1
|
Contreras‐Ruiz A, Minebois R, Alonso‐del‐Real J, Barrio E, Querol A. Differences in metabolism among Saccharomyces species and their hybrids during wine fermentation. Microb Biotechnol 2024; 17:e14476. [PMID: 38801338 PMCID: PMC11129674 DOI: 10.1111/1751-7915.14476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/11/2024] [Accepted: 04/29/2024] [Indexed: 05/29/2024] Open
Abstract
This study aimed to investigate how parental genomes contribute to yeast hybrid metabolism using a metabolomic approach. Previous studies have explored central carbon and nitrogen metabolism in Saccharomyces species during wine fermentation, but this study analyses the metabolomes of Saccharomyces hybrids for the first time. We evaluated the oenological performance and intra- and extracellular metabolomes, and we compared the strains according to nutrient consumption and production of the main fermentative by-products. Surprisingly, no common pattern was observed for hybrid genome influence; each strain behaved differently during wine fermentation. However, this study suggests that the genome of the S. cerevisiae species may play a more relevant role in fermentative metabolism. Variations in biomass/nitrogen ratios were also noted, potentially linked to S. kudriavzevii and S. uvarum genome contributions. These results open up possibilities for further research using different "omics" approaches to comprehend better metabolic regulation in hybrid strains with genomes from different species.
Collapse
Affiliation(s)
- Alba Contreras‐Ruiz
- Departamento de Biotecnología de los Alimentos, Grupo de Biología de Sistemas en Levaduras de Interés BiotecnológicoInstituto de Agroquímica y Tecnología de Los Alimentos (IATA)‐CSICValènciaSpain
| | - Romain Minebois
- Departamento de Biotecnología de los Alimentos, Grupo de Biología de Sistemas en Levaduras de Interés BiotecnológicoInstituto de Agroquímica y Tecnología de Los Alimentos (IATA)‐CSICValènciaSpain
| | - Javier Alonso‐del‐Real
- Departamento de Biotecnología de los Alimentos, Grupo de Biología de Sistemas en Levaduras de Interés BiotecnológicoInstituto de Agroquímica y Tecnología de Los Alimentos (IATA)‐CSICValènciaSpain
| | - Eladio Barrio
- Departamento de Biotecnología de los Alimentos, Grupo de Biología de Sistemas en Levaduras de Interés BiotecnológicoInstituto de Agroquímica y Tecnología de Los Alimentos (IATA)‐CSICValènciaSpain
- Departament de GenèticaUniversitat de ValènciaValènciaSpain
| | - Amparo Querol
- Departamento de Biotecnología de los Alimentos, Grupo de Biología de Sistemas en Levaduras de Interés BiotecnológicoInstituto de Agroquímica y Tecnología de Los Alimentos (IATA)‐CSICValènciaSpain
| |
Collapse
|
2
|
Congcong W, Vinothkanna A, Yongkun M, Jie H, Rai AK, Jindong X, Dahai L. Production of mulberry wine using selenium-enriched Saccharomyces cerevisiae: implications from sensory analysis, phytochemical and antioxidant activities. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2024; 61:366-384. [PMID: 38196717 PMCID: PMC10772015 DOI: 10.1007/s13197-023-05847-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 07/06/2023] [Accepted: 09/11/2023] [Indexed: 01/11/2024]
Abstract
The present study aims to evaluate the quality of chemical, sensory properties and antioxidant potential of mulberry wine using selenium-enriched yeasts employing eight different methods (MW1-MW8). The selenium-enriched yeast significantly (p < 0.05) increased phytochemical profiles, flavor, quality and antioxidant capacity. The most effective method for raising the selenium level of mulberry wine was using L-seMC (MW5). Mulberry wine color was attributed to the anthocyanins and phytochemical composition with selenium content. DPPH and ABTS radical scavenging activity varied with change in treatment methods suggesting their impact on antioxidant activity. Total selenium content on L-SeMC supplementation proved a significant correlation between selenium content with total anthocyanin content, total polyphenol content and flavonoid content. Sensory analysis by electronic nose exhibited MW2 with high response value in the W2S sensor showing high alcohol concentration. GC-MS analysis showed the presence of 57 volatile aromatic compounds comprehended by esters and alcohol (isoamyl alcohol, 2-methylbutanol, 2,3-butanediol, and phenethyl alcohol). Principal component analysis affirms the response values for four categorical score values with reliability and consistency for all the parameters, significantly. Thus, the workflow demonstrates a simpler, cost-effective traditional methodology for rationalized outcomes. Supplementary Information The online version contains supplementary material available at 10.1007/s13197-023-05847-4.
Collapse
Affiliation(s)
- Wang Congcong
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013 People’s Republic of China
| | - Annadurai Vinothkanna
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013 People’s Republic of China
| | - Ma Yongkun
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013 People’s Republic of China
| | - Hu Jie
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013 People’s Republic of China
| | - Amit Kumar Rai
- Institute of Bioresources and Sustainable Development, Regional Centre, Tadong, 737102 Sikkim India
| | - Xue Jindong
- Danyang Yihe Food Co., Ltd., Zhenjiang, 212000 People’s Republic of China
| | - Li Dahai
- Danyang Yihe Food Co., Ltd., Zhenjiang, 212000 People’s Republic of China
| |
Collapse
|
3
|
Abstract
Flavour in Scotch malt whisky is a key differentiating factor for consumers and producers alike. Yeast (commonly Saccharomyces cerevisiae) metabolites produce a significant amount of this flavour as part of distillery fermentations, as well as ethanol and carbon dioxide. Whilst yeast strains contribute flavour, there is limited information on the relationship between yeast strain and observed flavour profile. In this work, the impact of yeast strain on the aroma profile of new make spirit (freshly distilled, unmatured spirit) was investigated using 24 commercially available active dried yeast strains. The contribution of alcoholic, fruity, sulfury and sweet notes to new make spirit by yeast was confirmed. Generally, distilling strains could be distinguished from brewing and wine strains based on aroma and ester concentrations. However, no statistically significant differences between individual yeast strains could be perceived in the intensity of seven aroma categories typically associated with whisky. Overall, from the yeast strains assessed, it was found that new make spirit produced using yeast strains marketed as ‘brewing’ strains was preferred in terms of acceptability rating.
Collapse
|
4
|
Abstract
Wine sensory experience includes flavor, aroma, color, and (for some) even acoustic traits, which impact consumer acceptance. The quality of the wine can be negatively impacted by the presence of off-flavors and aromas, or dubious colors, or sediments present in the bottle or glass, after pouring (coloring matter that precipitates or calcium bitartrate crystals). Flavor profiles of wines are the result of a vast number of variations in vineyard and winery production, including grape selection, winemaker’s knowledge and technique, and tools used to produce wines with a specific flavor. Wine color, besides being provided by the grape varieties, can also be manipulated during the winemaking. One of the most important “tools” for modulating flavor and color in wines is the choice of the yeasts. During alcoholic fermentation, the wine yeasts extract and metabolize compounds from the grape must by modifying grape-derived molecules, producing flavor-active compounds, and promoting the formation of stable pigments by the production and release of fermentative metabolites that affect the formation of vitisin A and B type pyranoanthocyanins. This review covers the role of Saccharomyces and non-Saccharomyces yeasts, as well as lactic acid bacteria, on the perceived flavor and color of wines and the choice that winemakers can make by choosing to perform co-inoculation or sequential inoculation, a choice that will help them to achieve the best performance in enhancing these wine sensory qualities, avoiding spoilage and the production of defective flavor or color compounds.
Collapse
|
5
|
The impact of hybrid yeasts on the aroma profile of cool climate Riesling wines. FOOD CHEMISTRY-X 2019; 5:100072. [PMID: 31891155 PMCID: PMC6926337 DOI: 10.1016/j.fochx.2019.100072] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 11/22/2019] [Accepted: 11/24/2019] [Indexed: 01/25/2023]
Abstract
For the first time a study reports about hybrids yeast influence on Riesling wine. For the first time a study compares different commercial hybrids yeast. For the first time several specific aroma compounds are studied for hybrids yeast. Some non volatile compounds are studied for hybrids yeast.
The current study highlights the effects of intra- and interspecific hybrid yeasts of the genus Saccharomyces (S.) on the alcoholic fermentation and formation of aroma compounds in cool climate Riesling wines. Three different hybrid yeasts: S. cerevisiae × S. paradoxus (SC × SP), S. cerevisiae × S. kudriavzevii (SC × SK) and S. cerevisiae var. cerevisiae × S. cerevisiae var. bayanus (SC × SB) were investigated. The species S. cerevisiae var. bayanus (SB) was chosen as control variant. It has been demonstrated that the hybrid yeasts have the ability to preserve positive properties while, suppressing undesired properties from the parental yeast species. The hybrid SC × SK showed an increase of desired acetate esters and monoterpenes. The concentrations of higher alcohols were higher in wines fermented by SC × SP, compared to the other variants. SC × SP fermentations resulted in decreased concentrations of l-malate and sulphites.
Collapse
|
6
|
Macías LG, Morard M, Toft C, Barrio E. Comparative Genomics Between Saccharomyces kudriavzevii and S. cerevisiae Applied to Identify Mechanisms Involved in Adaptation. Front Genet 2019; 10:187. [PMID: 30930934 PMCID: PMC6425871 DOI: 10.3389/fgene.2019.00187] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 02/21/2019] [Indexed: 12/02/2022] Open
Abstract
Yeasts belonging to the Saccharomyces genus play an important role in human-driven fermentations. The species S. cerevisiae has been widely studied because it is the dominant yeast in most fermentations and it has been widely used as a model eukaryotic organism. Recently, other species of the Saccharomyces genus are gaining interest to solve the new challenges that the fermentation industry are facing. One of these species is S. kudriavzevii, which exhibits interesting physiological properties compared to S. cerevisiae, such as a better adaptation to grow at low temperatures, a higher glycerol synthesis and lower ethanol production. The aim of this study is to understand the molecular basis behind these phenotypic differences of biotechnological interest by using a species-based comparative genomics approach. In this work, we sequenced, assembled and annotated two new genomes of S. kudriavzevii. We used a combination of different statistical methods to identify functional divergence, signatures of positive selection and acceleration of substitution rates at specific amino acid sites of proteins in S. kudriavzevii when compared to S. cerevisiae, and vice versa. We provide a list of candidate genes in which positive selection could be acting during the evolution of both S. cerevisiae and S. kudriavzevii clades. Some of them could be related to certain important differences in metabolism previously reported by other authors such us DAL3 and ARO4, involved in nitrogen assimilation and amino acid biosynthesis. In addition, three of those genes (FBA1, ZIP1, and RQC2) showed accelerated evolutionary rates in Sk branch. Finally, genes of the riboflavin biosynthesis were also among those genes with a significant higher rate of nucleotide substitution and those proteins have amino acid positions contributing to functional divergence.
Collapse
Affiliation(s)
- Laura G Macías
- Departament de Genètica, Universitat de València, Valencia, Spain.,Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos IATA, CSIC, Valencia, Spain
| | - Miguel Morard
- Departament de Genètica, Universitat de València, Valencia, Spain.,Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos IATA, CSIC, Valencia, Spain
| | - Christina Toft
- Departament de Genètica, Universitat de València, Valencia, Spain.,Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos IATA, CSIC, Valencia, Spain
| | - Eladio Barrio
- Departament de Genètica, Universitat de València, Valencia, Spain.,Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos IATA, CSIC, Valencia, Spain
| |
Collapse
|
7
|
Nguyen HV, Boekhout T. Characterization of Saccharomyces uvarum (Beijerinck, 1898) and related hybrids: assessment of molecular markers that predict the parent and hybrid genomes and a proposal to name yeast hybrids. FEMS Yeast Res 2018; 17:3061370. [PMID: 28334169 DOI: 10.1093/femsyr/fox014] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 03/01/2017] [Indexed: 11/15/2022] Open
Abstract
The use of the nuclear DNA reassociation technique has led taxonomists to consider Saccharomyces uvarum a synonym of S. bayanus. The latter, however, is not a species but a hybrid harbouring S. eubayanus (Seu) and S. uvarum (Su) subgenomes with a minor DNA contribution from S. cerevisiae (Sc). To recognize genetically pure lines of S. uvarum and putative interspecies hybrids among so-called S. bayanus strains present in public culture collections, we propose the use of four markers that were defined from the S. bayanus CBS 380T composite genome, namely SeuNTS2 (rDNA), ScMAL31, MTY1 and SuMEL1. Saccharomyces carlsbergensis CBS 1513 was found to be similar to S. bayanus except that it carries the SeuMEL1 allele. Different marker combinations revealed that among 33 strains examined only a few were similar to CBS 380T, but many pure S. uvarum lines and putative Su/Seu-related hybrids occurred. Our results demonstrated that these hybrids were erroneously considered authentic S. bayanus and therefore the varietal state 'Saccharomyces bayanus var. uvarum comb. nov. Naumov' is not valid. Our markers constitute a tool to get insights into the genomic makeup of Saccharomyces interspecies hybrids. We also make a proposal to name those hybrids that may also be applicable to other fungal hybrids.
Collapse
Affiliation(s)
- Huu-Vang Nguyen
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Teun Boekhout
- CBS-KNAW Fungal Biodiversity Centre, PO Box 85167, 3508 AD Utrecht, The Netherlands.,Institute of Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
8
|
Peris D, Pérez-Torrado R, Hittinger CT, Barrio E, Querol A. On the origins and industrial applications ofSaccharomyces cerevisiae×Saccharomyces kudriavzeviihybrids. Yeast 2017; 35:51-69. [DOI: 10.1002/yea.3283] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 09/15/2017] [Accepted: 09/27/2017] [Indexed: 12/22/2022] Open
Affiliation(s)
- David Peris
- Laboratory of Genetics, Wisconsin Energy Institute, J. F. Crow Institute for the Study of Evolution, Genome Center of Wisconsin, DOE Great Lakes Bioenergy Research Center; University of Wisconsin-Madison; Madison WI USA
- Department of Food Biotechnology; Institute of Agrochemistry and Food Technology (IATA), CSIC; Valencia Spain
| | - Roberto Pérez-Torrado
- Department of Food Biotechnology; Institute of Agrochemistry and Food Technology (IATA), CSIC; Valencia Spain
| | - Chris Todd Hittinger
- Laboratory of Genetics, Wisconsin Energy Institute, J. F. Crow Institute for the Study of Evolution, Genome Center of Wisconsin, DOE Great Lakes Bioenergy Research Center; University of Wisconsin-Madison; Madison WI USA
| | - Eladio Barrio
- Department of Food Biotechnology; Institute of Agrochemistry and Food Technology (IATA), CSIC; Valencia Spain
- Department of Genetics; University of Valencia; Valencia Spain
| | - Amparo Querol
- Department of Food Biotechnology; Institute of Agrochemistry and Food Technology (IATA), CSIC; Valencia Spain
| |
Collapse
|
9
|
Pérez-Torrado R, Barrio E, Querol A. Alternative yeasts for winemaking: Saccharomyces non-cerevisiae and its hybrids. Crit Rev Food Sci Nutr 2017; 58:1780-1790. [DOI: 10.1080/10408398.2017.1285751] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Roberto Pérez-Torrado
- Instituto de Agroquímica y Tecnología de los Alimentos, IATA-CSIC, Paterna, Spain
- Departament de Genètica, Universitat de València, Valencia, Spain
| | - Eladio Barrio
- Instituto de Agroquímica y Tecnología de los Alimentos, IATA-CSIC, Paterna, Spain
- Departament de Genètica, Universitat de València, Valencia, Spain
| | - Amparo Querol
- Instituto de Agroquímica y Tecnología de los Alimentos, IATA-CSIC, Paterna, Spain
| |
Collapse
|
10
|
Belda I, Ruiz J, Esteban-Fernández A, Navascués E, Marquina D, Santos A, Moreno-Arribas MV. Microbial Contribution to Wine Aroma and Its Intended Use for Wine Quality Improvement. Molecules 2017; 22:E189. [PMID: 28125039 PMCID: PMC6155689 DOI: 10.3390/molecules22020189] [Citation(s) in RCA: 162] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 01/14/2017] [Accepted: 01/19/2017] [Indexed: 12/29/2022] Open
Abstract
Wine is a complex matrix that includes components with different chemical natures, the volatile compounds being responsible for wine aroma quality. The microbial ecosystem of grapes and wine, including Saccharomyces and non-Saccharomyces yeasts, as well as lactic acid bacteria, is considered by winemakers and oenologists as a decisive factor influencing wine aroma and consumer's preferences. The challenges and opportunities emanating from the contribution of wine microbiome to the production of high quality wines are astounding. This review focuses on the current knowledge about the impact of microorganisms in wine aroma and flavour, and the biochemical reactions and pathways in which they participate, therefore contributing to both the quality and acceptability of wine. In this context, an overview of genetic and transcriptional studies to explain and interpret these effects is included, and new directions are proposed. It also considers the contribution of human oral microbiota to wine aroma conversion and perception during wine consumption. The potential use of wine yeasts and lactic acid bacteria as biological tools to enhance wine quality and the advent of promising advice allowed by pioneering -omics technologies on wine research are also discussed.
Collapse
Affiliation(s)
- Ignacio Belda
- Department of Microbiology, Biology Faculty, Complutense University of Madrid, 28040 Madrid, Spain.
| | - Javier Ruiz
- Department of Microbiology, Biology Faculty, Complutense University of Madrid, 28040 Madrid, Spain.
| | - Adelaida Esteban-Fernández
- CIAL-Institute of Food Science Research (CSIC-UAM), Dpt. Food Biotechnology and Microbiology, 28049 Madrid, Spain.
| | - Eva Navascués
- Department of Food Technology, Escuela Técnica Superior de Ingenieros Agrónomos, Polytechnic University of Madrid, 28040 Madrid, Spain.
| | - Domingo Marquina
- Department of Microbiology, Biology Faculty, Complutense University of Madrid, 28040 Madrid, Spain.
| | - Antonio Santos
- Department of Microbiology, Biology Faculty, Complutense University of Madrid, 28040 Madrid, Spain.
| | - M Victoria Moreno-Arribas
- CIAL-Institute of Food Science Research (CSIC-UAM), Dpt. Food Biotechnology and Microbiology, 28049 Madrid, Spain.
| |
Collapse
|
11
|
High-throughput screening of a large collection of non-conventional yeasts reveals their potential for aroma formation in food fermentation. Food Microbiol 2016; 60:147-59. [DOI: 10.1016/j.fm.2016.07.006] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 07/18/2016] [Accepted: 07/22/2016] [Indexed: 01/08/2023]
|