1
|
Jain PM, Nellikka A, Kammara R. Understanding bacteriocin heterologous expression: A review. Int J Biol Macromol 2024; 277:133916. [PMID: 39033897 DOI: 10.1016/j.ijbiomac.2024.133916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 07/12/2024] [Accepted: 07/14/2024] [Indexed: 07/23/2024]
Abstract
Bacteriocins are a diverse group of ribosomally synthesised antimicrobial peptides/proteins that play an important role in self-defence. They are widely used as bio-preservatives and effective substitutes for disease eradication. They can be used in conjunction with or as an alternative to antibiotics to minimize the risk of resistance development. There are remarkably few reports indicating resistance to bacteriocins. Although there are many research reports that emphasise heterologous expression of bacteriocin, there are no convincing reports on the significant role that intrinsic and extrinsic factors play in overexpression. A coordinated and cooperative expression system works in concert with multiple genetic elements encoding native proteins, immunoproteins, exporters, transporters and enzymes involved in the post-translational modification of bacteriocins. The simplest way could be to utilise the existing E. coli expression system, which is conventional, widely used for heterologous expression and has been further extended for bacteriocin expression. In this article, we will review the intrinsic and extrinsic factors, advantages, disadvantages and major problems associated with bacteriocin overexpression in E. coli. Finally, we recommend the most effective strategies as well as numerous bacteriocin expression systems from E. coli, Lactococcus, Kluveromyces lactis, Saccharomyces cerevisiae and Pichia pastoris for their suitability for successful overexpression.
Collapse
Affiliation(s)
- Priyanshi M Jain
- Department of Microbiology and Fermentation Technology, CSIR-CFTRI, AcSIR, Mysore, India
| | - Anagha Nellikka
- Department of Microbiology and Fermentation Technology, CSIR-CFTRI, AcSIR, Mysore, India
| | - Rajagopal Kammara
- Department of Microbiology and Fermentation Technology, CSIR-CFTRI, AcSIR, Mysore, India.
| |
Collapse
|
2
|
Wang Y, Shang N, Huang Y, Gao B, Li P. The Progress of the Biotechnological Production of Class IIa Bacteriocins in Various Cell Factories and Its Future Challenges. Int J Mol Sci 2024; 25:5791. [PMID: 38891977 PMCID: PMC11172294 DOI: 10.3390/ijms25115791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/30/2024] [Accepted: 05/07/2024] [Indexed: 06/21/2024] Open
Abstract
Class IIa bacteriocins produced in lactic acid bacteria are short cationic peptides with antimicrobial activity. In the search for new biopreservation agents, class IIa bacteriocins are considered to be the best potential candidates, not only due to their large abundance but also because of their high biological activity and excellent thermal stability. However, regulated by the biosynthetic regulatory system, the natural class IIa bacteriocin yield is low, and the extraction process is complicated. The biotechnological production of class IIa bacteriocins in various cell factories has been attempted to improve this situation. In this review, we focus on the application of biotechnological routes for class IIa bacteriocin production. The drawbacks and improvements in the production of class IIa bacteriocins in various cell factories are discussed. Furthermore, we present the main challenge of class IIa bacteriocins, focusing on increasing their production by constructing suitable cell factories. Recombinant bacteriocins have made considerable progress from inclusion body formation, dissolved form and low antibacterial activity to yield recovery. The development of prospective cell factories for the biotechnological production of bacteriocins is still required, which may facilitate the application of bacteriocins in the food industry.
Collapse
Affiliation(s)
- Yu Wang
- Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Nan Shang
- College of Engineering, China Agricultural University, Beijing 100083, China
| | - Yueying Huang
- Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Boya Gao
- Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Pinglan Li
- Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| |
Collapse
|
3
|
Han SW, Won HS. Advancements in the Application of Ribosomally Synthesized and Post-Translationally Modified Peptides (RiPPs). Biomolecules 2024; 14:479. [PMID: 38672495 PMCID: PMC11048544 DOI: 10.3390/biom14040479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/12/2024] [Accepted: 04/13/2024] [Indexed: 04/28/2024] Open
Abstract
Ribosomally synthesized and post-translationally modified peptides (RiPPs) represent a significant potential for novel therapeutic applications because of their bioactive properties, stability, and specificity. RiPPs are synthesized on ribosomes, followed by intricate post-translational modifications (PTMs), crucial for their diverse structures and functions. PTMs, such as cyclization, methylation, and proteolysis, play crucial roles in enhancing RiPP stability and bioactivity. Advances in synthetic biology and bioinformatics have significantly advanced the field, introducing new methods for RiPP production and engineering. These methods encompass strategies for heterologous expression, genetic refactoring, and exploiting the substrate tolerance of tailoring enzymes to create novel RiPP analogs with improved or entirely new functions. Furthermore, the introduction and implementation of cutting-edge screening methods, including mRNA display, surface display, and two-hybrid systems, have expedited the identification of RiPPs with significant pharmaceutical potential. This comprehensive review not only discusses the current advancements in RiPP research but also the promising opportunities that leveraging these bioactive peptides for therapeutic applications presents, illustrating the synergy between traditional biochemistry and contemporary synthetic biology and genetic engineering approaches.
Collapse
Affiliation(s)
- Sang-Woo Han
- Department of Biotechnology, Research Institute (RIBHS) and College of Biomedical & Health Science, Konkuk University, Chungju 27478, Chungbuk, Republic of Korea;
| | - Hyung-Sik Won
- Department of Biotechnology, Research Institute (RIBHS) and College of Biomedical & Health Science, Konkuk University, Chungju 27478, Chungbuk, Republic of Korea;
- BK21 Project Team, Department of Applied Life Science, Graduate School, Konkuk University, Chungju 27478, Chungbuk, Republic of Korea
| |
Collapse
|
4
|
Design of Lactococcus lactis Strains Producing Garvicin A and/or Garvicin Q, Either Alone or Together with Nisin A or Nisin Z and High Antimicrobial Activity against Lactococcus garvieae. Foods 2023; 12:foods12051063. [PMID: 36900581 PMCID: PMC10000435 DOI: 10.3390/foods12051063] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 02/20/2023] [Accepted: 02/24/2023] [Indexed: 03/06/2023] Open
Abstract
Lactococcus garvieae is a main ichthyopathogen in rainbow trout (Oncorhynchus mykiss, Walbaum) farming, although bacteriocinogenic L. garvieae with antimicrobial activity against virulent strains of this species have also been identified. Some of the bacteriocins characterized, such as garvicin A (GarA) and garvicin Q (GarQ), may show potential for the control of the virulent L. garvieae in food, feed and other biotechnological applications. In this study, we report on the design of Lactococcus lactis strains that produce the bacteriocins GarA and/or GarQ, either alone or together with nisin A (NisA) or nisin Z (NisZ). Synthetic genes encoding the signal peptide of the lactococcal protein Usp45 (SPusp45), fused to mature GarA (lgnA) and/or mature GarQ (garQ) and their associated immunity genes (lgnI and garI, respectively), were cloned into the protein expression vectors pMG36c, which contains the P32 constitutive promoter, and pNZ8048c, which contains the inducible PnisA promoter. The transformation of recombinant vectors into lactococcal cells allowed for the production of GarA and/or GarQ by L. lactis subsp. cremoris NZ9000 and their co-production with NisA by Lactococcus lactis subsp. lactis DPC5598 and L. lactis subsp. lactis BB24. The strains L. lactis subsp. cremoris WA2-67 (pJFQI), a producer of GarQ and NisZ, and L. lactis subsp. cremoris WA2-67 (pJFQIAI), a producer of GarA, GarQ and NisZ, demonstrated the highest antimicrobial activity (5.1- to 10.7-fold and 17.3- to 68.2-fold, respectively) against virulent L. garvieae strains.
Collapse
|
5
|
Recent advances in genetic tools for engineering probiotic lactic acid bacteria. Biosci Rep 2023; 43:232386. [PMID: 36597861 PMCID: PMC9842951 DOI: 10.1042/bsr20211299] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 12/19/2022] [Accepted: 01/03/2023] [Indexed: 01/05/2023] Open
Abstract
Synthetic biology has grown exponentially in the last few years, with a variety of biological applications. One of the emerging applications of synthetic biology is to exploit the link between microorganisms, biologics, and human health. To exploit this link, it is critical to select effective synthetic biology tools for use in appropriate microorganisms that would address unmet needs in human health through the development of new game-changing applications and by complementing existing technological capabilities. Lactic acid bacteria (LAB) are considered appropriate chassis organisms that can be genetically engineered for therapeutic and industrial applications. Here, we have reviewed comprehensively various synthetic biology techniques for engineering probiotic LAB strains, such as clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 mediated genome editing, homologous recombination, and recombineering. In addition, we also discussed heterologous protein expression systems used in engineering probiotic LAB. By combining computational biology with genetic engineering, there is a lot of potential to develop next-generation synthetic LAB with capabilities to address bottlenecks in industrial scale-up and complex biologics production. Recently, we started working on Lactochassis project where we aim to develop next generation synthetic LAB for biomedical application.
Collapse
|
6
|
Romero-Luna HE, Hernández-Mendoza A, González-Córdova AF, Peredo-Lovillo A. Bioactive peptides produced by engineered probiotics and other food-grade bacteria: A review. Food Chem X 2022; 13:100196. [PMID: 35498967 PMCID: PMC9039921 DOI: 10.1016/j.fochx.2021.100196] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 11/09/2021] [Accepted: 12/22/2021] [Indexed: 12/11/2022] Open
Abstract
Synthetic biology improves probiotics therapeutic approaches. Engineering technologies contribute to design probiotics mechanisms of action. Edition of proteolytic systems induce the generation of specific bioactive peptides. Engineered probiotics should be evaluated as therapeutic agents in clinical trials. Therapeutical and technological uses of engineered probiotics are still controversial.
Synthetic biology is employed for the study and design of engineered microbes with new and improved therapeutic functions. The main advantage of synthetic biology is the selective genetic manipulation of living organisms with desirable beneficial effects such as probiotics. Engineering technologies have contributed to the edition of metabolic processes involved in the mechanisms of action of probiotics, such as the generation of bioactive peptides. Hence, current information related to bioactive peptides, produced by different engineering probiotics, with antimicrobial, antiviral, antidiabetic, and antihypertensive activities, as well as their potential use as functional ingredients, is discussed here. Besides, the effectiveness and safety aspects of these bioactive peptides were also described.
Collapse
Affiliation(s)
- Haydee Eliza Romero-Luna
- Subdirección de Posgrado e Investigación, Instituto Tecnológico Superior de Xalapa, Xalapa 91096, Veracruz, Mexico
| | - Adrián Hernández-Mendoza
- Laboratorio de Química y Biotecnología de Productos Lácteos, Centro de Investigación en Alimentación y Desarrollo A.C. (CIAD, A.C.), Hermosillo 83304, Sonora, Mexico
| | - Aarón Fernando González-Córdova
- Laboratorio de Química y Biotecnología de Productos Lácteos, Centro de Investigación en Alimentación y Desarrollo A.C. (CIAD, A.C.), Hermosillo 83304, Sonora, Mexico
| | - Audry Peredo-Lovillo
- Subdirección de Posgrado e Investigación, Instituto Tecnológico Superior de Xalapa, Xalapa 91096, Veracruz, Mexico
| |
Collapse
|
7
|
Wu Y, Pang X, Wu Y, Liu X, Zhang X. Enterocins: Classification, Synthesis, Antibacterial Mechanisms and Food Applications. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27072258. [PMID: 35408657 PMCID: PMC9000605 DOI: 10.3390/molecules27072258] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 03/23/2022] [Accepted: 03/28/2022] [Indexed: 01/15/2023]
Abstract
Enterococci, a type of lactic acid bacteria, are widely distributed in various environments and are part of the normal flora in the intestinal tract of humans and animals. Although enterococci have gradually evolved pathogenic strains causing nosocomial infections in recent years, the non-pathogenic strains have still been widely used as probiotics and feed additives. Enterococcus can produce enterocin, which are bacteriocins considered as ribosomal peptides that kill or inhibit the growth of other microorganisms. This paper reviews the classification, synthesis, antibacterial mechanisms and applications of enterocins, and discusses the prospects for future research.
Collapse
Affiliation(s)
- Yajing Wu
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China; (Y.W.); (X.P.); (Y.W.); (X.L.)
| | - Xinxin Pang
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China; (Y.W.); (X.P.); (Y.W.); (X.L.)
| | - Yansha Wu
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China; (Y.W.); (X.P.); (Y.W.); (X.L.)
| | - Xiayu Liu
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China; (Y.W.); (X.P.); (Y.W.); (X.L.)
| | - Xinglin Zhang
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China; (Y.W.); (X.P.); (Y.W.); (X.L.)
- College of Agriculture and Forestry, Linyi University, Linyi 276005, China
- Correspondence: ; Tel.: +86-571-86984316
| |
Collapse
|
8
|
Debnath N, Thakur M, Khushboo, Negi NP, Gautam V, Kumar Yadav A, Kumar D. Insight of oral vaccines as an alternative approach to health and disease management: An innovative intuition and challenges. Biotechnol Bioeng 2021; 119:327-346. [PMID: 34755343 DOI: 10.1002/bit.27987] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/06/2021] [Accepted: 11/03/2021] [Indexed: 12/11/2022]
Abstract
Vaccination is the most suitable and persuasive healthcare program for the prohibition of various deadly diseases. However, the higher production cost and purification strategies are out of reach for the developing nations. In this scenario, development of edible vaccine turns out to be the most promising alternative for remodeling the pharmaceutical industry with reduced production and purification costs. Generally, oral route of vaccination is mostly preferred due to its safety, compliance, low manufacturing cost and most importantly the ability to induce immunity in both systemic and mucosal sites. Genetically modified microorganisms and plants could efficiently be used as vehicles for edible vaccines. Edible vaccines are supposed to reduce the risk associated with traditional vaccines. Currently, oral vaccines are available in the market for several viral and bacterial diseases like cholera, hepatitis B, malaria, rabies etc. Herein, the review focuses on the breakthrough events in the area of edible vaccines associated with dietary microbes and plants for better control over diseases.
Collapse
Affiliation(s)
- Nabendu Debnath
- Centre for Molecular Biology, Central University of Jammu, Samba, Jammu & Kashmir (UT), India
| | - Mony Thakur
- Department of Microbiology, Central University of Haryana, Mahendergarh, Haryana, India
| | - Khushboo
- Department of Biotechnology, Central University of Haryana, Mahendergarh, Haryana, India
| | - Neelam P Negi
- Department of Biotechnology, University Institute of Biotechnology, Chandigarh University, Mohali, Punjab, India
| | - Vibhav Gautam
- Centre of Experimental Medicine & Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Ashok Kumar Yadav
- Centre for Molecular Biology, Central University of Jammu, Samba, Jammu & Kashmir (UT), India
| | - Deepak Kumar
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| |
Collapse
|
9
|
Zhao X, Zhong X, Liu X, Wang X, Gao X. Therapeutic and Improving Function of Lactobacilli in the Prevention and Treatment of Cardiovascular-Related Diseases: A Novel Perspective From Gut Microbiota. Front Nutr 2021; 8:693412. [PMID: 34164427 PMCID: PMC8215129 DOI: 10.3389/fnut.2021.693412] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 05/14/2021] [Indexed: 12/13/2022] Open
Abstract
The occurrence and development of cardiovascular-related diseases are associated with structural and functional changes in gut microbiota (GM). The accumulation of beneficial gut commensals contributes to the improvement of cardiovascular-related diseases. The cardiovascular-related diseases that can be relieved by Lactobacillus supplementation, including hypercholesterolemia, atherosclerosis, myocardial infarction, heart failure, type 2 diabetes mellitus, and obesity, have expanded. As probiotics, lactobacilli occupy a substantial part of the GM and play important functional roles through various GM-derived metabolites. Lactobacilli ultimately have a beneficial impact on lipid metabolism, inflammatory factors, and oxidative stress to relieve the symptoms of cardiovascular-related diseases. However, the axis and cellular process of gut commensal Lactobacillus in improving cardiovascular-related diseases have not been fully elucidated. Additionally, Lactobacillus strains produce diverse antimicrobial peptides, which help maintain intestinal homeostasis and ameliorate cardiovascular-related diseases. These strains are a field that needs to be further investigated immediately. Thus, this review demonstrated the mechanisms and summarized the evidence of the benefit of Lactobacillus strain supplementation from animal studies and human clinical trials. We also highlighted a broad range of lactobacilli candidates with therapeutic capability by mining their metabolites. Our study provides instruction in the development of lactobacilli as a functional food to improve cardiovascular-related diseases.
Collapse
Affiliation(s)
- Xin Zhao
- Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xinqin Zhong
- Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiao Liu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiaoying Wang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiumei Gao
- Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
10
|
Asimakoula S, Giaka K, Fanitsios C, Kakouri A, Vandera E, Samelis J, Koukkou AI. Monitoring Growth Compatibility and Bacteriocin Gene Transcription of Adjunct and Starter Lactic Acid Bacterial Strains in Milk. J Food Prot 2021; 84:509-520. [PMID: 33108438 DOI: 10.4315/jfp-20-317] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 10/22/2020] [Indexed: 01/13/2023]
Abstract
ABSTRACT When developing protective starter cultures for application in cheese technologies, monitoring growth interactions between starter and adjunct lactic acid bacterial (LAB) species and in situ expression of bacteriocin genes in the mixtures is crucial. This study first aimed to monitor the growth of mixed LAB strain populations during milk model fermentations by microbial counts and real-time quantitative PCR. The primary starter strains, Streptococcus thermophilus ST1 and costarter Lactococcus lactis subsp. cremoris M78, served as the basic starter composite coinoculated in all milk treatments. Adjunct bacteriocinogenic Enterococcus faecium strains KE82 and GL31 and the ripening Lactiplantibacillus plantarum H25 strain were added separately to the starter composite, resulting in four LAB combination treatments. The second aim was to quantify gene transcripts of nisin and enterocins B and A synthesized by strains M78, KE82, and GL31, respectively, by reverse transcription-real-time quantitative PCR and to detect the in situ antilisterial effects of the cocultures. Adjunct LAB strains showed growth compatibility with the starter, since all of them exhibited 2- to 3-log-unit increases in their population levels compared to their initial inoculation levels, with ST1 prevailing in all treatments. KE82 grew more competitively than GL31, whereas cocultures with KE82 displayed the strongest in situ antilisterial activity. Nisin gene expression levels were higher at the exponential phase of microbial growth in all treatments. Finally, the expression levels of nisin and enterocin A and B genes were interrelated, indicating an antagonistic activity. HIGHLIGHTS
Collapse
Affiliation(s)
- Stamatia Asimakoula
- Laboratory of Biochemistry, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece
| | - Katerina Giaka
- Laboratory of Biochemistry, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece
| | - Christos Fanitsios
- Laboratory of Biochemistry, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece
| | - Athanasia Kakouri
- Dairy Research Department, General Directorate of Agricultural Research, Hellenic Agricultural Organization DIMITRA, Katsikas, 45221 Ioannina, Greece
| | - Elpiniki Vandera
- Laboratory of Biochemistry, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece
| | - John Samelis
- Dairy Research Department, General Directorate of Agricultural Research, Hellenic Agricultural Organization DIMITRA, Katsikas, 45221 Ioannina, Greece
| | - Anna-Irini Koukkou
- Laboratory of Biochemistry, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece
| |
Collapse
|
11
|
Cui Y, Luo L, Wang X, Lu Y, Yi Y, Shan Y, Liu B, Zhou Y, Lü X. Mining, heterologous expression, purification, antibactericidal mechanism, and application of bacteriocins: A review. Compr Rev Food Sci Food Saf 2020; 20:863-899. [PMID: 33443793 DOI: 10.1111/1541-4337.12658] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 09/04/2020] [Accepted: 09/28/2020] [Indexed: 02/06/2023]
Abstract
Bacteriocins are generally considered as low-molecular-weight ribosomal peptides or proteins synthesized by G+ and G- bacteria that inhibit or kill other related or unrelated microorganisms. However, low yield is an important factor restricting the application of bacteriocins. This paper reviews mining methods, heterologous expression in different systems, the purification technologies applied to bacteriocins, and identification methods, as well as the antibacterial mechanism and applications in three different food systems. Bioinformatics improves the efficiency of bacteriocins mining. Bacteriocins can be heterologously expressed in different expression systems (e.g., Escherichia coli, Lactobacillus, and yeast). Ammonium sulfate precipitation, dialysis membrane, pH-mediated cell adsorption/desorption, solvent extraction, macroporous resin column, and chromatography are always used as purification methods for bacteriocins. The bacteriocins are identified through electrophoresis and mass spectrum. Cell envelope (e.g., cell permeabilization and pore formation) and inhibition of gene expression are common antibacterial mechanisms of bacteriocins. Bacteriocins can be added to protect meat products (e.g., beef and sausages), dairy products (e.g., cheese, milk, and yogurt), and vegetables and fruits (e.g., salad, apple juice, and soybean sprouts). The future research directions are also prospected.
Collapse
Affiliation(s)
- Yanlong Cui
- Lab of Bioresources, College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Lingli Luo
- Lab of Bioresources, College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Xin Wang
- Lab of Bioresources, College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Yingying Lu
- Lab of Bioresources, College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Yanglei Yi
- Lab of Bioresources, College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Yuanyuan Shan
- Lab of Bioresources, College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Bianfang Liu
- Lab of Bioresources, College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Yuan Zhou
- Lab of Bioresources, College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Xin Lü
- Lab of Bioresources, College of Food Science and Engineering, Northwest A&F University, Yangling, China
| |
Collapse
|
12
|
Cloning and functional expression of a food-grade circular bacteriocin, plantacyclin B21AG, in probiotic Lactobacillus plantarum WCFS1. PLoS One 2020; 15:e0232806. [PMID: 32785265 PMCID: PMC7423119 DOI: 10.1371/journal.pone.0232806] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 07/27/2020] [Indexed: 12/01/2022] Open
Abstract
There is an increasing consumer demand for minimally processed, preservative free and microbiologically safe food. These factors, combined with risks of antibiotic resistance, have led to interest in bacteriocins produced by lactic acid bacteria (LAB) as natural food preservatives and as potential protein therapeutics. We previously reported the discovery of plantacyclin B21AG, a circular bacteriocin produced by Lactobacillus plantarum B21. Here, we describe the cloning and functional expression of the bacteriocin gene cluster in the probiotic Lactobacillus plantarum WCFS1. Genome sequencing demonstrated that the bacteriocin is encoded on a 20 kb native plasmid, designated as pB21AG01. Seven open reading frames (ORFs) putatively involved in bacteriocin production, secretion and immunity were cloned into an E. coli/Lactobacillus shuttle vector, pTRKH2. The resulting plasmid, pCycB21, was transformed into L. plantarum WCFS1. The cell free supernatants (CFS) of both B21 and WCFS1 (pCycB21) showed an antimicrobial activity of 800 AU/mL when tested against WCFS1 (pTRKH2) as the indicator strain, showing that functional expression of plantacyclin B21AG had been achieved. Real-time PCR analysis revealed that the relative copy number of pB21AG01 was 7.60 ± 0.79 in L. plantarum B21 whilst pCycB21 and pTRKH2 was 0.51 ± 0.05 and 25.19 ± 2.68 copies respectively in WCFS1. This indicates that the bacteriocin gene cluster is located on a highly stable low copy number plasmid pB21AG01 in L. plantarum B21. Inclusion of the native promoter for the bacteriocin operon from pB21AG01 results in similar killing activity being observed in both the wild type and recombinant hosts despite the lower copy number of pCycB21.
Collapse
|
13
|
Abstract
Vaccines are biological preparations that improve immunity to particular diseases and form an important innovation of 19th century research. It contains a protein that resembles a disease-causing microorganism and is often made from weak or killed forms of the microbe. Vaccines are agents that stimulate the body’s immune system to recognize the antigen. Now, a new form of vaccine was introduced which will have the power to mask the risk side of conventional vaccines. This type of vaccine was produced from plants which are genetically modified. In the production of edible vaccines, the gene-encoding bacterial or viral disease-causing agent can be incorporated in plants without losing its immunogenic property. The main mechanism of action of edible vaccines is to activate the systemic and mucosal immunity responses against a foreign disease-causing organism. Edible vaccines can be produced by incorporating transgene in to the selected plant cell. At present edible vaccine are developed for veterinary and human use. But the main challenge faced by edible vaccine is its acceptance by the population so that it is necessary to make aware the society about its use and benefits. When compared to other traditional vaccines, edible vaccines are cost effective, efficient and safe. It promises a better prevention option from diseases.
Collapse
Affiliation(s)
- Vrinda M Kurup
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, Amrita Institute of Medical Sciences Healthcare, Education & Research, Kochi, Kerala, 682041, India
| | - Jaya Thomas
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, Amrita Institute of Medical Sciences Healthcare, Education & Research, Kochi, Kerala, 682041, India.
| |
Collapse
|
14
|
Ahmad B, Li Z, Hanif Q, Hu Q, Wei X, Zhang L, Khan SA, Aihemaiti M, Gulzar H, Shahid M, Si D, Zhang R. A Hybrid Peptide DEFB-TP5 Expressed in Methylotrophic Yeast Neutralizes LPS With Potent Anti-inflammatory Activities. Front Pharmacol 2020; 11:461. [PMID: 32457599 PMCID: PMC7221121 DOI: 10.3389/fphar.2020.00461] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 03/24/2020] [Indexed: 12/31/2022] Open
Abstract
DEFB-TP5 is a novel auspicious health-beneficial peptide derivative from two naturally occurring peptides, β-Defensin (DEFB) and thymopentin (TP5), and shows strong anti-inflammatory activity and binds to LPS without cytotoxicity and hemolytic effect. Furthermore, the application of DEFB-TP5 peptide is inadequate by its high cost. In the current study, we developed a biocompatible mechanism for expression of the DEFB-TP5 peptide in Pichia pastoris. The transgenic strain of hybrid DEFB-TP5 peptide with a molecular weight of 6.7kDa as predictable was obtained. The recombinant DEFB-TP5 peptide was purified by Ni-NTA chromatography, estimated 30.41 mg/L was obtained from the cell culture medium with 98.2% purity. Additionally, The purified DEFB-TP5 peptide significantly (p< 0.05) diminished the release of nitric oxide (NO), TNF-α, IL-6, IL-1β in LPS-stimulated RAW264.7 macrophages in a dose-dependent manner. This study will not only help to understand the molecular mechanism of expression that can potentially be used to develop an anti-endotoxin peptide but also to serve as the basis for the development of antimicrobial and anti-inflammatory agents as well, which also provides a potential source for the production of recombinant bioactive DEFB-TP5 at the industrial level.
Collapse
Affiliation(s)
- Baseer Ahmad
- State Key Laboratory of Animal Nutrition and Feed Sciences, Laboratory of Feed Biotechnology, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Zhongxuan Li
- State Key Laboratory of Animal Nutrition and Feed Sciences, Laboratory of Feed Biotechnology, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Quratulain Hanif
- Computational Biology Laboratory, Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan.,Department of Biotechnology, Pakistan Institute of Engineering and Applied Sciences, Nilore, Islamabad, Pakistan
| | - Qingyong Hu
- State Key Laboratory of Animal Nutrition and Feed Sciences, Laboratory of Feed Biotechnology, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Xubiao Wei
- State Key Laboratory of Animal Nutrition and Feed Sciences, Laboratory of Feed Biotechnology, College of Animal Science and Technology, China Agricultural University, Beijing, China.,College of Life Sciences, Peking University, Beijing, China
| | - Lulu Zhang
- State Key Laboratory of Animal Nutrition and Feed Sciences, Laboratory of Feed Biotechnology, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Shahzad Akbar Khan
- Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Maierhaba Aihemaiti
- State Key Laboratory of Animal Nutrition and Feed Sciences, Laboratory of Feed Biotechnology, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Huma Gulzar
- College of Life Sciences, China Agricultural University, Beijing, China
| | - Muhammad Shahid
- State Key Laboratory of Animal Nutrition and Feed Sciences, Laboratory of Feed Biotechnology, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Dayong Si
- State Key Laboratory of Animal Nutrition and Feed Sciences, Laboratory of Feed Biotechnology, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Rijun Zhang
- State Key Laboratory of Animal Nutrition and Feed Sciences, Laboratory of Feed Biotechnology, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
15
|
Vezina B, Rehm BHA, Smith AT. Bioinformatic prospecting and phylogenetic analysis reveals 94 undescribed circular bacteriocins and key motifs. BMC Microbiol 2020; 20:77. [PMID: 32252629 PMCID: PMC7132975 DOI: 10.1186/s12866-020-01772-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 03/29/2020] [Indexed: 12/19/2022] Open
Abstract
Background Circular bacteriocins are antimicrobial peptides produced by bacteria with a N and C termini ligation. They have desirable properties such as activity at low concentrations along with thermal, pH and proteolytic resistance. There are twenty experimentally confirmed circular bacteriocins as part of bacteriocin gene clusters, with transport, membrane and immunity proteins. Traditionally, novel antimicrobials are found by testing large numbers of isolates against indicator strains, with no promise of corresponding novel sequence. Results Through bioprospecting publicly available sequence databases, we identified ninety-nine circular bacteriocins across a variety of bacteria bringing the total to 119. They were grouped into two families within class I modified bacteriocins (i and ii) and further divided into subfamilies based on similarity to experimentally confirmed circular bacteriocins. Within subfamilies, sequences overwhelmingly shared similar characteristics such as sequence length, presence of a polybasic region, conserved locations of aromatic residues, C and N termini, gene clusters similarity, translational coupling and hydrophobicity profiles. At least ninety were predicted to be putatively functional based on gene clusters. Furthermore, bacteriocins identified from Enterococcus, Staphylococcus and Streptococcus species may have activity against clinically relevant strains, due to the presence of putative immunity genes required for expression in a toxin-antitoxin system. Some strains such as Paenibacillus larvae subsp. pulvifaciens SAG 10367 contained multiple circular bacteriocin gene clusters from different subfamilies, while some strains such as Bacillus cereus BCE-01 contained clusters with multiple circular bacteriocin structural genes. Conclusions Sequence analysis provided rapid insight into identification of novel, putative circular bacteriocins, as well as conserved genes likely essential for circularisation. This represents an expanded library of putative antimicrobial proteins which are potentially active against human, plant and animal pathogens.
Collapse
Affiliation(s)
- Ben Vezina
- Centre for Cell Factories and Biopolymers, Griffith Institute for Drug Discovery, Griffith University, Nathan, Australia
| | - Bernd H A Rehm
- Centre for Cell Factories and Biopolymers, Griffith Institute for Drug Discovery, Griffith University, Nathan, Australia
| | - Andrew T Smith
- Centre for Cell Factories and Biopolymers, Griffith Institute for Drug Discovery, Griffith University, Nathan, Australia.
| |
Collapse
|
16
|
Ben Braïek O, Smaoui S. Enterococci: Between Emerging Pathogens and Potential Probiotics. BIOMED RESEARCH INTERNATIONAL 2019; 2019:5938210. [PMID: 31240218 PMCID: PMC6556247 DOI: 10.1155/2019/5938210] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 04/06/2019] [Accepted: 05/14/2019] [Indexed: 11/17/2022]
Abstract
Enterococci are ubiquitous microorganisms that could be found everywhere; in water, plant, soil, foods, and gastrointestinal tract of humans and animals. They were previously used as starters in food fermentation due to their biotechnological traits (enzymatic and proteolytic activities) or protective cultures in food biopreservation due to their produced antimicrobial bacteriocins called enterocins or as probiotics, live cells with different beneficial characteristics such as stimulation of immunity, anti-inflammatory activity, hypocholesterolemic effect, and prevention/treatment of some diseases. However, in the last years, the use of enterococci in foods or as probiotics caused an important debate because of their opportunistic pathogenicity implicated in several nosocomial infections due to virulence factors and antibiotic resistance, particularly the emergence of vancomycin-resistant enterococci. These virulence traits of some enterococci are associated with genetic transfer mechanisms. Therefore, the development of new enterococcal probiotics needs a strict assessment with regard to safety aspects for selecting the truly harmless enterococcal strains for safe applications. This review tries to give some data of the different points of view about this question.
Collapse
Affiliation(s)
- Olfa Ben Braïek
- Laboratory of Transmissible Diseases and Biologically Active Substances (LR99ES27), Faculty of Pharmacy, University of Monastir, Tunisia
| | - Slim Smaoui
- Laboratory of Microorganisms and Biomolecules of the Centre of Biotechnology of Sfax, Tunisia
| |
Collapse
|
17
|
Telke AA, Ovchinnikov KV, Vuoristo KS, Mathiesen G, Thorstensen T, Diep DB. Over 2000-Fold Increased Production of the Leaderless Bacteriocin Garvicin KS by Increasing Gene Dose and Optimization of Culture Conditions. Front Microbiol 2019; 10:389. [PMID: 30891018 PMCID: PMC6412029 DOI: 10.3389/fmicb.2019.00389] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 02/13/2019] [Indexed: 11/21/2022] Open
Abstract
The leaderless bacteriocin Garvicin KS (GarKS) is a potent antimicrobial, being active against a wide range of important pathogens. GarKS production by the native producer Lactococcus garvieae KS1546 is, however, relatively low (80 BU/ml) under standard laboratory growth conditions (batch culture in GM17 at 30°C). To improve the production, we systematically evaluated the impact of different media and media components on bacteriocin production. Based on the outcomes, a new medium formulation was made that increased GarKS production about 60-fold compared to that achieved in GM17. The new medium was composed of pasteurized milk and tryptone (PM-T). GarKS production was increased further 4-fold (i.e., to 20,000 BU/ml) by increasing the gene dose of the bacteriocin gene cluster (gak) in the native producer. Finally, a combination of the newly composed medium (PM-T), an increased gene dose and cultivation at a constant pH 6 and a 50-60% dissolved oxygen level in growth medium, gave rise to a GarKS production of 164,000 BU/ml. This high production, which is about 2000-fold higher compared to that initially achieved in GM17, corresponds to a GarKS production of 1.2 g/L. To our knowledge, this is one of the highest bacteriocin production reported hitherto.
Collapse
Affiliation(s)
| | | | | | | | | | - Dzung B. Diep
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| |
Collapse
|
18
|
Criscuolo E, Caputo V, Diotti RA, Sautto GA, Kirchenbaum GA, Clementi N. Alternative Methods of Vaccine Delivery: An Overview of Edible and Intradermal Vaccines. J Immunol Res 2019; 2019:8303648. [PMID: 30949518 PMCID: PMC6425294 DOI: 10.1155/2019/8303648] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 02/08/2019] [Accepted: 02/14/2019] [Indexed: 01/26/2023] Open
Abstract
Vaccines are recognized worldwide as one of the most important tools for combating infectious diseases. Despite the tremendous value conferred by currently available vaccines toward public health, the implementation of additional vaccine platforms is also of key importance. In fact, currently available vaccines possess shortcomings, such as inefficient triggering of a cell-mediated immune response and the lack of protective mucosal immunity. In this regard, recent work has been focused on vaccine delivery systems, as an alternative to injectable vaccines, to increase antigen stability and improve overall immunogenicity. In particular, novel strategies based on edible or intradermal vaccine formulations have been demonstrated to trigger both a systemic and mucosal immune response. These novel vaccination delivery systems offer several advantages over the injectable preparations including self-administration, reduced cost, stability, and elimination of a cold chain. In this review, the latest findings and accomplishments regarding edible and intradermal vaccines are described in the context of the system used for immunogen expression, their molecular features and capacity to induce a protective systemic and mucosal response.
Collapse
Affiliation(s)
- E. Criscuolo
- Microbiology and Virology Unit, “Vita-Salute San Raffaele” University, Milan, Italy
| | - V. Caputo
- Microbiology and Virology Unit, “Vita-Salute San Raffaele” University, Milan, Italy
- Pomona Ricerca S.r.l., Turin, Italy
| | - R. A. Diotti
- Microbiology and Virology Unit, “Vita-Salute San Raffaele” University, Milan, Italy
- Pomona Ricerca S.r.l., Turin, Italy
| | - G. A. Sautto
- Center for Vaccines and Immunology, University of Georgia, Athens, GA, USA
| | | | - N. Clementi
- Microbiology and Virology Unit, “Vita-Salute San Raffaele” University, Milan, Italy
| |
Collapse
|
19
|
Huo L, Hug JJ, Fu C, Bian X, Zhang Y, Müller R. Heterologous expression of bacterial natural product biosynthetic pathways. Nat Prod Rep 2019. [DOI: 10.1039/c8np00091c [epub ahead of print]] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The review highlights the 2013–2018 literature on the heterologous expression of bacterial natural product biosynthetic pathways and emphasises new techniques, heterologous hosts, and novel chemistry.
Collapse
Affiliation(s)
- Liujie Huo
- Helmholtz International Laboratory
- State Key Laboratory of Microbial Technology
- Shandong University
- Qingdao 266237
- P. R. China
| | - Joachim J. Hug
- Helmholtz International Laboratory
- Department of Microbial Natural Products (MINS)
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)
- Helmholtz Centre for Infection Research (HZI)
- 66123 Saarbrücken
| | - Chengzhang Fu
- Helmholtz International Laboratory
- Department of Microbial Natural Products (MINS)
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)
- Helmholtz Centre for Infection Research (HZI)
- 66123 Saarbrücken
| | - Xiaoying Bian
- Helmholtz International Laboratory
- State Key Laboratory of Microbial Technology
- Shandong University
- Qingdao 266237
- P. R. China
| | - Youming Zhang
- Helmholtz International Laboratory
- State Key Laboratory of Microbial Technology
- Shandong University
- Qingdao 266237
- P. R. China
| | - Rolf Müller
- Helmholtz International Laboratory
- Department of Microbial Natural Products (MINS)
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)
- Helmholtz Centre for Infection Research (HZI)
- 66123 Saarbrücken
| |
Collapse
|
20
|
Huo L, Hug JJ, Fu C, Bian X, Zhang Y, Müller R. Heterologous expression of bacterial natural product biosynthetic pathways. Nat Prod Rep 2019; 36:1412-1436. [DOI: 10.1039/c8np00091c] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The review highlights the 2013–2018 literature on the heterologous expression of bacterial natural product biosynthetic pathways and emphasises new techniques, heterologous hosts, and novel chemistry.
Collapse
Affiliation(s)
- Liujie Huo
- Helmholtz International Laboratory
- State Key Laboratory of Microbial Technology
- Shandong University
- Qingdao 266237
- P. R. China
| | - Joachim J. Hug
- Helmholtz International Laboratory
- Department of Microbial Natural Products (MINS)
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)
- Helmholtz Centre for Infection Research (HZI)
- 66123 Saarbrücken
| | - Chengzhang Fu
- Helmholtz International Laboratory
- Department of Microbial Natural Products (MINS)
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)
- Helmholtz Centre for Infection Research (HZI)
- 66123 Saarbrücken
| | - Xiaoying Bian
- Helmholtz International Laboratory
- State Key Laboratory of Microbial Technology
- Shandong University
- Qingdao 266237
- P. R. China
| | - Youming Zhang
- Helmholtz International Laboratory
- State Key Laboratory of Microbial Technology
- Shandong University
- Qingdao 266237
- P. R. China
| | - Rolf Müller
- Helmholtz International Laboratory
- Department of Microbial Natural Products (MINS)
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)
- Helmholtz Centre for Infection Research (HZI)
- 66123 Saarbrücken
| |
Collapse
|
21
|
Juturu V, Wu JC. Microbial production of bacteriocins: Latest research development and applications. Biotechnol Adv 2018; 36:2187-2200. [PMID: 30385277 DOI: 10.1016/j.biotechadv.2018.10.007] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 10/03/2018] [Accepted: 10/15/2018] [Indexed: 12/13/2022]
Abstract
Bacteriocins are low molecular weight peptides secreted by the predator bacterial cells to kill sensitive cells present in the same ecosystem competing for food and other nutrients. Exceptionally few bacteriocins along with their native antibacterial property also exhibit additional anti-viral and anti-fungal properties. Bacteriocins are generally produced by Gm+, Gm- and archaea bacteria. Bacteriocins from Gm + bacteria especially from lactic acid bacteria (LAB) have been thoroughly investigated considering their great biosafety and broad industrial applications. LAB expressing bacteriocins were isolated from fermented milk and milk products, rumen of animals and soil using deferred antagonism assay. Nisin is the only bacteriocin that has got FDA approval for application as a food preservative, which is produced by Lactococcus lactis subsp. Lactis. Its crystal structure explains that its antimicrobial properties are due to the binding of NH2 terminal to lipid II molecule inhibiting the peptidoglycan synthesis and carboxy terminal forming pores in bacterial cell membrane leading to cell lysis. The hinge region connecting NH2 and carboxy terminus has been mutated to generate mutant variants with higher antimicrobial activity. In a 50 ton fermentation of the mutant strain 3807 derived from L. lactis subsp. lactis ATCC 11454, 9,960 IU/mL of nisin was produced. Currently, high purity of nisin (>99%) is very expensive and hardly commercially available. Development of more advanced tools for cost-effective separation and purification of nisin would be commercially attractive. Chemical synthesis and heterologous expression of bacteriocins ended in low yields of pure proteins. At present, bacteriocins are almost solely applied in food industries, but they have a great potential to be used in other fields such as feeds, organic fertilizers, environmental protection and personal care products. The future of bacteriocins is largely dependent on getting FDA approval for use of other bacteriocins in addition to nisin to promote the research and applications.
Collapse
Affiliation(s)
- Veeresh Juturu
- Institute of Chemical and Engineering Sciences, Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island 627833, Singapore
| | - Jin Chuan Wu
- Institute of Chemical and Engineering Sciences, Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island 627833, Singapore.
| |
Collapse
|
22
|
Serrano-Maldonado CE, Quirasco M. Enhancement of the antibacterial activity of an E. faecalis strain by the heterologous expression of enterocin A. J Biotechnol 2018; 283:28-36. [PMID: 30006300 DOI: 10.1016/j.jbiotec.2018.06.346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 05/31/2018] [Accepted: 06/25/2018] [Indexed: 10/28/2022]
Abstract
The genus Enterococcus occurs as native microbiota of fermented products due to its broad environmental distribution and its resistance to salt concentrations. Enterococcus faecalis F, a non-pathogenic strain isolated from a ripened cheese, has demonstrated useful enzymatic capabilities, a probiotic behavior and antibacterial activity against some food-borne pathogens, mainly due to peptidoglycan hydrolase activity. Its use as a natural pathogen-control agent could be further enhanced through the production of a bacteriocin, e.g. Enterocin A, because of its remarkable antilisterial activity. In this work, a markerless allelic insertion method was used to obtain an enterococcal strain capable of producing a functional enterocin. Agar diffusion tests showed that the recombinant strain was active against Staphylococcus aureus, Listeria monocytogenes and the pathogenic strain E. faecalis V583. When grown in liquid culture together with L. monocytogenes, it attained a two-log reduction of the pathogen counts in lesser time relative to the native strain. Because the DNA construction is integrated into the chromosome, the improved strain avoids the use of antibiotics as selective pressure; besides, it does not require an inductor because of the inclusion of a constitutive promoter in the construction. Its technological and antibacterial capabilities make the improved E. faecalis strain a potential culture for use in the food industry.
Collapse
Affiliation(s)
- Carlos Eduardo Serrano-Maldonado
- Departamento de Alimentos y Biotecnología, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Cd. México, 04510, Mexico
| | - Maricarmen Quirasco
- Departamento de Alimentos y Biotecnología, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Cd. México, 04510, Mexico.
| |
Collapse
|
23
|
Zhang Y, Chen M, Bruner SD, Ding Y. Heterologous Production of Microbial Ribosomally Synthesized and Post-translationally Modified Peptides. Front Microbiol 2018; 9:1801. [PMID: 30135682 PMCID: PMC6092494 DOI: 10.3389/fmicb.2018.01801] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 07/17/2018] [Indexed: 12/30/2022] Open
Abstract
Ribosomally synthesized and post-translationally modified peptides, or RiPPs, which have mainly isolated from microbes as well as plants and animals, are an ever-expanding group of peptidic natural products with diverse chemical structures and biological activities. They have emerged as a major category of secondary metabolites partly due to a myriad of microbial genome sequencing endeavors and the availability of genome mining software in the past two decades. Heterologous expression of RiPP gene clusters mined from microbial genomes, which are often silent in native producers, in surrogate hosts such as Escherichia coli and Streptomyces strains can be an effective way to elucidate encoded peptides and produce novel derivatives. Emerging strategies have been developed to facilitate the success of the heterologous expression by targeting multiple synthetic biology levels, including individual proteins, pathways, metabolic flux and hosts. This review describes recent advances in heterologous production of RiPPs, mainly from microbes, with a focus on E. coli and Streptomyces strains as the surrogate hosts.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development, College of Pharmacy, University of Florida, Gainesville, FL, United States
| | - Manyun Chen
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development, College of Pharmacy, University of Florida, Gainesville, FL, United States
| | - Steven D Bruner
- Department of Chemistry, University of Florida, Gainesville, FL, United States
| | - Yousong Ding
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development, College of Pharmacy, University of Florida, Gainesville, FL, United States
| |
Collapse
|
24
|
Distinctive antagonistic role of new Enterococcus faecium ER-3M strain and its bacteriocin effect against Staphylococcus aureus Pneumonia. RENDICONTI LINCEI-SCIENZE FISICHE E NATURALI 2018. [DOI: 10.1007/s12210-018-0722-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
25
|
Purification, Characterization, and Mode of Action of Pentocin JL-1, a Novel Bacteriocin Isolated from Lactobacillus pentosus, against Drug-Resistant Staphylococcus aureus. BIOMED RESEARCH INTERNATIONAL 2017; 2017:7657190. [PMID: 29333451 PMCID: PMC5733122 DOI: 10.1155/2017/7657190] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 09/21/2017] [Accepted: 10/18/2017] [Indexed: 12/16/2022]
Abstract
Staphylococcus aureus and its drug-resistant strains, which threaten public health and food safety, are in need of effective control by biopreservatives. A novel bacteriocin, pentocin JL-1, produced by Lactobacillus pentosus that was isolated from the intestinal tract of Chiloscyllium punctatum, was purified by a four-step chromatographic process. Mass spectrometry based on MALDI-TOF indicated that pentocin JL-1 has a molecular mass of 2987.23 Da. Only six of the twenty-five amino acids could be identified by Edman degradation. This bacteriocin is thermostable and tolerates a pH range of 5–7. Also, it is sensitive to proteinase K, trypsin, pepsin, and alkaline protease. This bacteriocin has a broad inhibitory spectrum against both Gram-positive and Gram-negative strains and in particular is effective against multidrug-resistant S. aureus. Additionally, we showed that the cell membrane is the target of pentocin JL-1 against methicillin-resistant S. aureus (MRSA), causing a loss of proton motive force. Furthermore, pentocin JL-1 has a drastic impact on the structure and integrity of MRSA cells. These results suggest that pentocin JL-1 has potential as a biopreservative in the food industry.
Collapse
|
26
|
Quintana G, Niederle MV, Minahk CJ, Picariello G, Nader-Macías MEF, Pasteris SE. Nisin Z produced by Lactococcus lactis from bullfrog hatchery is active against Citrobacter freundii, a red-leg syndrome related pathogen. World J Microbiol Biotechnol 2017; 33:186. [DOI: 10.1007/s11274-017-2353-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 09/21/2017] [Indexed: 10/18/2022]
|
27
|
Mishra B, Reiling S, Zarena D, Wang G. Host defense antimicrobial peptides as antibiotics: design and application strategies. Curr Opin Chem Biol 2017; 38:87-96. [PMID: 28399505 PMCID: PMC5494204 DOI: 10.1016/j.cbpa.2017.03.014] [Citation(s) in RCA: 207] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 03/21/2017] [Accepted: 03/22/2017] [Indexed: 12/16/2022]
Abstract
This review deals with the design and application strategies of new antibiotics based on naturally occurring antimicrobial peptides (AMPs). The initial candidate can be designed based on three-dimensional structure or selected from a library of peptides from natural or laboratory sources followed by optimization via structure-activity relationship studies. There are also advanced application strategies such as induction of AMP expression from host cells by various factors (e.g., metals, amino acids, vitamin D and sunlight), the use of engineered probiotic bacteria to deliver peptides, the design of prodrug and peptide conjugates to improve specific targeting. In addition, combined uses of newly developed AMPs with existing antimicrobial agents may provide a practical avenue for effective management of antibiotic-resistant bacteria (superbugs), including biofilms. Finally, we highlight AMPs already in use or under clinical trials.
Collapse
Affiliation(s)
- Biswajit Mishra
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, 986495 Nebraska Medical Center, Omaha, NE 68198-6495, USA
| | - Scott Reiling
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, 986495 Nebraska Medical Center, Omaha, NE 68198-6495, USA
| | - D Zarena
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, 986495 Nebraska Medical Center, Omaha, NE 68198-6495, USA; Department of Physics, JNTUA College of Engineering, Anantapur 515002, India
| | - Guangshun Wang
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, 986495 Nebraska Medical Center, Omaha, NE 68198-6495, USA.
| |
Collapse
|
28
|
Bosma EF, Forster J, Nielsen AT. Lactobacilli and pediococci as versatile cell factories - Evaluation of strain properties and genetic tools. Biotechnol Adv 2017; 35:419-442. [PMID: 28396124 DOI: 10.1016/j.biotechadv.2017.04.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 03/29/2017] [Accepted: 04/03/2017] [Indexed: 12/14/2022]
Abstract
This review discusses opportunities and bottlenecks for cell factory development of Lactic Acid Bacteria (LAB), with an emphasis on lactobacilli and pediococci, their metabolism and genetic tools. In order to enable economically feasible bio-based production of chemicals and fuels in a biorefinery, the choice of product, substrate and production organism is important. Currently, the most frequently used production hosts include Escherichia coli and Saccharomyces cerevisiae, but promising examples are available of alternative hosts such as LAB. Particularly lactobacilli and pediococci can offer benefits such as thermotolerance, an extended substrate range and increased tolerance to stresses such as low pH or high alcohol concentrations. This review will evaluate the properties and metabolism of these organisms, and provide an overview of their current biotechnological applications and metabolic engineering. We substantiate the review by including experimental results from screening various lactobacilli and pediococci for transformability, growth temperature range and ability to grow under biotechnologically relevant stress conditions. Since availability of efficient genetic engineering tools is a crucial prerequisite for industrial strain development, genetic tool development is extensively discussed. A range of genetic tools exist for Lactococcus lactis, but for other species of LAB like lactobacilli and pediococci such tools are less well developed. Whereas lactobacilli and pediococci have a long history of use in food and beverage fermentation, their use as platform organisms for production purposes is rather new. By harnessing their properties such as thermotolerance and stress resistance, and by using emerging high-throughput genetic tools, these organisms are very promising as versatile cell factories for biorefinery applications.
Collapse
Affiliation(s)
- Elleke F Bosma
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet B220, 2800 Kgs. Lyngby, Denmark
| | - Jochen Forster
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet B220, 2800 Kgs. Lyngby, Denmark
| | - Alex Toftgaard Nielsen
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet B220, 2800 Kgs. Lyngby, Denmark.
| |
Collapse
|
29
|
Sola-Oladokun B, Culligan EP, Sleator RD. Engineered Probiotics: Applications and Biological Containment. Annu Rev Food Sci Technol 2017; 8:353-370. [PMID: 28125354 DOI: 10.1146/annurev-food-030216-030256] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Bioengineered probiotics represent the next generation of whole cell-mediated biotherapeutics. Advances in synthetic biology, genome engineering, and DNA sequencing and synthesis have enabled scientists to design and develop probiotics with increased stress tolerance and the ability to target specific pathogens and their associated toxins, as well as to mediate targeted delivery of vaccines, drugs, and immunomodulators directly to host cells. Herein, we review the most significant advances in the development of this field. We discuss the critical issue of biological containment and consider the role of synthetic biology in the design and construction of the probiotics of the future.
Collapse
Affiliation(s)
- Babasola Sola-Oladokun
- Department of Biological Sciences, Cork Institute of Technology, Bishopstown, Cork, Ireland; , ,
| | - Eamonn P Culligan
- Department of Biological Sciences, Cork Institute of Technology, Bishopstown, Cork, Ireland; , ,
| | - Roy D Sleator
- Department of Biological Sciences, Cork Institute of Technology, Bishopstown, Cork, Ireland; , , .,APC Microbiome Institute, University College Cork, Cork, Ireland
| |
Collapse
|
30
|
Jiang H, Li P, Gu Q. Heterologous expression and purification of plantaricin NC8, a two-peptide bacteriocin against Salmonella spp. from Lactobacillus plantarum ZJ316. Protein Expr Purif 2016; 127:28-34. [DOI: 10.1016/j.pep.2016.06.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Revised: 06/20/2016] [Accepted: 06/28/2016] [Indexed: 01/24/2023]
|
31
|
Martinez OF, Agbale CM, Nomiyama F, Franco OL. Deciphering bioactive peptides and their action mechanisms through proteomics. Expert Rev Proteomics 2016; 13:1007-1016. [PMID: 27650042 DOI: 10.1080/14789450.2016.1238305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
INTRODUCTION Bioactive peptides such as antimicrobial peptides (AMPs), ribosomally synthesized and post translationally modified peptides (RiPPs) and the non-ribosomal peptides (NRPs) have emerged with promising applications in medicine, agriculture and industry. However, their development has been limited by several difficulties making it necessary to search for novel discovery methods. In this context, proteomics has been considered a reliable tool. Areas covered: This review highlights recent developments in proteomic tools that facilitate the discovery of AMPs, RiPPs and NRPs as well as the elucidation of action mechanisms of AMPs and resistance mechanisms of pathogens to them. Expert commentary: Proteomic approaches have emerged as useful tools for the study of bioactive peptides, especially mass spectrometry-based peptidomics profiling, a promising strategy for AMP discovery. Furthermore, the rapidly expanding fields of genome mining and genome sequencing techniques, as well as mass spectrometry, have revolutionized the discovery of novel RiPPs and NRPs from complex biological samples.
Collapse
Affiliation(s)
- Osmel Fleitas Martinez
- a Pos-Graduação em Patologia olecular , Universidade de Brasilia , Brasilia-DF Brazil.,b Centro de Analises Proteomicas e Bioquimicas, Programa de Pos-Graduacao em Ciencias Genomicas e Biotecnologia , Universidade Catolica de Brasilia , Brasília , Brazil
| | - Caleb Mawuli Agbale
- c S-Inova Biotech, Programa de Pos-Graduacao em Biotecnologia , Universidade Catolica Dom Bosco , Campo Grande , Brazil.,d Department of Biochemistry, School of Biological Sciences, College of Agriculture and Natural Sciences , University of Cape Coast , Cape Coast , Ghana
| | - Fernanda Nomiyama
- b Centro de Analises Proteomicas e Bioquimicas, Programa de Pos-Graduacao em Ciencias Genomicas e Biotecnologia , Universidade Catolica de Brasilia , Brasília , Brazil
| | - Octávio Luiz Franco
- a Pos-Graduação em Patologia olecular , Universidade de Brasilia , Brasilia-DF Brazil.,b Centro de Analises Proteomicas e Bioquimicas, Programa de Pos-Graduacao em Ciencias Genomicas e Biotecnologia , Universidade Catolica de Brasilia , Brasília , Brazil.,c S-Inova Biotech, Programa de Pos-Graduacao em Biotecnologia , Universidade Catolica Dom Bosco , Campo Grande , Brazil
| |
Collapse
|
32
|
pMPES: A Modular Peptide Expression System for the Delivery of Antimicrobial Peptides to the Site of Gastrointestinal Infections Using Probiotics. Pharmaceuticals (Basel) 2016; 9:ph9040060. [PMID: 27782051 PMCID: PMC5198035 DOI: 10.3390/ph9040060] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 09/14/2016] [Indexed: 12/18/2022] Open
Abstract
Antimicrobial peptides are a promising alternative to traditional antibiotics, but their utility is limited by high production costs and poor bioavailability profiles. Bacterial production and delivery of antimicrobial peptides (AMPs) directly at the site of infection may offer a path for effective therapeutic application. In this study, we have developed a vector that can be used for the production and secretion of seven antimicrobial peptides from both Escherichia coli MC1061 F' and probiotic E.coli Nissle 1917. The vector pMPES (Modular Peptide Expression System) employs the Microcin V (MccV) secretion system and a powerful synthetic promoter to drive AMP production. Herein, we demonstrate the capacity of pMPES to produce inhibitory levels of MccV, Microcin L (MccL), Microcin N (McnN), Enterocin A (EntA), Enterocin P (EntP), Hiracin JM79 (HirJM79) and Enterocin B (EntB). To our knowledge, this is the first demonstration of such a broadly-applicable secretion system for AMP production. This type of modular expression system could expedite the development of sorely needed antimicrobial technologies.
Collapse
|
33
|
Arbulu S, Jiménez JJ, Gútiez L, Campanero C, Del Campo R, Cintas LM, Herranz C, Hernández PE. Evaluation of bacteriocinogenic activity, safety traits and biotechnological potential of fecal lactic acid bacteria (LAB), isolated from Griffon Vultures (Gyps fulvus subsp. fulvus). BMC Microbiol 2016; 16:228. [PMID: 27688001 PMCID: PMC5041338 DOI: 10.1186/s12866-016-0840-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 09/15/2016] [Indexed: 11/23/2022] Open
Abstract
Background Lactic acid bacteria (LAB) are part of the gut microbiota and produce ribosomally synthesized antimicrobial peptides or bacteriocins with interest as natural food preservatives and therapeutic agents. Bacteriocin-producing LAB are also attractive as probiotics. Griffon vultures (Gyps fulvus subspecies fulvus) are scavenger birds that feed almost exclusively on carrion without suffering apparent ill effects. Therefore, griffon vultures might be considered a reservoir of bacteriocin-producing lactic acid bacteria (LAB) with potential biotechnological applications. Results Griffon vulture feces were screened for LAB with antimicrobial activity, genes encoding bacteriocins, potential virulence determinants, susceptibility to antibiotics, genotyping and characterization of bacteriocins. In this study, from 924 LAB evaluated 332 isolates (36 %) showed direct antimicrobial activity against Gram-positive bacteria only. The molecular identification of the most antagonistic 95 isolates showed that enterococci was the largest LAB group with antimicrobial activity (91 %) and E. faecium (40 %) the most identified antagonistic species. The evaluation of the presence of bacteriocin structural genes in 28 LAB isolates with the highest bacteriocinogenic activity in their supernatants determined that most enterococcal isolates (75 %) encoded multiple bacteriocins, being enterocin A (EntA) the largest identified (46 %) bacteriocin. Most enterococci (88 %) were resistant to multiple antibiotics. ERIC-PCR and MLST techniques permitted genotyping and recognition of the potential safety of the bacteriocinogenic enterococci. A multiple-step chromatographic procedure, determination of the N-terminal amino acid sequence of purified bacteriocins by Edman degradation and a MALDI TOF/TOF tandem MS procedure permitted characterization of bacteriocins present in supernatants of producer cells. Conclusions Enterococci was the largest LAB group with bacteriocinogenic activity isolated from griffon vulture feces. Among the isolates, E. faecium M3K31 has been identified as producer of enterocin HF (EntHF), a bacteriocin with remarkable antimicrobial activity against most evaluated Listeria spp. and of elevated interest as a natural food preservative. E. faecium M3K31 would be also considered a safe probiotic strain for use in animal nutrition. Electronic supplementary material The online version of this article (doi:10.1186/s12866-016-0840-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sara Arbulu
- Departamento de Nutrición, Bromatología y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid (UCM), Avenida Puerta de Hierro, s/n, 28040, Madrid, Spain
| | - Juan J Jiménez
- Departamento de Nutrición, Bromatología y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid (UCM), Avenida Puerta de Hierro, s/n, 28040, Madrid, Spain
| | - Loreto Gútiez
- Departamento de Nutrición, Bromatología y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid (UCM), Avenida Puerta de Hierro, s/n, 28040, Madrid, Spain
| | - Cristina Campanero
- Departamento de Nutrición, Bromatología y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid (UCM), Avenida Puerta de Hierro, s/n, 28040, Madrid, Spain
| | - Rosa Del Campo
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal, and Instituto Ramón y Cajal de Investigaciones Sanitarias (IRYCIS), 28034, Madrid, Spain
| | - Luis M Cintas
- Departamento de Nutrición, Bromatología y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid (UCM), Avenida Puerta de Hierro, s/n, 28040, Madrid, Spain
| | - Carmen Herranz
- Departamento de Nutrición, Bromatología y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid (UCM), Avenida Puerta de Hierro, s/n, 28040, Madrid, Spain
| | - Pablo E Hernández
- Departamento de Nutrición, Bromatología y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid (UCM), Avenida Puerta de Hierro, s/n, 28040, Madrid, Spain.
| |
Collapse
|