineering Laboratory of Zhejiang Province for Pharmaceutical Development of Growth Factors, Wenzhou University, Wenzhou, Zhejiang, 325035, PR China.
| |
Collapse
|
3
|
Zhu P, Luo R, Li Y, Chen X. Metabolic Engineering and Adaptive Evolution for Efficient Production of l-Lactic Acid in Saccharomyces cerevisiae. Microbiol Spectr 2022; 10:e0227722. [PMID: 36354322 PMCID: PMC9769770 DOI: 10.1128/spectrum.02277-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 10/15/2022] [Indexed: 11/12/2022] Open
Abstract
l-Lactic acid (LA) is a three-carbon hydroxycarboxylic acid with extensive applications in food, cosmetic, agricultural, pharmaceutical, and bioplastic industries. However, microbial LA production is limited by its intrinsic inefficiency of cellular metabolism. Here, pathway engineering was used to rewire the biosynthetic pathway for LA production in Saccharomyces cerevisiae by screening heterologous l-lactate dehydrogenase, reducing ethanol accumulation, and introducing a bacterial acetyl coenzyme A (acetyl-CoA) synthesis pathway. To improve its intrinsic efficiency of LA export, transporter engineering was conducted by screening the monocarboxylate transporters and then strengthening the capacity of LA export, leading to LA production up to 51.4 g/L. To further enhance its intrinsic efficiency of acid tolerance, adaptive evolution was adopted by cultivating yeast cells with a gradual increase in LA levels during 12 serial subcultures, resulting in a 17.5% increase in LA production to 60.4 g/L. Finally, the engineered strain S.c-NO.2-100 was able to produce 121.5 g/L LA, with a yield of up to 0.81 g/g in a 5-L batch bioreactor. The strategy described here provides a guide for developing efficient cell factories for the production of the other industrially useful organic acids. IMPORTANCE Saccharomyces cerevisiae is one of the most widely engineered cell factories for the production of organic acids. However, microbial production of l-lactic acid is limited by its intrinsic inefficiency of cellular metabolism in S. cerevisiae. Here, the transmission efficiency of the biosynthetic pathway was improved by pathway optimization to increase l-lactic acid production. Then, the synthetic ability for l-lactic acid was further enhanced by adaptive evolution to improve acid tolerance of S. cerevisiae. Based on these strategies, the final engineered S. cerevisiae strain achieved high efficiency of l-lactic acid production. These findings provide new insight into improving the intrinsic efficiency of cellular metabolism and will help to construct superior industrial yeast strains for high-level production of other organic acids.
Collapse
Affiliation(s)
- Pan Zhu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Rui Luo
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
| | - Yize Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
| | - Xiulai Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
| |
Collapse
|
4
|
The Role of Ancestral Duplicated Genes in Adaptation to Growth on Lactate, a Non-Fermentable Carbon Source for the Yeast Saccharomyces cerevisiae. Int J Mol Sci 2021; 22:ijms222212293. [PMID: 34830177 PMCID: PMC8622941 DOI: 10.3390/ijms222212293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/10/2021] [Accepted: 11/11/2021] [Indexed: 11/26/2022] Open
Abstract
The cell central metabolism has been shaped throughout evolutionary times when facing challenges from the availability of resources. In the budding yeast, Saccharomyces cerevisiae, a set of duplicated genes originating from an ancestral whole-genome and several coetaneous small-scale duplication events drive energy transfer through glucose metabolism as the main carbon source either by fermentation or respiration. These duplicates (~a third of the genome) have been dated back to approximately 100 MY, allowing for enough evolutionary time to diverge in both sequence and function. Gene duplication has been proposed as a molecular mechanism of biological innovation, maintaining balance between mutational robustness and evolvability of the system. However, some questions concerning the molecular mechanisms behind duplicated genes transcriptional plasticity and functional divergence remain unresolved. In this work we challenged S. cerevisiae to the use of lactic acid/lactate as the sole carbon source and performed a small adaptive laboratory evolution to this non-fermentative carbon source, determining phenotypic and transcriptomic changes. We observed growth adaptation to acidic stress, by reduction of growth rate and increase in biomass production, while the transcriptomic response was mainly driven by repression of the whole-genome duplicates, those implied in glycolysis and overexpression of ROS response. The contribution of several duplicated pairs to this carbon source switch and acidic stress is also discussed.
Collapse
|
5
|
Peetermans A, Foulquié-Moreno MR, Thevelein JM. Mechanisms underlying lactic acid tolerance and its influence on lactic acid production in Saccharomyces cerevisiae. MICROBIAL CELL 2021; 8:111-130. [PMID: 34055965 PMCID: PMC8144909 DOI: 10.15698/mic2021.06.751] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
One of the major bottlenecks in lactic acid production using microbial fermentation is the detrimental influence lactic acid accumulation poses on the lactic acid producing cells. The accumulation of lactic acid results in many negative effects on the cell such as intracellular acidification, anion accumulation, membrane perturbation, disturbed amino acid trafficking, increased turgor pressure, ATP depletion, ROS accumulation, metabolic dysregulation and metal chelation. In this review, the manner in which Saccharomyces cerevisiae deals with these issues will be discussed extensively not only for lactic acid as a singular stress factor but also in combination with other stresses. In addition, different methods to improve lactic acid tolerance in S. cerevisiae using targeted and non-targeted engineering methods will be discussed.
Collapse
Affiliation(s)
- Arne Peetermans
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Flanders, Belgium.,Center for Microbiology, VIB, Kasteelpark Arenberg 31, B-3001, Leuven-Heverlee, Flanders, Belgium
| | - María R Foulquié-Moreno
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Flanders, Belgium.,Center for Microbiology, VIB, Kasteelpark Arenberg 31, B-3001, Leuven-Heverlee, Flanders, Belgium
| | - Johan M Thevelein
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Flanders, Belgium.,Center for Microbiology, VIB, Kasteelpark Arenberg 31, B-3001, Leuven-Heverlee, Flanders, Belgium.,NovelYeast bv, Open Bio-Incubator, Erasmus High School, Laarbeeklaan 121, 1090 Brussels (Jette), Belgium
| |
Collapse
|
6
|
Chen B, Foo JL, Ling H, Chang MW. Mechanism-Driven Metabolic Engineering for Bio-Based Production of Free R-Lipoic Acid in Saccharomyces cerevisiae Mitochondria. Front Bioeng Biotechnol 2020; 8:965. [PMID: 32974306 PMCID: PMC7468506 DOI: 10.3389/fbioe.2020.00965] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 07/24/2020] [Indexed: 01/28/2023] Open
Abstract
Lipoic acid is a valuable organosulfur compound used as an antioxidant for dietary supplementation, and potentially anti-diabetic and anti-cancer. Currently, lipoic acid is obtained mainly through chemical synthesis, which requires toxic reagents and organic solvents, thus causing environmental issues. Moreover, chemically synthesized lipoic acid is conventionally a racemic mixture. To obtain enantiomerically pure R-lipoic acid, which has superior bioactivity than the S form, chiral resolution and asymmetric synthesis methods require additional reagents and solvents, and often lead to wastage of S-lipoic acid or precursors with undesired chirality. Toward sustainable production of R-lipoic acid, we aim to develop a synthetic biology-based method using engineered yeast. Here, we deepened mechanistic understanding of lipoic acid biosynthesis and protein lipoylation in the model yeast Saccharomyces cerevisiae to facilitate metabolic engineering of the microbe for producing free R-lipoic acid. In brief, we studied the biosynthesis and confirmed the availability of protein-bound lipoate in yeast cells through LC-MS/MS. We then characterized in vitro the activity of a lipoamidase from Enterococcus faecalis for releasing free R-lipoic acid from lipoate-modified yeast proteins. Overexpression of the lipoamidase in yeast mitochondria enabled de novo free R-lipoic acid production in vivo. By overexpressing pathway enzymes and regenerating the cofactor, the production titer was increased ∼2.9-fold. This study represents the first report of free R-lipoic acid biosynthesis in S. cerevisiae. We envision that these results could provide insights into lipoic acid biosynthesis in eukaryotic cells and drive development of sustainable R-lipoic acid production.
Collapse
Affiliation(s)
- Binbin Chen
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore, Singapore
| | - Jee Loon Foo
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore, Singapore
| | - Hua Ling
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore, Singapore
| | - Matthew Wook Chang
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore, Singapore
| |
Collapse
|
7
|
Free lactic acid production under acidic conditions by lactic acid bacteria strains: challenges and future prospects. Appl Microbiol Biotechnol 2018; 102:5911-5924. [DOI: 10.1007/s00253-018-9092-4] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 05/10/2018] [Accepted: 05/10/2018] [Indexed: 11/27/2022]
|
8
|
Ozaki A, Konishi R, Otomo C, Kishida M, Takayama S, Matsumoto T, Tanaka T, Kondo A. Metabolic engineering of Schizosaccharomyces pombe via CRISPR-Cas9 genome editing for lactic acid production from glucose and cellobiose. Metab Eng Commun 2017; 5:60-67. [PMID: 29188185 PMCID: PMC5699526 DOI: 10.1016/j.meteno.2017.08.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 08/18/2017] [Accepted: 08/20/2017] [Indexed: 12/14/2022] Open
Abstract
Modification of the Schizosaccharomyces pombe genome is often laborious, time consuming due to the lower efficiency of homologous recombination. Here, we constructed metabolically engineered S. pombe strains using a CRISPR-Cas9 system and also demonstrated D-lactic acid (D-LA) production from glucose and cellobiose. Genes encoding two separate pyruvate decarboxylases (PDCs), an L-lactic acid dehydrogenase (L-LDH), and a minor alcohol dehydrogenase (SPBC337.11) were disrupted, thereby attenuating ethanol production. To increase the cellular supply of acetyl-CoA, an important metabolite for growth, we introduced genes encoding bacterial acetylating acetaldehyde dehydrogenase enzymes (Escherichia coli MhpF and EutE). D-LA production by the resulting strain was achieved by expressing a Lactobacillus plantarum gene encoding D-lactate dehydrogenase. The engineered strain efficiently consumed glucose and produced D-LA at 25.2 g/L from 35.5 g/L of consumed glucose with a yield of 0.71 g D-LA / g glucose. We further modified this strain by expressing beta-glucosidase by cell surface display; the resulting strain produced D-LA at 24.4 g/L from 30 g/L of cellobiose in minimal medium, with a yield of 0.68 g D-LA / g glucose. To our knowledge, this study represents the first report of a S. pombe strain that was metabolically engineered using a CRISPR-Cas9 system, and demonstrates the possibility of engineering S. pombe for the production of value-added chemicals. Schizosaccharomyces pombe were metabolically engineered using a CRISPR-Cas9 system. D-lactic acid (D-LA) producing Schizosaccharomyces pombe strains were constructed. 25.2 g/L of D-LA was produced with a yield of 0.71 g-D-LA / g-glucose. Beta-glucosidase was expressed on this engineered S. pombe strain. D-LA was produced at 24.4 g/L from 30 g/L of cellobiose directly.
Collapse
Affiliation(s)
- Aiko Ozaki
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1, Rokkodaicho, Nada, Kobe 657-8501, Japan
| | - Rie Konishi
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodaicho, Nada, Kobe 657-8501, Japan
| | - Chisako Otomo
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodaicho, Nada, Kobe 657-8501, Japan
| | - Mayumi Kishida
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodaicho, Nada, Kobe 657-8501, Japan
| | - Seiya Takayama
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1, Rokkodaicho, Nada, Kobe 657-8501, Japan
| | - Takuya Matsumoto
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodaicho, Nada, Kobe 657-8501, Japan
| | - Tsutomu Tanaka
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1, Rokkodaicho, Nada, Kobe 657-8501, Japan
| | - Akihiko Kondo
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodaicho, Nada, Kobe 657-8501, Japan
| |
Collapse
|
9
|
GSF2 deletion increases lactic acid production by alleviating glucose repression in Saccharomyces cerevisiae. Sci Rep 2016; 6:34812. [PMID: 27708428 PMCID: PMC5052599 DOI: 10.1038/srep34812] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 09/20/2016] [Indexed: 01/02/2023] Open
Abstract
Improving lactic acid (LA) tolerance is important for cost-effective microbial production of LA under acidic fermentation conditions. Previously, we generated LA-tolerant D-LA-producing S. cerevisiae strain JHY5310 by laboratory adaptive evolution of JHY5210. In this study, we performed whole genome sequencing of JHY5310, identifying four loss-of-function mutations in GSF2, SYN8, STM1, and SIF2 genes, which are responsible for the LA tolerance of JHY5310. Among the mutations, a nonsense mutation in GSF2 was identified as the major contributor to the improved LA tolerance and LA production in JHY5310. Deletion of GSF2 in the parental strain JHY5210 significantly improved glucose uptake and D-LA production levels, while derepressing glucose-repressed genes including genes involved in the respiratory pathway. Therefore, more efficient generation of ATP and NAD+ via respiration might rescue the growth defects of the LA-producing strain, where ATP depletion through extensive export of lactate and proton is one of major reasons for the impaired growth. Accordingly, alleviation of glucose repression by deleting MIG1 or HXK2 in JHY5210 also improved D-LA production. GSF2 deletion could be applied to various bioprocesses where increasing biomass yield or respiratory flux is desirable.
Collapse
|
10
|
Comparative Proteomic Insights into the Lactate Responses of Halophilic Salinicoccus roseus W12. Sci Rep 2015; 5:13776. [PMID: 26358621 PMCID: PMC4566078 DOI: 10.1038/srep13776] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Accepted: 08/05/2015] [Indexed: 12/13/2022] Open
Abstract
Extremophiles use adaptive mechanisms to survive in extreme environments, which is of great importance for several biotechnological applications. A halophilic strain, Salinicoccus roseus W12, was isolated from salt lake in Inner Mongolia, China in this study. The ability of the strain to survive under high sodium conditions (including 20% sodium lactate or 25% sodium chloride, [w/v]) made it an ideal host to screen for key factors related to sodium lactate resistance. The proteomic responses to lactate were studied using W12 cells cultivated with or without lactate stress. A total of 1,656 protein spots in sodium lactate-treated culture and 1,843 spots in NaCl-treated culture were detected by 2-dimensional gel electrophoresis, and 32 of 120 significantly altered protein spots (fold change > 2, p < 0.05) were identified by matrix-assisted laser-desorption ionization time-of-flight mass spectrometry. Among 21 successfully identified spots, 19 proteins were upregulated and 2 were downregulated. The identified proteins are mainly involved in metabolism, cellular processes and signaling, and information storage and processing. Transcription studies confirmed that most of the encoding genes were upregulated after the cells were exposed to lactate in 10 min. Cross-protecting and energy metabolism-related proteins played an important role in lactate tolerance for S. roseus W12.
Collapse
|