1
|
Sam G, Chen S, Rehm BHA. Functionalisation of polyhydroxybutyrate for diagnostic uses. N Biotechnol 2024; 85:9-15. [PMID: 39549939 DOI: 10.1016/j.nbt.2024.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 11/07/2024] [Accepted: 11/14/2024] [Indexed: 11/18/2024]
Abstract
Polyhydroxybutyrate (PHB) is a biodegradable and biocompatible biopolyester, naturally produced and self-assembled as spherical inclusions inside bacteria. These PHB particles contain a hydrophobic PHB core covalently coated with PHB synthase (PhaC), which serves as an anchoring linker for foreign proteins of interest. Protein engineering of PhaC enables the display of biologically active protein functions on the surface of PHB particles suitable for different applications. Many biomolecules, such as e.g. antigens, enzymes, fluorescent proteins were immobilized to PHB particles and exhibited superior functionalities when compared to their respective soluble counterparts. Recently, PHB particles have been successfully applied for various diagnostics applications. This mini review provides an overview of the unique design space of PHB particles towards the development of safe and cost-effective diagnostic tools, and highlights the important research progresses of manufacturing PHB particles-based diagnostics.
Collapse
Affiliation(s)
- Gayathri Sam
- Centre for Cell Factories and Biopolymers (CCFB), Institute for Biomedicine and Glycomics, Griffith University (Nathan Campus), QLD 4111, Australia
| | - Shuxiong Chen
- Centre for Cell Factories and Biopolymers (CCFB), Institute for Biomedicine and Glycomics, Griffith University (Nathan Campus), QLD 4111, Australia.
| | - Bernd H A Rehm
- Centre for Cell Factories and Biopolymers (CCFB), Institute for Biomedicine and Glycomics, Griffith University (Nathan Campus), QLD 4111, Australia; Menzies Health Institute Queensland (MHIQ), Griffith University (Gold Coast Campus), QLD 4215, Australia.
| |
Collapse
|
2
|
Schauenburg D, Zech F, Heck AJ, von Maltitz P, Harms M, Führer S, Alleva N, Münch J, Kuan SL, Kirchhoff F, Weil T. Peptide Bispecifics Inhibiting HIV-1 Infection by an Orthogonal Chemical and Supramolecular Strategy. Bioconjug Chem 2023; 34:1645-1652. [PMID: 37665137 PMCID: PMC10515486 DOI: 10.1021/acs.bioconjchem.3c00314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Viral infections pose a significant threat to human health, and effective antiviral strategies are urgently needed. Antiviral peptides have emerged as a promising class of therapeutic agents due to their unique properties and mechanisms of action. While effective on their own, combining antiviral peptides may allow us to enhance their potency and to prevent viral resistance. Here, we developed an orthogonal chemical strategy to prepare a heterodimeric peptide conjugate assembled on a protein-based nanoplatform. Specifically, we combined the optimized version of two peptides inhibiting HIV-1 by distinct mechanisms. Virus-inhibitory peptide (VIRIP) is a 20 amino acid fragment of α1-antitrypsin that inhibits HIV-1 by targeting the gp41 fusion peptide. Endogenous peptide inhibitor of CXCR4 (EPI-X4) is a 16-residue fragment of human serum albumin that prevents HIV-1 entry by binding to the viral CXCR4 co-receptor. Optimized forms of both peptides are assembled on supramolecular nanoplatforms through the streptavidin-biotin interaction. We show that the construct consisting of the two different peptides (SAv-VIR-102C9-EPI-X4 JM#173-C) shows increased activity against CCR5- and CXCR4-tropic HIV-1 variants. Our results are a proof of concept that peptides with different modes of action can be assembled on nanoplatforms to enhance their antiviral activity.
Collapse
Affiliation(s)
- Dominik Schauenburg
- Max-Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Fabian Zech
- Institute of Molecular Virology, Ulm University Medical Center, Meyerhofstr. 1, 89081 Ulm, Germany
| | - Astrid Johanna Heck
- Max-Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Pascal von Maltitz
- Institute of Molecular Virology, Ulm University Medical Center, Meyerhofstr. 1, 89081 Ulm, Germany
| | - Mirja Harms
- Institute of Molecular Virology, Ulm University Medical Center, Meyerhofstr. 1, 89081 Ulm, Germany
| | - Siska Führer
- Max-Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Nico Alleva
- Max-Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Jan Münch
- Institute of Molecular Virology, Ulm University Medical Center, Meyerhofstr. 1, 89081 Ulm, Germany
| | - Seah Ling Kuan
- Max-Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Frank Kirchhoff
- Institute of Molecular Virology, Ulm University Medical Center, Meyerhofstr. 1, 89081 Ulm, Germany
| | - Tanja Weil
- Max-Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| |
Collapse
|
3
|
Hwang S, Lee Y, Kim JH, Kim G, Kim H, Kim W, Cho S, Palsson BO, Cho BK. Streptomyces as Microbial Chassis for Heterologous Protein Expression. Front Bioeng Biotechnol 2022; 9:804295. [PMID: 34993191 PMCID: PMC8724576 DOI: 10.3389/fbioe.2021.804295] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 11/30/2021] [Indexed: 12/29/2022] Open
Abstract
Heterologous production of recombinant proteins is gaining increasing interest in biotechnology with respect to productivity, scalability, and wide applicability. The members of genus Streptomyces have been proposed as remarkable hosts for heterologous production due to their versatile nature of expressing various secondary metabolite biosynthetic gene clusters and secretory enzymes. However, there are several issues that limit their use, including low yield, difficulty in genetic manipulation, and their complex cellular features. In this review, we summarize rational engineering approaches to optimizing the heterologous production of secondary metabolites and recombinant proteins in Streptomyces species in terms of genetic tool development and chassis construction. Further perspectives on the development of optimal Streptomyces chassis by the design-build-test-learn cycle in systems are suggested, which may increase the availability of secondary metabolites and recombinant proteins.
Collapse
Affiliation(s)
- Soonkyu Hwang
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea.,KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Yongjae Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea.,KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Ji Hun Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea.,KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Gahyeon Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea.,KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Hyeseong Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea.,KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Woori Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea.,KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Suhyung Cho
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea.,KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Bernhard O Palsson
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, United States.,Department of Pediatrics, University of California, San Diego, La Jolla, CA, United States.,Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Byung-Kwan Cho
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea.,KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, South Korea.,Innovative Biomaterials Research Center, KAIST Institutes, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| |
Collapse
|
4
|
Li X, Zhou S, Wang Y, Lian H, Zuo A, Zhou K, Tong L, Zhou Z, Gao J. The pilot-scale preparation of the SA-hGM-CSF bi-functional fusion protein. Bioengineered 2019; 10:108-120. [PMID: 31017543 PMCID: PMC6527079 DOI: 10.1080/21655979.2019.1608712] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The granulocyte-macrophage colony-stimulating factor (GM-CSF) can be used to induce a powerful immune response. Based on the specific binding of biotin and streptavidin, SA-hGM-CSF was anchored on the surface of biotinylated tumor cells, which could enhance the anti-tumor effect of tumor cell vaccines in our previous reports, suggesting it would have potential clinical value. Preparation of the biologically active proteins in large-scale production is the basis of clinical application, however, only a small amount of biologically active protein was obtained according to previous studies. In this study, we researched the effects of various factors on the purification and simultaneous renaturation of SA-hGM-CSF fusion protein by single factor experiment and orthogonal experiment. Here, we developed a viable pilot-scale trial in the fermentation, purification, refolding and freeze-drying of SA-hGM-CSF proteins in order to efficiently obtain more biologically active proteins with high purity, which will lay the foundation for industrial production.
Collapse
Affiliation(s)
- Xiaoqing Li
- a Zhejiang Provincial Key Lab for Technology & Application of Model Organisms,School of Laboratory Medicine and Life Sciences , Wenzhou Medical University , Wenzhou , China
| | - Shirong Zhou
- a Zhejiang Provincial Key Lab for Technology & Application of Model Organisms,School of Laboratory Medicine and Life Sciences , Wenzhou Medical University , Wenzhou , China
| | - Yao Wang
- a Zhejiang Provincial Key Lab for Technology & Application of Model Organisms,School of Laboratory Medicine and Life Sciences , Wenzhou Medical University , Wenzhou , China
| | - Hui Lian
- a Zhejiang Provincial Key Lab for Technology & Application of Model Organisms,School of Laboratory Medicine and Life Sciences , Wenzhou Medical University , Wenzhou , China
| | - Anxin Zuo
- a Zhejiang Provincial Key Lab for Technology & Application of Model Organisms,School of Laboratory Medicine and Life Sciences , Wenzhou Medical University , Wenzhou , China
| | - Kaihua Zhou
- a Zhejiang Provincial Key Lab for Technology & Application of Model Organisms,School of Laboratory Medicine and Life Sciences , Wenzhou Medical University , Wenzhou , China
| | - Ling Tong
- a Zhejiang Provincial Key Lab for Technology & Application of Model Organisms,School of Laboratory Medicine and Life Sciences , Wenzhou Medical University , Wenzhou , China
| | - Zhujun Zhou
- a Zhejiang Provincial Key Lab for Technology & Application of Model Organisms,School of Laboratory Medicine and Life Sciences , Wenzhou Medical University , Wenzhou , China
| | - Jimin Gao
- a Zhejiang Provincial Key Lab for Technology & Application of Model Organisms,School of Laboratory Medicine and Life Sciences , Wenzhou Medical University , Wenzhou , China
| |
Collapse
|