1
|
Salgado JCS, Alnoch RC, Polizeli MDLTDM, Ward RJ. Microenzymes: Is There Anybody Out There? Protein J 2024; 43:393-404. [PMID: 38507106 DOI: 10.1007/s10930-024-10193-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/08/2024] [Indexed: 03/22/2024]
Abstract
Biological macromolecules are found in different shapes and sizes. Among these, enzymes catalyze biochemical reactions and are essential in all organisms, but is there a limit size for them to function properly? Large enzymes such as catalases have hundreds of kDa and are formed by multiple subunits, whereas most enzymes are smaller, with molecular weights of 20-60 kDa. Enzymes smaller than 10 kDa could be called microenzymes and the present literature review brings together evidence of their occurrence in nature. Additionally, bioactive peptides could be a natural source for novel microenzymes hidden in larger peptides and molecular downsizing could be useful to engineer artificial enzymes with low molecular weight improving their stability and heterologous expression. An integrative approach is crucial to discover and determine the amino acid sequences of novel microenzymes, together with their genomic identification and their biochemical biological and evolutionary functions.
Collapse
Affiliation(s)
- Jose Carlos Santos Salgado
- Department of Chemistry, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto (FFCLRP), University of São Paulo, Ribeirão Preto, 14040-900, São Paulo, Brazil.
- Department of Biology, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto (FFCLRP), University of São Paulo, Ribeirão Preto, 14040-901, São Paulo, Brazil.
| | - Robson Carlos Alnoch
- Department of Biology, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto (FFCLRP), University of São Paulo, Ribeirão Preto, 14040-901, São Paulo, Brazil
- Department of Biochemistry and Immunology, Faculdade de Medicina de Ribeirão Preto (FMRP), University of São Paulo, Ribeirão Preto, 14049-900, São Paulo, Brazil
| | - Maria de Lourdes Teixeira de Moraes Polizeli
- Department of Biology, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto (FFCLRP), University of São Paulo, Ribeirão Preto, 14040-901, São Paulo, Brazil
- Department of Biochemistry and Immunology, Faculdade de Medicina de Ribeirão Preto (FMRP), University of São Paulo, Ribeirão Preto, 14049-900, São Paulo, Brazil
| | - Richard John Ward
- Department of Chemistry, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto (FFCLRP), University of São Paulo, Ribeirão Preto, 14040-900, São Paulo, Brazil
- Department of Biochemistry and Immunology, Faculdade de Medicina de Ribeirão Preto (FMRP), University of São Paulo, Ribeirão Preto, 14049-900, São Paulo, Brazil
| |
Collapse
|
2
|
Wang Y, Svensson B, Henrissat B, Møller MS. Functional Roles of N-Terminal Domains in Pullulanase from Human Gut Lactobacillus acidophilus. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:18898-18908. [PMID: 38053504 DOI: 10.1021/acs.jafc.3c06487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Pullulanases are multidomain α-glucan debranching enzymes with one or more N-terminal domains (NTDs) including carbohydrate-binding modules (CBMs) and domains of unknown function (DUFs). To elucidate the roles of NTDs in Lactobacillus acidophilus NCFM pullulanase (LaPul), two truncated variants, Δ41-LaPul (lacking CBM41) and Δ(41+DUFs)-LaPul (lacking CBM41 and two DUFs), were produced recombinantly. LaPul recognized 1.3- and 2.2-fold more enzyme attack-sites on starch granules compared to Δ41-LaPul and Δ(41+DUFs)-LaPul, respectively, as measured by interfacial kinetics. Δ41-LaPul displayed markedly lower affinity for starch granules and β-cyclodextrin (10- and >21-fold, respectively) in comparison to LaPul, showing substrate binding mainly stems from CBM41. Δ(41+DUFs)-LaPul exhibited a 12 °C lower melting temperature than LaPul and Δ41-LaPul, indicating that the DUFs are critical for LaPul stability. Notably, Δ41-LaPul exhibited a 14-fold higher turnover number (kcat) and 9-fold higher Michaelis constant (KM) compared to LaPul, while Δ(41+DUFs)-LaPul's values were close to those of LaPul, possibly due to the exposure of aromatic by truncation.
Collapse
Affiliation(s)
- Yu Wang
- Enzyme and Protein Chemistry, Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Birte Svensson
- Enzyme and Protein Chemistry, Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Bernard Henrissat
- Enzyme Discovery, Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Marie Sofie Møller
- Applied Molecular Enzyme Chemistry, Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| |
Collapse
|
3
|
Liu M, Li Q, Liu X, Zhang P, Zhang H. Improved thermostability of type I pullulanase from Bacillus thermoliquefaciens by error-prone PCR. Enzyme Microb Technol 2023; 169:110290. [PMID: 37473696 DOI: 10.1016/j.enzmictec.2023.110290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/23/2023] [Accepted: 07/12/2023] [Indexed: 07/22/2023]
Abstract
Pullulanase (PulB) is a starch-debranching enzyme. In order to improve its catalytic performance, random mutagenesis was performed on the pullulanase gene derived from Bacillus thermoliquefaciens. Two rounds of error-prone PCR were carried out. Mutant T252S was screened in the first round of error-prone library, which had the highest catalytic activity. During the second round of mutations, mutant enzyme G250P/T252S/G253T/N255K was screened, which had further improved catalytic activity and the best thermostability. Compared with the parent enzyme, the specific activity of mutant enzyme G250P/T252S/G253T/N255K increased by 1.9 times, Km decreased by 22.7 %, kcat increased by 28.7 %, and kcat/Km increased by 68.4 %. The thermostability of the mutant enzyme improved significantly, showing that the half-life at 60 °C was extended to 7.5 h, which was 87.5 % higher than that of the parent enzyme. The mutation sites in these two rounds were concentrated in the 250-255 regions, indicating that this region was an important region affecting the catalytic activity and Thermostability. The reasons for the change of enzymtic properties was also preliminarily analyzed through three-dimensional simulation.
Collapse
Affiliation(s)
- Mengmeng Liu
- School of Life Sciences, Henan University, Kaifeng 475004, China; Engineering Research Center for Applied Microbiology of Henan Province, Kaifeng 475004, China
| | - Qiu Li
- School of Life Sciences, Henan University, Kaifeng 475004, China; Engineering Research Center for Applied Microbiology of Henan Province, Kaifeng 475004, China
| | - Xiaoxiao Liu
- School of Life Sciences, Henan University, Kaifeng 475004, China; Engineering Research Center for Applied Microbiology of Henan Province, Kaifeng 475004, China
| | - Pengpai Zhang
- School of Life Sciences, Henan University, Kaifeng 475004, China; Engineering Research Center for Applied Microbiology of Henan Province, Kaifeng 475004, China.
| | - Haiyan Zhang
- School of Life Sciences, Henan University, Kaifeng 475004, China; Engineering Research Center for Applied Microbiology of Henan Province, Kaifeng 475004, China.
| |
Collapse
|
4
|
Xu T, Li Z, Gu Z, Li C, Cheng L, Hong Y, Ban X. The N-terminus of 1,4-α-glucan branching enzyme plays an important role in its non-classical secretion in Bacillus subtilis. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
|
5
|
Choi J, Shin JH, An HJ, Oh MJ, Kim SR. Analysis of secretome and N-glycosylation of Chlorella species. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
6
|
Liu CL, Xue K, Yang Y, Liu X, Li Y, Lee TS, Bai Z, Tan T. Metabolic engineering strategies for sesquiterpene production in microorganism. Crit Rev Biotechnol 2021; 42:73-92. [PMID: 34256675 DOI: 10.1080/07388551.2021.1924112] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Sesquiterpenes are a large variety of terpene natural products, widely existing in plants, fungi, marine organisms, insects, and microbes. Value-added sesquiterpenes are extensively used in industries such as: food, drugs, fragrances, and fuels. With an increase in market demands and the price of sesquiterpenes, the biosynthesis of sesquiterpenes by microbial fermentation methods from renewable feedstocks is acquiring increasing attention. Synthetic biology provides robust tools of sesquiterpene production in microorganisms. This review presents a summary of metabolic engineering strategies on the hosts and pathway engineering for sesquiterpene production. Advances in synthetic biology provide new strategies on the creation of desired hosts for sesquiterpene production. Especially, metabolic engineering strategies for the production of sesquiterpenes such as: amorphadiene, farnesene, bisabolene, and caryophyllene are emphasized in: Escherichia coli, Saccharomyces cerevisiae, and other microorganisms. Challenges and future perspectives of the bioprocess for translating sesquiterpene production into practical industrial work are also discussed.
Collapse
Affiliation(s)
- Chun-Li Liu
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, China.,College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, PR China.,The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China.,Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, China
| | - Kai Xue
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, China.,The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China.,Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, China
| | - Yankun Yang
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, China.,The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China.,Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, China
| | - Xiuxia Liu
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, China.,The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China.,Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, China
| | - Ye Li
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, China.,The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China.,Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, China
| | - Taek Soon Lee
- Joint BioEnergy Institute, Emeryville, CA, USA.,Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Zhonghu Bai
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, China.,The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China.,Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, China
| | - Tianwei Tan
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, PR China
| |
Collapse
|
7
|
Microbial starch debranching enzymes: Developments and applications. Biotechnol Adv 2021; 50:107786. [PMID: 34147588 DOI: 10.1016/j.biotechadv.2021.107786] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 06/04/2021] [Accepted: 06/15/2021] [Indexed: 12/28/2022]
Abstract
Starch debranching enzymes (SDBEs) hydrolyze the α-1,6 glycosidic bonds in polysaccharides such as starch, amylopectin, pullulan and glycogen. SDBEs are also important enzymes for the preparation of sugar syrup, resistant starch and cyclodextrin. As the synergistic catalysis of SDBEs and other starch-acting hydrolases can effectively improve the raw material utilization and production efficiency during starch processing steps such as saccharification and modification, they have attracted substantial research interest in the past decades. The substrate specificities of the two major members of SDBEs, pullulanases and isoamylases, are quite different. Pullulanases generally require at least two α-1,4 linked glucose units existing on both sugar chains linked by the α-1,6 bond, while isoamylases require at least three units of α-1,4 linked glucose. SDBEs mainly belong to glycoside hydrolase (GH) family 13 and 57. Except for GH57 type II pullulanse, GH13 pullulanases and isoamylases share plenty of similarities in sequence and structure of the core catalytic domains. However, the N-terminal domains, which might be one of the determinants contributing to the substrate binding of SDBEs, are distinct in different enzymes. In order to overcome the current defects of SDBEs in catalytic efficiency, thermostability and expression level, great efforts have been made to develop effective enzyme engineering and fermentation strategies. Herein, the diverse biochemical properties and distinct features in the sequence and structure of pullulanase and isoamylase from different sources are summarized. Up-to-date developments in the enzyme engineering, heterologous production and industrial applications of SDBEs is also reviewed. Finally, research perspective which could help understanding and broadening the applications of SDBEs are provided.
Collapse
|
8
|
Xu P, Zhang SY, Luo ZG, Zong MH, Li XX, Lou WY. Biotechnology and bioengineering of pullulanase: state of the art and perspectives. World J Microbiol Biotechnol 2021; 37:43. [PMID: 33547538 DOI: 10.1007/s11274-021-03010-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 01/19/2021] [Indexed: 11/26/2022]
Abstract
Pullulanase (EC 3.2.1.41) is a starch-debranching enzyme in the α-amylase family and specifically cleaves α-1,6-glycosidic linkages in starch-type polysaccharides, such as pullulan, β-limited dextrin, glycogen, and amylopectin. It plays a key role in debranching and hydrolyzing starch completely, thus bring improved product quality, increased productivity, and reduced production cost in producing resistant starch, sugar syrup, and beer. Plenty of researches have been made with respects to the discovery of either thermophilic or mesophilic pullulanases, however, few examples meet the demand of industrial application. This review presents the progress made in the recent years from the first aspect of characteristics of pullulanases. The heterologous expression of pullulanases in different microbial hosts and the methods used to improve the expression effectiveness and the regulation of enzyme production are also described. Then, the function evolution of pullulanases from a protein engineering view is discussed. In addition, the immobilization strategy using novel materials is introduced to improve the recyclability of pullulanases. At the same time, we indicate the trends in the future research to facilitate the industrial application of pullulanases.
Collapse
Affiliation(s)
- Pei Xu
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, Guangdong, China
| | - Shi-Yu Zhang
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, Guangdong, China
| | - Zhi-Gang Luo
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, Guangdong, China
| | - Min-Hua Zong
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, Guangdong, China
| | - Xiao-Xi Li
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, Guangdong, China
| | - Wen-Yong Lou
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, Guangdong, China.
| |
Collapse
|
9
|
Shin JH, Choi J, Jeon J, Kumar M, Lee J, Jeong WJ, Kim SR. The establishment of new protein expression system using N starvation inducible promoters in Chlorella. Sci Rep 2020; 10:12713. [PMID: 32728100 PMCID: PMC7391781 DOI: 10.1038/s41598-020-69620-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 06/22/2020] [Indexed: 11/09/2022] Open
Abstract
Chlorella is a unicellular green microalga that has been used in fields such as bioenergy production and food supplementation. In this study, two promoters of N (nitrogen) deficiency-inducible Chlorella vulgaris N Deficiency Inducible (CvNDI) genes were isolated from Chlorella vulgaris UTEX 395. These promoters were used for the production of a recombinant protein, human granulocyte-colony stimulating factor (hG-CSF) in Chlorella vulgaris UTEX 395 and Chlorella sp. ArM0029B. To efficiently secrete the hG-CSF, the protein expression vectors incorporated novel signal peptides obtained from a secretomics analysis of Chlorella spp. After a stable transformation of those vectors with a codon-optimized hG-CSF sequence, hG-CSF polypeptides were successfully produced in the spent media of the transgenic Chlorella. To our knowledge, this is the first report of recombinant protein expression using endogenous gene components of Chlorella.
Collapse
Affiliation(s)
- Jun-Hye Shin
- Department of Life Science, Sogang University, Seoul, South Korea
| | - Juyoung Choi
- Department of Life Science, Sogang University, Seoul, South Korea
| | - Jeongmin Jeon
- Department of Life Science, Sogang University, Seoul, South Korea
| | - Manu Kumar
- Department of Life Science, Sogang University, Seoul, South Korea
| | - Juhyeon Lee
- Department of Life Science, Sogang University, Seoul, South Korea
| | - Won-Joong Jeong
- Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
| | - Seong-Ryong Kim
- Department of Life Science, Sogang University, Seoul, South Korea.
| |
Collapse
|
10
|
Zhang SY, Guo ZW, Wu XL, Ou XY, Zong MH, Lou WY. Recombinant expression and characterization of a novel cold-adapted type I pullulanase for efficient amylopectin hydrolysis. J Biotechnol 2020; 313:39-47. [DOI: 10.1016/j.jbiotec.2020.03.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 03/14/2020] [Accepted: 03/16/2020] [Indexed: 01/01/2023]
|
11
|
Yang Y, Zhu Y, Obaroakpo JU, Zhang S, Lu J, Yang L, Ni D, Pang X, Lv J. Identification of a novel type I pullulanase from Fervidobacterium nodosum Rt17-B1, with high thermostability and suitable optimal pH. Int J Biol Macromol 2020; 143:424-433. [DOI: 10.1016/j.ijbiomac.2019.10.112] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 10/09/2019] [Accepted: 10/11/2019] [Indexed: 01/06/2023]
|
12
|
Wang X, Jing X, Deng Y, Nie Y, Xu F, Xu Y, Zhao YL, Hunt JF, Montelione GT, Szyperski T. Evolutionary coupling saturation mutagenesis: Coevolution-guided identification of distant sites influencing Bacillus naganoensis pullulanase activity. FEBS Lett 2019; 594:799-812. [PMID: 31665817 DOI: 10.1002/1873-3468.13652] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 10/15/2019] [Accepted: 10/25/2019] [Indexed: 01/20/2023]
Abstract
Pullulanases are well-known debranching enzymes hydrolyzing α-1,6-glycosidic linkages. To date, engineering of pullulanase is mainly focused on catalytic pocket or domain tailoring based on structure/sequence information. Saturation mutagenesis-involved directed evolution is, however, limited by the low number of mutational sites compatible with combinatorial libraries of feasible size. Using Bacillus naganoensis pullulanase as a target protein, here we introduce the 'evolutionary coupling saturation mutagenesis' (ECSM) approach: residue pair covariances are calculated to identify residues for saturation mutagenesis, focusing directed evolution on residue pairs playing important roles in natural evolution. Evolutionary coupling (EC) analysis identified seven residue pairs as evolutionary mutational hotspots. Subsequent saturation mutagenesis yielded variants with enhanced catalytic activity. The functional pairs apparently represent distant sites affecting enzyme activity.
Collapse
Affiliation(s)
- Xinye Wang
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
| | - Xiaoran Jing
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
| | - Yi Deng
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
| | - Yao Nie
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
| | - Fei Xu
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
| | - Yan Xu
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China.,State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Yi-Lei Zhao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, MOE-LSB & MOE-LSC, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, China
| | - John F Hunt
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Gaetano T Montelione
- Center for Advanced Biotechnology and Medicine, Department of Molecular Biology and Biochemistry, Rutgers, The State University of New Jersey, Piscataway, NJ, USA.,Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, NJ, USA.,Department of Chemistry and Chemical Biology, and Center for Biotechnology and Integrative Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Thomas Szyperski
- Department of Chemistry, The State University of New York at Buffalo, NY, USA
| |
Collapse
|
13
|
Chen A, Xu T, Ge Y, Wang L, Tang W, Li S. Hydrogen-bond-based protein engineering for the acidic adaptation of Bacillus acidopullulyticus pullulanase. Enzyme Microb Technol 2019; 124:79-83. [DOI: 10.1016/j.enzmictec.2019.01.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 01/12/2019] [Accepted: 01/29/2019] [Indexed: 01/05/2023]
|
14
|
Wang X, Nie Y, Xu Y. Industrially produced pullulanases with thermostability: Discovery, engineering, and heterologous expression. BIORESOURCE TECHNOLOGY 2019; 278:360-371. [PMID: 30709762 DOI: 10.1016/j.biortech.2019.01.098] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 01/21/2019] [Accepted: 01/22/2019] [Indexed: 06/09/2023]
Abstract
Pullulanases (EC 3.2.1.41) are well-known starch-debranching enzymes widely used to hydrolyze α-1,6-glucosidic linkages in starch, pullulan, amylopectin, and other oligosaccharides, with application potentials in food, brewing, and pharmaceutical industries. Although extensive studies are done to discover and express pullulanases, only few are available with desirable characteristics for industrial applications. This raises the challenge to mine new enzyme sources, engineer proteins based on sequence/structure, and regulate expressions. We review here the identification of extremophilic and mesophilic microbes as sources of industrial pullulanases with desirable characteristics, including acid-resistance, thermostability, and psychrotrophism. We present current advances in site-directed mutagenesis and sequence/structure-guided protein engineering of pullulanases. In addition, we discuss heterologous expression of pullulanases in prokaryotic and eukaryotic microbial systems, and address the effectiveness of the expression elements and their regulation of enzyme production. Finally, we indicate future research needs to develop desired industrial pullulanases.
Collapse
Affiliation(s)
- Xinye Wang
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Yao Nie
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China.
| | - Yan Xu
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; The 2011 Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
15
|
Akassou M, Groleau D. Advances and challenges in the production of extracellular thermoduric pullulanases by wild-type and recombinant microorganisms: a review. Crit Rev Biotechnol 2019; 39:337-350. [PMID: 30700157 DOI: 10.1080/07388551.2019.1566202] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Thermoduric pullulanases, acting as starch-debranching enzymes, are required in many industrial applications, mainly in the production of concentrated glucose, maltose, and fructose syrups. To date, however, a single pullulanase, from Bacillus acidopullulyticus, is available on the market for industrial purposes. This review is an investigation of the major advances as well as the major challenges being faced with regard to optimization of the production of extracellular thermoduric pullulanases either by their original hosts or by recombinant organisms. The critical aspects linked to industrial pullulanase production, which should always be considered, are emphasized, including those parameters influencing solubility, thermostability, and catalytic efficiency of the enzyme. This review provides new insights for improving the production of extracellular thermoduric pullulanases in the hope that such information may facilitate their commercial utilization and potentially be applied to the development of other industrially relevant enzymes.
Collapse
Affiliation(s)
- Mounia Akassou
- a Department of Chemical Engineering and Biotechnological Engineering , Faculty of Engineering, University of Sherbrooke , Sherbrooke , Canada
| | - Denis Groleau
- a Department of Chemical Engineering and Biotechnological Engineering , Faculty of Engineering, University of Sherbrooke , Sherbrooke , Canada
| |
Collapse
|
16
|
Meng F, Zhu X, Nie T, Lu F, Bie X, Lu Y, Trouth F, Lu Z. Enhanced Expression of Pullulanase in Bacillus subtilis by New Strong Promoters Mined From Transcriptome Data, Both Alone and in Combination. Front Microbiol 2018; 9:2635. [PMID: 30450090 PMCID: PMC6224515 DOI: 10.3389/fmicb.2018.02635] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 10/16/2018] [Indexed: 11/13/2022] Open
Abstract
Pullulanase plays an important role as a starch hydrolysis enzyme in the production of bio-fuels and animal feed, and in the food industry. Compared to the methods currently used for pullulanase production, synthesis by Bacillus subtilis would be safer and easier. However, the current yield of pullulanase from B. subtilis is low to meet industrial requirements. Therefore, it is necessary to improve the yield of pullulanase by B. subtilis. In this study, we mined 10 highly active promoters from B. subtilis based on transcriptome and bioinformatic data. Individual promoters and combinations of promoters were used to improve the yield of pullulanase in B. subtilis BS001. Four recombinant strains with new promoters (Phag, PtufA, PsodA, and PfusA) had higher enzyme activity than the control (PamyE). The strain containing PsodA+fusA (163 U/mL) and the strain containing PsodA+fusA+amyE (336 U/mL) had the highest activity among the analyzed dual- and triple-promoter construct stains in shake flask, which were 2.29 and 4.73 times higher than that of the strain with PamyE, respectively. Moreover, the activity of the strain containing PsodA+fusA+amyE showed a maximum activity of 1,555 U/mL, which was 21.9 times higher than that of the flask-grown PamyE strain in a 50-liter fermenter. Our work showed that these four strong promoters mined from transcriptome data and their combinations could reliably increase the yield of pullulanase in quantities suitable for industrial applications.
Collapse
Affiliation(s)
- Fanqiang Meng
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Xiaoyu Zhu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Ting Nie
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Fengxia Lu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Xiaomei Bie
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Yingjian Lu
- Department of Food Science and Nutrition, University of Maryland, College Park, MD, United States
| | - Frances Trouth
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, United States
| | - Zhaoxin Lu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
17
|
Arif A, Mohammed K, Nadeem MS. Biochemical and in silico evaluation of recombinant E. coli aminopeptidase and in vitro processed human interferon α-2b. Turk J Biol 2018; 42:240-249. [PMID: 30814886 PMCID: PMC6353284 DOI: 10.3906/biy-1801-83] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Escherichia coli is an extensively used host for the production of recombinant proteins, making its N-terminal methionine aminopeptidase (MAP) an attractive candidate for studies on posttranslational protein processing. The present study describes the recombinant production and properties of MAP from the DH5α strain of E. coli. The soluble and active enzyme was produced in E. coli BL21 (DE3) RIL - codon plus cells under a T7 promoter system and purified by anion-exchange chromatography. It exhibited a molecular weight of 29,200.94 Da by MALDI-TOF analysis. The purified enzyme showed specific activity of 1.64 U/mg with methionylp-nitroanilide and 1.51 U/mg with synthetic tetrapeptide substrate 'MGMM' in a discontinuous HPLC-based assay. In vitro studies showed the processing of up to 36% of Met-INFα-2b in 40 min. In silico studies revealed that the ES-complex formation between the enzyme and interferon has a ΔG -683.07 kJ/mol. Molecular docking results showed that the processed INFα-2b has greater binding affinity with IFNAR2 receptor as indicated by ΔG -784.53 kJ/mol, significantly lower than that of methionine containing INFα-2b (ΔG -717.63 kJ/mol). These findings emphasize the functional superiority or better efficacy of N-terminal methionine processed recombinant interferon.
Collapse
Affiliation(s)
- Amina Arif
- Faculty of Life Sciences, University of Central Punjab , Lahore , Pakistan
| | - Kaleemuddin Mohammed
- Department of Biochemistry, Faculty of Science, King Abdulaziz University , Jeddah , Saudi Arabia
| | - Muhammad Shahid Nadeem
- Department of Biochemistry, Faculty of Science, King Abdulaziz University , Jeddah , Saudi Arabia
| |
Collapse
|
18
|
Zhang W, Zhao Z, Yang Y, Liu X, Bai Z. Construction of an expression vector that uses the aph promoter for protein expression in Corynebacterium glutamicum. Plasmid 2017; 94:1-6. [PMID: 28986243 DOI: 10.1016/j.plasmid.2017.09.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Revised: 09/10/2017] [Accepted: 09/30/2017] [Indexed: 01/21/2023]
Abstract
Corynebacterium glutamicum is an attractive host for the production of heterologous proteins despite its traditional use in fermentative production of amino acids. To enhance the expression levels of target genes, the development of useful promoters is required in the construction of expression systems. Here, we developed a new promoter, the aph promoter from aminoglycoside-3'-phosphotransferase gene, and used it to construct monocistronic and bicistronic expression systems that host different ribosome binding site (RBS) sequences. First, the expression level of the reporter protein, enhanced green fluorescent protein (EGFP), varied with changes in the RBS sequences in the constructed vectors. The results showed that the fluorescence intensities of the bicistronic group were higher than those of the monocistronic group and that RM3E showed the highest fluorescence intensity, which was 42-fold higher than the lowest (RA2E') among these groups. Next, taking advantage of the optimized aph promoter, we successfully employed this aph promoter for α-amylase and VHH (camelid antibody fragment) expression. The secretion of α-amylase improved 1.5-fold after promoter mutation. This promoter will be useful for heterologous protein production in C. glutamicum cells.
Collapse
Affiliation(s)
- Wei Zhang
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, China; The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Zihao Zhao
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, China; The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Yankun Yang
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, China; The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Xiuxia Liu
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, China; The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China.
| | - Zhonghu Bai
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, China; The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
19
|
Elleuche S, Krull A, Lorenz U, Antranikian G. Parallel N- and C-Terminal Truncations Facilitate Purification and Analysis of a 155-kDa Cold-Adapted Type-I Pullulanase. Protein J 2017; 36:56-63. [DOI: 10.1007/s10930-017-9703-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
20
|
Improving the Thermostability of Acidic Pullulanase from Bacillus naganoensis by Rational Design. PLoS One 2016; 11:e0165006. [PMID: 27764201 PMCID: PMC5072709 DOI: 10.1371/journal.pone.0165006] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 10/04/2016] [Indexed: 11/19/2022] Open
Abstract
Pullulanase (EC 3.2.1.41) plays an important role in the specific hydrolysis of branch points in amylopectin. Enhancing its thermostability is required for its industrial application. In this study, rational protein design was used to improve the thermostability of PulB from Bacillus naganoensis (AB231790.1), which has strong enzymatic properties. Three positive single-site mutants (PulB-D328H, PulB-N387D, and PulB-A414P) were selected from six mutants. After incubation at 65°C for 5 min, the residual activities of PulB-D328H, PulB-N387D, and PulB-A414P were 4.5-, 1.7-, and 1.47-fold higher than PulB-WT, and their Tm values (the temperature at which half protein molecule denature) were 1.8°C, 0.4°C, and 0.9°C higher than PulB-WT, respectively. Then the final combined mutant PulB-328/387/414 was constructed. The t1/2 of it was 12.9-fold longer than that of PulB-WT at 65°C and the total increase in Tm of it (5.0°C) was almost 60% greater than the sum of individual increases (3.1°C). In addition, kinetic studies revealed that the kcat and the kcat/Km of PulB-328/387/414 increased by 38.8% and 12.9%. The remarkable improvement in thermostability and the high catalytic efficiency of PulB-328/387/414 make it suitable for industrial applications.
Collapse
|
21
|
Barshakh I, Elleuche S. Is it possible to optimize the protein production yield by the generation of homomultimeric fusion enzymes? SPRINGERPLUS 2016; 5:316. [PMID: 27066347 PMCID: PMC4788654 DOI: 10.1186/s40064-016-1968-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 03/03/2016] [Indexed: 01/08/2023]
Abstract
Background The supply of industrially relevant biocatalysts demands an easy and efficient protein production in high yield. In a conventional approach, a recombinant protein is produced in a heterologous host enabling the manipulation of multiple parameters including expression plasmids, growth conditions and regulation of protein biosynthesis. In this study, the generation of homomultimeric fusion genes is tested as an additional parameter to increase the production yield of a heat-stable cellulase. Findings The LE (LguI/Eco81I)-cloning strategy was used to generate a set of plasmids containing a single copy or two to four repetitions of the endoglucanase-encoding gene cel5A from the thermophilic anaerobe Fervidobacterium gondwanense. Serial up-scaling of shaking flask volumes from 50 to 500 mL were used to determine the production yield of active cellulolytic enzyme Cel5A in recombinant form in Escherichia coli. Monitoring the cellular wet weight and total protein proved that the bacterial growth rate is not depending on the production of fusion enzymes, however activity assays in combination with Western blotting analyses indicated instability effects of large homomultimeric fusion enzymes. Conclusion The production yield of fusion cellulases is constant with increasing molecular weights, but improved activities were not observed for recombinant Cel5A homomultimers. This strategy may serve as a starting point for further studies to generate more stable fusion proteins with improved catalytic activities and higher protein yield in the future. Electronic supplementary material The online version of this article (doi:10.1186/s40064-016-1968-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Iryna Barshakh
- Institute for Technical Microbiology, Hamburg University of Technology (TUHH), Kasernenstr. 12, 21073 Hamburg, Germany
| | - Skander Elleuche
- Institute for Technical Microbiology, Hamburg University of Technology (TUHH), Kasernenstr. 12, 21073 Hamburg, Germany
| |
Collapse
|