1
|
Zhang Z, Fan H, Yu Z, Luo X, Zhao J, Wang N, Li Z. Metagenomics-based gene exploration and biochemical characterization of novel glucoamylases and α-amylases in Daqu and Pu-erh tea microorganisms. Int J Biol Macromol 2024; 278:134182. [PMID: 39069062 DOI: 10.1016/j.ijbiomac.2024.134182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 07/23/2024] [Accepted: 07/24/2024] [Indexed: 07/30/2024]
Abstract
α-Amylases and glucoamylases play a crucial role in starch degradation for various industrial applications. Further exploration of novel α-amylases and glucoamylases with diverse enzymatic characteristics is necessary. In this study, metagenomics analysis revealed a high abundance of these enzymes in the microorganisms of Daqu and Pu-erh tea, identifying 271 glucoamylases and 232 α-amylases with significant sequence identity to known enzymes. Functional studies indicated that these enzymes have broad optimal temperatures (30 °C to 70 °C) and acidic or neutral pH optima. Additionally, two novel low-temperature glucoamylases and one novel low-temperature α-amylases were characterized, demonstrating potential for use in industries operating under low temperature conditions. Further analysis suggested that fewer molecular interactions and more flexible coli regions may contribute to their high activity at low temperatures. In summary, this study not only highlights the feasibility of exploring enzymes through metagenomic approaches, but also presents a library of novel and diverse α-amylases and glucoamylases for potential industrial applications.
Collapse
Affiliation(s)
- Zhengjie Zhang
- Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education & Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Haiyue Fan
- Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education & Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Zhao Yu
- Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education & Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Xuegang Luo
- Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education & Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Junqi Zhao
- Qilu Institute of Technology, Shandong 250200, PR China
| | - Nan Wang
- Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education & Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China.
| | - Zhongyuan Li
- Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education & Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China.
| |
Collapse
|
2
|
Wayllace NM, Martín M, Busi MV, Gomez-Casati DF. Microbial glucoamylases: structural and functional properties and biotechnological uses. World J Microbiol Biotechnol 2023; 39:293. [PMID: 37653355 DOI: 10.1007/s11274-023-03731-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 08/14/2023] [Indexed: 09/02/2023]
Abstract
Glucoamylases (GAs) are one of the principal groups of enzymes involved in starch hydrolysis and belong to the glycosylhydrolase family. They are classified as exo-amylases due to their ability to hydrolyze α-1,4 glycosidic bonds from the non-reducing end of starch, maltooligosaccharides, and related substrates, releasing β-D-glucose. Structurally, GAs possess a characteristic catalytic domain (CD) with an (α/α)6 fold and exhibit five conserved regions within this domain. The CD may or may not be linked to a non-catalytic domain with variable functions depending on its origin. GAs are versatile enzymes with diverse applications in food, biofuel, bioplastic and other chemical industries. Although fungal GAs are commonly employed for these purposes, they have limitations such as their low thermostability and an acidic pH requirement. Alternatively, GAs derived from prokaryotic organisms are a good option to save costs as they exhibit greater thermostability compared to fungal GAs. Moreover, a group of cold-adapted GAs from psychrophilic organisms demonstrates intriguing properties that make them suitable for application in various industries. This review provides a comprehensive overview of the structural and sequential properties as well as biotechnological applications of GAs in different industrial processes.
Collapse
Affiliation(s)
- Natael M Wayllace
- CEFOBI-CONICET. Centro de Estudios Fotosintéticos y Bioquímicos - Consejo Nacional de Investigaciones Científicas y Técnicas. Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, Rosario, Santa Fe, Argentina
| | - Mariana Martín
- CEFOBI-CONICET. Centro de Estudios Fotosintéticos y Bioquímicos - Consejo Nacional de Investigaciones Científicas y Técnicas. Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, Rosario, Santa Fe, Argentina
| | - María V Busi
- CEFOBI-CONICET. Centro de Estudios Fotosintéticos y Bioquímicos - Consejo Nacional de Investigaciones Científicas y Técnicas. Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, Rosario, Santa Fe, Argentina.
| | - Diego F Gomez-Casati
- CEFOBI-CONICET. Centro de Estudios Fotosintéticos y Bioquímicos - Consejo Nacional de Investigaciones Científicas y Técnicas. Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, Rosario, Santa Fe, Argentina.
| |
Collapse
|
3
|
Tanunchai B, Ji L, Schröder O, Gawol SJ, Geissler A, Wahdan SFM, Buscot F, Kalkhof S, Schulze ED, Noll M, Purahong W. Fate of a biodegradable plastic in forest soil: Dominant tree species and forest types drive changes in microbial community assembly, influence the composition of plastisphere, and affect poly(butylene succinate-co-adipate) degradation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 873:162230. [PMID: 36796697 DOI: 10.1016/j.scitotenv.2023.162230] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 02/06/2023] [Accepted: 02/09/2023] [Indexed: 06/18/2023]
Abstract
Poly(butylene succinate-co-adipate) (PBSA) degradation and its plastisphere microbiome in cropland soils have been studied; however, such knowledge is limited in the case of forest ecosystems. In this context, we investigated: i) the impact of forest types (conifer and broadleaved forests) on the plastisphere microbiome and its community assembly, ii) their link to PBSA degradation, and iii) the identities of potential microbial keystone taxa. We determined that forest type significantly affected microbial richness (F = 5.26-9.88, P = 0.034 to 0.006) and fungal community composition (R2 = 0.38, P = 0.001) of the plastisphere microbiome, whereas its effects on microbial abundance and bacterial community composition were not significant. The bacterial community was governed by stochastic processes (mainly homogenizing dispersal), whereas the fungal community was driven by both stochastic and deterministic processes (drift and homogeneous selection). The highest molar mass loss was found for PBSA degraded under Pinus sylvestris (26.6 ± 2.6 to 33.9 ± 1.8 % (mean ± SE) at 200 and 400 days, respectively), and the lowest molar mass loss was found under Picea abies (12.0 ± 1.6 to 16.0 ± 0.5 % (mean ± SE) at 200 and 400 days, respectively). Important fungal PBSA decomposers (Tetracladium) and atmospheric dinitrogen (N2)-fixing bacteria (symbiotic: Allorhizobium-Neorhizobium-Pararhizobium-Rhizobium and Methylobacterium and non-symbiotic: Mycobacterium) were identified as potential keystone taxa. The present study is among the first to determine the plastisphere microbiome and its community assembly processes associated with PBSA in forest ecosystems. We detected consistent biological patterns in the forest and cropland ecosystems, indicating a potential mechanistic interaction between N2-fixing bacteria and Tetracladium during PBSA biodegradation.
Collapse
Affiliation(s)
- Benjawan Tanunchai
- UFZ-Helmholtz Centre for Environmental Research, Department of Soil Ecology, Theodor-Lieser-Str. 4, 06120 Halle (Saale), Germany; Institute of Bioanalysis, Coburg University of Applied Sciences and Arts, 96450 Coburg, Germany; Bayreuth Center of Ecology and Environmental Research (BayCEER), University of Bayreuth, 95440 Bayreuth, Germany
| | - Li Ji
- UFZ-Helmholtz Centre for Environmental Research, Department of Soil Ecology, Theodor-Lieser-Str. 4, 06120 Halle (Saale), Germany; School of Forestry, Central South of Forestry and Technology, 410004 Changsha, PR China
| | - Olaf Schröder
- Institute of Bioanalysis, Coburg University of Applied Sciences and Arts, 96450 Coburg, Germany
| | - Susanne Julia Gawol
- Institute of Bioanalysis, Coburg University of Applied Sciences and Arts, 96450 Coburg, Germany
| | - Andreas Geissler
- Department of Macromolecular Chemistry and Paper Chemistry, Technical University of Darmstadt, Darmstadt D-64287, Germany
| | - Sara Fareed Mohamed Wahdan
- UFZ-Helmholtz Centre for Environmental Research, Department of Soil Ecology, Theodor-Lieser-Str. 4, 06120 Halle (Saale), Germany; Department of Botany and Microbiology, Faculty of Science, Suez Canal University, 41522 Ismailia, Egypt
| | - François Buscot
- UFZ-Helmholtz Centre for Environmental Research, Department of Soil Ecology, Theodor-Lieser-Str. 4, 06120 Halle (Saale), Germany; German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstraße 4, 04103 Leipzig, Germany
| | - Stefan Kalkhof
- Institute of Bioanalysis, Coburg University of Applied Sciences and Arts, 96450 Coburg, Germany; Department of Preclinical Development and Validation, Fraunhofer Institute for Cell Therapy and Immunology, 04103 Leipzig, Germany
| | - Ernst-Detlef Schulze
- Max Planck Institute for Biogeochemistry, Biogeochemical Processes Department, Hans-Knöll-Str. 10, 07745 Jena, Germany
| | - Matthias Noll
- Institute of Bioanalysis, Coburg University of Applied Sciences and Arts, 96450 Coburg, Germany; Bayreuth Center of Ecology and Environmental Research (BayCEER), University of Bayreuth, 95440 Bayreuth, Germany.
| | - Witoon Purahong
- UFZ-Helmholtz Centre for Environmental Research, Department of Soil Ecology, Theodor-Lieser-Str. 4, 06120 Halle (Saale), Germany.
| |
Collapse
|
4
|
Liu Y, Zhang N, Ma J, Zhou Y, Wei Q, Tian C, Fang Y, Zhong R, Chen G, Zhang S. Advances in cold-adapted enzymes derived from microorganisms. Front Microbiol 2023; 14:1152847. [PMID: 37180232 PMCID: PMC10169661 DOI: 10.3389/fmicb.2023.1152847] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 04/06/2023] [Indexed: 05/16/2023] Open
Abstract
Cold-adapted enzymes, produced in cold-adapted organisms, are a class of enzyme with catalytic activity at low temperatures, high temperature sensitivity, and the ability to adapt to cold stimulation. These enzymes are largely derived from animals, plants, and microorganisms in polar areas, mountains, and the deep sea. With the rapid development of modern biotechnology, cold-adapted enzymes have been implemented in human and other animal food production, the protection and restoration of environments, and fundamental biological research, among other areas. Cold-adapted enzymes derived from microorganisms have attracted much attention because of their short production cycles, high yield, and simple separation and purification, compared with cold-adapted enzymes derived from plants and animals. In this review we discuss various types of cold-adapted enzyme from cold-adapted microorganisms, along with associated applications, catalytic mechanisms, and molecular modification methods, to establish foundation for the theoretical research and application of cold-adapted enzymes.
Collapse
Affiliation(s)
- Yehui Liu
- College of Life Science, Jilin Agricultural University, Changchun, China
- Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, Changchun, China
| | - Na Zhang
- College of Life Science, Jilin Agricultural University, Changchun, China
- Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, Changchun, China
| | - Jie Ma
- College of Life Science, Jilin Agricultural University, Changchun, China
- Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, Changchun, China
| | - Yuqi Zhou
- College of Life Science, Jilin Agricultural University, Changchun, China
- Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, Changchun, China
| | - Qiang Wei
- College of Life Science, Jilin Agricultural University, Changchun, China
- Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, Changchun, China
| | - Chunjie Tian
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
| | - Yi Fang
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
| | - Rongzhen Zhong
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
| | - Guang Chen
- College of Life Science, Jilin Agricultural University, Changchun, China
- Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, Changchun, China
| | - Sitong Zhang
- College of Life Science, Jilin Agricultural University, Changchun, China
- Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, Changchun, China
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
| |
Collapse
|
5
|
Wayllace NM, Hedín N, Busi MV, Gomez-Casati DF. Identification, molecular and biochemical characterization of a novel thermoactive and thermostable glucoamylase from Thermoanaerobacter ethanolicus. Biotechnol Lett 2022; 44:1201-1216. [PMID: 35997915 DOI: 10.1007/s10529-022-03296-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 08/15/2022] [Indexed: 11/27/2022]
Abstract
PURPOSE We identified a new glucoamylase (TeGA) from Thermoanaerobacter ethanolicus, a thermophilic anaerobic bacterium. Structural studies suggest that TeGA belongs to the family 15 of glycosylhydrolases (GH15). METHODS The expression of this enzyme was optimized in E. coli (BL21) cells in order to have the highest amount of soluble protein (around 3 mg/l of culture medium). RESULTS TeGA showed a high optimum temperature of 75 °C. It also showed one of the highest specific activities reported for a bacterial glucoamylase (75.3 U/mg) and was also stable in a wide pH range (3.0-10.0). Although the enzyme was preferentially active with maltose, it was also able to hydrolyze different soluble starches such as those from potato, corn or rice. TeGA showed a high thermostability up to around 70 °C, which was increased in the presence of PEG8000, and also showed to be stable in the presence of moderate concentrations of ethanol. CONCLUSION We propose that TeGA could be suitable for use in different industrial processes such as biofuel production and food processing.
Collapse
Affiliation(s)
- Natael M Wayllace
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), CONICET-Universidad Nacional de Rosario, Suipacha 531, 2000, Rosario, Argentina
| | - Nicolas Hedín
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), CONICET-Universidad Nacional de Rosario, Suipacha 531, 2000, Rosario, Argentina
| | - María V Busi
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), CONICET-Universidad Nacional de Rosario, Suipacha 531, 2000, Rosario, Argentina.
| | - Diego F Gomez-Casati
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), CONICET-Universidad Nacional de Rosario, Suipacha 531, 2000, Rosario, Argentina.
| |
Collapse
|
6
|
Ogunyemi OM, Gyebi GA, Saheed A, Paul J, Nwaneri-Chidozie V, Olorundare O, Adebayo J, Koketsu M, Aljarba N, Alkahtani S, Batiha GES, Olaiya CO. Inhibition mechanism of alpha-amylase, a diabetes target, by a steroidal pregnane and pregnane glycosides derived from Gongronema latifolium Benth. Front Mol Biosci 2022; 9:866719. [PMID: 36032689 PMCID: PMC9399641 DOI: 10.3389/fmolb.2022.866719] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 07/07/2022] [Indexed: 12/23/2022] Open
Abstract
Alpha-amylase is widely exploited as a drug target for preventing postprandial hyperglycemia in diabetes and other metabolic diseases. Inhibition of this enzyme by plant-derived pregnanes is not fully understood. Herein, we used in vitro, in silico, and in vivo studies to provide further insights into the alpha-amylase inhibitory potential of selected pregnane-rich chromatographic fractions and four steroidal pregnane phytochemicals (SPPs), viz: marsectohexol (P1), 3-O-[6-deoxy-3-O-methyl-β-D-allopyranosyl-(1→14)-β-D-oleandropyranosyl]-11,12-di-O-tigloyl-17β-marsdenin (P2), 3-O-[6-deoxy-3-O-methyl-β-D-allopyranosyl-(1→4)-β-D-oleandropyranosyl]-17β-marsdenin (P3), and 3-O-[6-deoxy-3-O-methyl-β-D-allopyranosyl-(1→4)-β-D-canaropyranosyl]-17β-marsdenin (P4) derived from Gongronema latifolium Benth. The results revealed that the SPPs source pregnane-rich chromatographic fractions and the SPPs (P1–P4) exhibited inhibitory potential against porcine pancreatic alpha-amylase in vitro. Compounds P1 and P2 with IC50 values 10.01 and 12.10 µM, respectively, showed greater inhibitory potential than the reference acarbose (IC50 = 13.47 µM). Molecular docking analysis suggests that the SPPs had a strong binding affinity to porcine pancreatic alpha-amylase (PPA), human pancreatic alpha-amylase (HPA), and human salivary alpha-amylase (HSA), interacting with the key active site residues through an array of hydrophobic interactions and hydrogen bonds. The strong interactions of the SPPs with Glu233 and Asp300 residues may disrupt their roles in the acid-base catalytic mechanism and proper orientation of the polymeric substrates, respectively. The interactions with human pancreatic amylase were maintained in a dynamic environment as indicated by the root mean square deviation, radius of gyration, surface accessible surface area, and number of hydrogen bonds computed from the trajectories obtained from a 100-ns molecular dynamics simulation. Key loop regions of HPA that contribute to substrate binding exhibited flexibility and interaction potential toward the compounds as indicated by the root mean square fluctuation. Furthermore, P1 significantly reduced blood glucose levels and area under the curve in albino rats which were orally challenged with starch. Therefore, Gongronema latifolium and its constituent SPPs may be exploited as inhibitors of pancreatic alpha-amylase as an oral policy for impeding postprandial blood glucose rise.
Collapse
Affiliation(s)
- Oludare M. Ogunyemi
- Human Nutraceuticals and Bioinformatics Research Unit, Department of Biochemistry, Salem University, Lokoja, Nigeria
- Nutritional and Industrial Biochemistry Unit, Department of Biochemistry, University of Ibadan, Ibadan, Nigeria
- *Correspondence: Oludare M. Ogunyemi, ; Gideon A. Gyebi,
| | - Gideon A. Gyebi
- Department of Biochemistry, Faculty of Science and Technology Bingham University, Nasarawa, Nigeria
- Natural Products and Structural (Bio-Chem)-informatics Research Laboratory (NpsBC-Rl), Bingham University, Nasarawa, Nigeria
- *Correspondence: Oludare M. Ogunyemi, ; Gideon A. Gyebi,
| | - Afolabi Saheed
- Faculty of Basic Medical Sciences, Department of Pharmacology and Therapeutics, Faculty of Basic Clinical Sciences, University of Ilorin, Ilorin, Nigeria
| | - Jesse Paul
- Human Nutraceuticals and Bioinformatics Research Unit, Department of Biochemistry, Salem University, Lokoja, Nigeria
| | - Victoria Nwaneri-Chidozie
- Human Nutraceuticals and Bioinformatics Research Unit, Department of Biochemistry, Salem University, Lokoja, Nigeria
| | - Olufunke Olorundare
- Faculty of Basic Medical Sciences, Department of Pharmacology and Therapeutics, Faculty of Basic Clinical Sciences, University of Ilorin, Ilorin, Nigeria
| | - Joseph Adebayo
- Department of Biochemistry, Faculty of Life Sciences, University of Ilorin, Ilorin, Nigeria
| | - Mamoru Koketsu
- Faculty of Engineering, Department of Chemistry and Biomolecular Science, Gifu University, Gifu, Japan
| | - Nada Aljarba
- Department of Biology, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Saad Alkahtani
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - Charles O. Olaiya
- Nutritional and Industrial Biochemistry Unit, Department of Biochemistry, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
7
|
The MAP-Kinase HOG1 Controls Cold Adaptation in Rhodosporidium kratochvilovae by Promoting Biosynthesis of Polyunsaturated Fatty Acids and Glycerol. Curr Microbiol 2022; 79:253. [PMID: 35834133 DOI: 10.1007/s00284-022-02957-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/27/2022] [Indexed: 11/03/2022]
Abstract
The aim of this study was to investigate the role of RKHog1 in the cold adaptation of Rhodosporidium kratochvilovae strain YM25235 and elucidate the correlation of biosynthesis of polyunsaturated fatty acids (PUFAs) and glycerol with its cold adaptation. The YM25235 strain was subjected to salt, osmotic, and cold stress tolerance analyses. mRNA levels of RKhog1, Δ12/15-fatty acid desaturase gene (RKD12), RKMsn4, HisK2301, and RKGPD1 in YM25235 were detected by reverse transcription quantitative real-time PCR. The contents of PUFAs, such as linoleic acid (LA) and linolenic acid (ALA) was measured using a gas chromatography-mass spectrometer, followed by determination of the growth rate of YM25235 and its glycerol content at low temperature. The RKHog1 overexpression, knockout, and remediation strains were constructed. Stress resistance analysis showed that overexpression of RKHog1 gene increased the biosynthesis of glycerol and enhanced the tolerance of YM25235 to cold, salt, and osmotic stresses, respectively. Inversely, the knockout of RKHog1 gene decreased the biosynthesis of glycerol and inhibited the tolerance of YM25235 to different stresses. Fatty acid analysis showed that the overexpression of RKHog1 gene in YM25235 significantly increased the content of LA and ALA, but RKHog1 gene knockout YM25235 strain had decreased content of LA and ALA. In addition, the mRNA expression level of RKD12, RKMsn4, RKHisK2301, and RKGPD1 showed an increase at 15 °C after RKHog1 gene overexpression but were unchanged at 30 °C. RKHog1 could regulate the growth adaptability and PUFA content of YM25235 at low temperature and this could be helpful for the cold adaptation of YM25235.
Collapse
|
8
|
Trochine A, Bellora N, Nizovoy P, Duran R, Greif G, de García V, Batthyany C, Robello C, Libkind D. Genomic and proteomic analysis of Tausonia pullulans reveals a key role for a GH15 glucoamylase in starch hydrolysis. Appl Microbiol Biotechnol 2022; 106:4655-4667. [PMID: 35713658 DOI: 10.1007/s00253-022-12025-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 06/09/2022] [Accepted: 06/10/2022] [Indexed: 11/25/2022]
Abstract
Basidiomycetous yeasts remain an almost unexplored source of enzymes with great potential in several industries. Tausonia pullulans (Tremellomycetes) is a psychrotolerant yeast with several extracellular enzymatic activities reported, although the responsible genes are not known. We performed the genomic sequencing, assembly and annotation of T. pullulans strain CRUB 1754 (Perito Moreno glacier, Argentina), a gene survey of carbohydrate-active enzymes (CAZymes), and analyzed its secretome by liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) after growth in glucose (GLU) or starch (STA) as main carbon sources. T. pullulans has 7210 predicted genes, 3.6% being CAZymes. When compared to other Tremellomycetes, it contains a high number of CAZy domains, and in particular higher quantities of glucoamylases (GH15), pectinolytic enzymes (GH28) and lignocellulose decay enzymes (GH7). When the secretome of T. pullulans was analyzed experimentally after growth in starch or glucose, 98 proteins were identified. The 60% of total spectral counts belonged to GHs, oxidoreductases and to other CAZymes. A 65 kDa glucoamylase of family GH15 (TpGA1) showed the highest fold change (tenfold increase in starch). This enzyme contains a conserved active site and showed extensive N-glycosylation. This study increases the knowledge on the extracellular hydrolytic enzymes of basidiomycetous yeasts and, in particular, establishes T. pullulans as a potential source of carbohydrate-active enzymes. KEY POINTS: • Tausonia pullulans genome harbors a high number of genes coding for CAZymes. • Among CAZy domains/families, the glycoside hydrolases are the most abundant. • Secretome analysis in glucose or starch as main C sources identified 98 proteins. • A 65 kDa GH15 glucoamylase showed the highest fold increase upon culture in starch.
Collapse
Affiliation(s)
- Andrea Trochine
- Centro de Referencia en Levaduras Y Tecnología Cervecera (CRELTEC), Instituto Andino Patagónico de Tecnologías Biológicas Y Geoambientales (IPATEC), CONICET-Universidad Nacional del Comahue, Quintral 1250, (CP8400) San Carlos de Bariloche, Río Negro, Argentina.
| | - Nicolás Bellora
- Instituto de Tecnologías Nucleares Para La Salud (INTECNUS), RP82, (CP8400) San Carlos de Bariloche, Río Negro, Argentina
| | - Paula Nizovoy
- Centro de Referencia en Levaduras Y Tecnología Cervecera (CRELTEC), Instituto Andino Patagónico de Tecnologías Biológicas Y Geoambientales (IPATEC), CONICET-Universidad Nacional del Comahue, Quintral 1250, (CP8400) San Carlos de Bariloche, Río Negro, Argentina
| | - Rosario Duran
- Institut Pasteur de Montevideo (IPMont), Mataojo 2020, (CP11400), Montevideo, Uruguay
- Instituto de Investigaciones Biológicas Clemente Estable, Avenida Italia 3318, (CP 11600), Montevideo, Uruguay
| | - Gonzalo Greif
- Institut Pasteur de Montevideo (IPMont), Mataojo 2020, (CP11400), Montevideo, Uruguay
| | - Virginia de García
- Instituto de Investigación Y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas (PROBIEN), Buenos Aires 1400, (CP8300), Neuquén, Argentina
| | - Carlos Batthyany
- Institut Pasteur de Montevideo (IPMont), Mataojo 2020, (CP11400), Montevideo, Uruguay
- Facultad de Medicina (UDELAR), Av. Gral. Flores 2125, (CP1180), Montevideo, Uruguay
| | - Carlos Robello
- Institut Pasteur de Montevideo (IPMont), Mataojo 2020, (CP11400), Montevideo, Uruguay
- Facultad de Medicina (UDELAR), Av. Gral. Flores 2125, (CP1180), Montevideo, Uruguay
| | - Diego Libkind
- Centro de Referencia en Levaduras Y Tecnología Cervecera (CRELTEC), Instituto Andino Patagónico de Tecnologías Biológicas Y Geoambientales (IPATEC), CONICET-Universidad Nacional del Comahue, Quintral 1250, (CP8400) San Carlos de Bariloche, Río Negro, Argentina
| |
Collapse
|
9
|
Segal-Kischinevzky C, Romero-Aguilar L, Alcaraz LD, López-Ortiz G, Martínez-Castillo B, Torres-Ramírez N, Sandoval G, González J. Yeasts Inhabiting Extreme Environments and Their Biotechnological Applications. Microorganisms 2022; 10:794. [PMID: 35456844 PMCID: PMC9028089 DOI: 10.3390/microorganisms10040794] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/06/2022] [Accepted: 04/06/2022] [Indexed: 11/17/2022] Open
Abstract
Yeasts are microscopic fungi inhabiting all Earth environments, including those inhospitable for most life forms, considered extreme environments. According to their habitats, yeasts could be extremotolerant or extremophiles. Some are polyextremophiles, depending on their growth capacity, tolerance, and survival in the face of their habitat's physical and chemical constitution. The extreme yeasts are relevant for the industrial production of value-added compounds, such as biofuels, lipids, carotenoids, recombinant proteins, enzymes, among others. This review calls attention to the importance of yeasts inhabiting extreme environments, including metabolic and adaptive aspects to tolerate conditions of cold, heat, water availability, pH, salinity, osmolarity, UV radiation, and metal toxicity, which are relevant for biotechnological applications. We explore the habitats of extreme yeasts, highlighting key species, physiology, adaptations, and molecular identification. Finally, we summarize several findings related to the industrially-important extremophilic yeasts and describe current trends in biotechnological applications that will impact the bioeconomy.
Collapse
Affiliation(s)
- Claudia Segal-Kischinevzky
- Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Coyoacán, Mexico City 04510, Mexico; (C.S.-K.); (L.D.A.); (B.M.-C.); (N.T.-R.)
| | - Lucero Romero-Aguilar
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Coyoacán, Mexico City 04510, Mexico;
| | - Luis D. Alcaraz
- Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Coyoacán, Mexico City 04510, Mexico; (C.S.-K.); (L.D.A.); (B.M.-C.); (N.T.-R.)
| | - Geovani López-Ortiz
- Subdivisión de Medicina Familiar, Facultad de Medicina, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Coyoacán, Mexico City 04510, Mexico;
| | - Blanca Martínez-Castillo
- Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Coyoacán, Mexico City 04510, Mexico; (C.S.-K.); (L.D.A.); (B.M.-C.); (N.T.-R.)
| | - Nayeli Torres-Ramírez
- Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Coyoacán, Mexico City 04510, Mexico; (C.S.-K.); (L.D.A.); (B.M.-C.); (N.T.-R.)
| | - Georgina Sandoval
- Laboratorio de Innovación en Bioenergéticos y Bioprocesos Avanzados (LIBBA), Unidad de Biotecnología Industrial, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco AC (CIATEJ), Av. Normalistas No. 800 Col. Colinas de la Normal, Guadalajara 44270, Mexico;
| | - James González
- Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Coyoacán, Mexico City 04510, Mexico; (C.S.-K.); (L.D.A.); (B.M.-C.); (N.T.-R.)
| |
Collapse
|
10
|
Nath S, Kango N. Recent Developments in Industrial Mycozymes: A Current Appraisal. Mycology 2022; 13:81-105. [PMID: 35711326 PMCID: PMC9196846 DOI: 10.1080/21501203.2021.1974111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Fungi, being natural decomposers, are the most potent, ubiquitous and versatile sources of industrial enzymes. About 60% of market share of industrial enzymes is sourced from filamentous fungi and yeasts. Mycozymes (myco-fungus; zymes-enzymes) are playing a pivotal role in several industrial applications and a number of potential applications are in the offing. The field of mycozyme production, while maintaining the old traditional methods, has also witnessed a sea change due to advents in recombinant DNA technology, optimisation protocols, fermentation technology and systems biology. Consolidated bioprocessing of abundant lignocellulosic biomass and complex polysaccharides is being explored at an unprecedented pace and a number of mycozymes of diverse fungal origins are being explored using suitable platforms. The present review attempts to revisit the current status of various mycozymes, screening and production strategies and applications thereof.
Collapse
Affiliation(s)
- Suresh Nath
- Department of Microbiology, Dr. Harisingh Gour Vishwavidyalaya, Sagar, MP, India
| | - Naveen Kango
- Department of Microbiology, Dr. Harisingh Gour Vishwavidyalaya, Sagar, MP, India
| |
Collapse
|
11
|
Baeza M, Zúñiga S, Peragallo V, Gutierrez F, Barahona S, Alcaino J, Cifuentes V. Response to Cold: A Comparative Transcriptomic Analysis in Eight Cold-Adapted Yeasts. Front Microbiol 2022; 13:828536. [PMID: 35283858 PMCID: PMC8905146 DOI: 10.3389/fmicb.2022.828536] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 01/19/2022] [Indexed: 02/03/2023] Open
Abstract
Microorganisms have evolved to colonize all biospheres, including extremely cold environments, facing several stressor conditions, mainly low/freezing temperatures. In general, terms, the strategies developed by cold-adapted microorganisms include the synthesis of cryoprotectant and stress-protectant molecules, cold-active proteins, especially enzymes, and membrane fluidity regulation. The strategy could differ among microorganisms and concerns the characteristics of the cold environment of the microorganism, such as seasonal temperature changes. Microorganisms can develop strategies to grow efficiently at low temperatures or tolerate them and grow under favorable conditions. These differences can be found among the same kind of microorganisms and from the same cold habitat. In this work, eight cold-adapted yeasts isolated from King George Island, subAntarctic region, which differ in their growth properties, were studied about their response to low temperatures at the transcriptomic level. Sixteen ORFeomes were assembled and used for gene prediction and functional annotation, determination of gene expression changes, protein flexibilities of translated genes, and codon usage bias. Putative genes related to the response to all main kinds of stress were found. The total number of differentially expressed genes was related to the temperature variation that each yeast faced. The findings from multiple comparative analyses among yeasts based on gene expression changes and protein flexibility by cellular functions and codon usage bias raise significant differences in response to cold among the studied Antarctic yeasts. The way a yeast responds to temperature change appears to be more related to its optimal temperature for growth (OTG) than growth velocity. Yeasts with higher OTG prepare to downregulate their metabolism to enter the dormancy stage. In comparison, yeasts with lower OTG perform minor adjustments to make their metabolism adequate and maintain their growth at lower temperatures.
Collapse
Affiliation(s)
- Marcelo Baeza
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile.,Centro de Biotecnología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Sergio Zúñiga
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Vicente Peragallo
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Fernando Gutierrez
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Salvador Barahona
- Centro de Biotecnología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Jennifer Alcaino
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile.,Centro de Biotecnología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Víctor Cifuentes
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile.,Centro de Biotecnología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| |
Collapse
|
12
|
Batista BN, Matias RR, Oliveira RLE, Albuquerque PM. Hydrolytic enzyme production from açai palm (Euterpe precatoria) endophytic fungi and characterization of the amylolytic and cellulolytic extracts. World J Microbiol Biotechnol 2022; 38:30. [PMID: 34989888 DOI: 10.1007/s11274-021-03217-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 12/18/2021] [Indexed: 01/02/2023]
Abstract
Enzymes are biocatalysts that are widely used in different industries and generate billions of dollars annually. With the advancement of biotechnology, new enzymatic sources are being evaluated, especially microbial ones, in order to find efficient producers. Endophytic fungi are promising sources of biomolecules; however, Amazonian species are still poorly studied as to their enzymatic production potential. In this sense, the production of hydrolases (amylases, lipases, cellulases and pectinases) was evaluated in endophytic fungi isolated from the leaves, roots and stems of açai palms (Euterpe precatoria). A qualitative test was carried out to detect the enzymatic synthesis in each isolate, and the most promising ones were cultivated using submerged fermentation. The enzyme extracts were quantified to determine those with the greatest activity. Cellulolytic and amylolytic extracts showed the highest enzymatic activities and were partially characterized. Among 50 isolates, 82.9% produced pectinase, 58.5% produced cellulase, 31.7% produced amylase, and 12.2% produced lipase. Penicillium sp. L3 was the best producer of amylase and Colletotrichum sp. S1 was the best producer of cellulase in liquid medium cultivation. The amylolytic extract showed the highest enzymatic activity at pH 8.0 and 45 °C, and the cellulolytic extract at pH 5.0 and 35 °C. The cellulase and amylase produced by the endophytes had their molecular masses estimated between 38 and 76 kDa. These results indicate that endophytic fungi from the açai palm can be used as a new source of hydrolytic enzymes, which can be applied in numerous biotechnological processes.
Collapse
Affiliation(s)
- Bárbara Nunes Batista
- Programa de Pós-Graduação em Biodiversidade e Biotecnologia da Rede Bionorte, Escola Superior de Ciências da Saúde, Universidade do Estado do Amazonas, Manaus, AM, 69050-020, Brazil.,Laboratório de Química Aplicada à Tecnologia, Escola Superior de Tecnologia, Universidade do Estado do Amazonas, Manaus, AM, 69065-001, Brazil
| | - Rosiane Rodrigues Matias
- Programa de Pós-Graduação em Biodiversidade e Biotecnologia da Rede Bionorte, Escola Superior de Ciências da Saúde, Universidade do Estado do Amazonas, Manaus, AM, 69050-020, Brazil.,Laboratório de Química Aplicada à Tecnologia, Escola Superior de Tecnologia, Universidade do Estado do Amazonas, Manaus, AM, 69065-001, Brazil
| | - Rafael Lopes E Oliveira
- Laboratório de Química Aplicada à Tecnologia, Escola Superior de Tecnologia, Universidade do Estado do Amazonas, Manaus, AM, 69065-001, Brazil
| | - Patrícia Melchionna Albuquerque
- Programa de Pós-Graduação em Biodiversidade e Biotecnologia da Rede Bionorte, Escola Superior de Ciências da Saúde, Universidade do Estado do Amazonas, Manaus, AM, 69050-020, Brazil. .,Laboratório de Química Aplicada à Tecnologia, Escola Superior de Tecnologia, Universidade do Estado do Amazonas, Manaus, AM, 69065-001, Brazil. .,Programa de Pós-Graduação em Biotecnologia e Recursos Naturais da Amazônia, Escola Superior de Ciências da Saúde, Universidade do Estado do Amazonas, Manaus, AM, 69065-001, Brazil.
| |
Collapse
|
13
|
Tong L, Zheng J, Wang X, Wang X, Huang H, Yang H, Tu T, Wang Y, Bai Y, Yao B, Luo H, Qin X. Improvement of thermostability and catalytic efficiency of glucoamylase from Talaromyces leycettanus JCM12802 via site-directed mutagenesis to enhance industrial saccharification applications. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:202. [PMID: 34656167 PMCID: PMC8520190 DOI: 10.1186/s13068-021-02052-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 10/02/2021] [Indexed: 05/25/2023]
Abstract
BACKGROUND Glucoamylase is an important industrial enzyme in the saccharification of starch into glucose. However, its poor thermostability and low catalytic efficiency limit its industrial saccharification applications. Therefore, improving these properties of glucoamylase is of great significance for saccharification in the starch industry. RESULTS In this study, a novel glucoamylase-encoding gene TlGa15B from the thermophilic fungus Talaromyces leycettanus JCM12802 was cloned and expressed in Pichia pastoris. The optimal temperature and pH of recombinant TlGa15B were 65 ℃ and 4.5, respectively. TlGa15B exhibited excellent thermostability at 60 ℃. To further improve thermostability without losing catalytic efficiency, TlGa15B-GA1 and TlGa15B-GA2 were designed by introducing disulfide bonds and optimizing residual charge-charge interactions in a region distant from the catalytic center. Compared with TlGa15B, mutants showed improved optimal temperature, melting temperature, specific activity, and catalytic efficiency. The mechanism underlying these improvements was elucidated through molecular dynamics simulation and dynamics cross-correlation matrices analysis. Besides, the performance of TlGa15B-GA2 was the same as that of the commercial glucoamylase during saccharification. CONCLUSIONS We provide an effective strategy to simultaneously improve both thermostability and catalytic efficiency of glucoamylase. The excellent thermostability and high catalytic efficiency of TlGa15B-GA2 make it a good candidate for industrial saccharification applications.
Collapse
Affiliation(s)
- Lige Tong
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Jie Zheng
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Xiao Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Xiaolu Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Huoqing Huang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Haomeng Yang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Tao Tu
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Yuan Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Yingguo Bai
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Bin Yao
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Huiying Luo
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Xing Qin
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| |
Collapse
|
14
|
Guo R, He M, Zhang X, Ji X, Wei Y, Zhang QL, Zhang Q. Genome-Wide Transcriptional Changes of Rhodosporidium kratochvilovae at Low Temperature. Front Microbiol 2021; 12:727105. [PMID: 34603256 PMCID: PMC8481953 DOI: 10.3389/fmicb.2021.727105] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 08/26/2021] [Indexed: 12/20/2022] Open
Abstract
Rhodosporidium kratochvilovae strain YM25235 is a cold-adapted oleaginous yeast strain that can grow at 15°C. It is capable of producing polyunsaturated fatty acids. Here, we used the Nanopore Platform to first assemble the R. kratochvilovae strain YM25235 genome into a 23.71 Mb size containing 46 scaffolds and 8,472 predicted genes. To explore the molecular mechanism behind the low temperature response of R. kratochvilovae strain YM25235, we analyzed the RNA transcriptomic data from low temperature (15°C) and normal temperature (30°C) groups using the next-generation deep sequencing technology (RNA-seq). We identified 1,300 differentially expressed genes (DEGs) by comparing the cultures grown at low temperature (15°C) and normal temperature (30°C) transcriptome libraries, including 553 significantly upregulated and 747 significantly downregulated DEGs. Gene ontology and pathway enrichment analysis revealed that DEGs were primarily related to metabolic processes, cellular processes, cellular organelles, and catalytic activity, whereas the overrepresented pathways included the MAPK signaling pathway, metabolic pathways, and amino sugar and nucleotide sugar metabolism. We validated the RNA-seq results by detecting the expression of 15 DEGs using qPCR. This study provides valuable information on the low temperature response of R. kratochvilovae strain YM25235 for further research and broadens our understanding for the response of R. kratochvilovae strain YM25235 to low temperature.
Collapse
Affiliation(s)
- Rui Guo
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Meixia He
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Xiaoqing Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Xiuling Ji
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Yunlin Wei
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Qi-Lin Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Qi Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| |
Collapse
|
15
|
Purahong W, Wahdan SFM, Heinz D, Jariyavidyanont K, Sungkapreecha C, Tanunchai B, Sansupa C, Sadubsarn D, Alaneed R, Heintz-Buschart A, Schädler M, Geissler A, Kressler J, Buscot F. Back to the Future: Decomposability of a Biobased and Biodegradable Plastic in Field Soil Environments and Its Microbiome under Ambient and Future Climates. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:12337-12351. [PMID: 34486373 DOI: 10.1021/acs.est.1c02695] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Decomposition by microorganisms of plastics in soils is almost unexplored despite the fact that the majority of plastics released into the environment end up in soils. Here, we investigate the decomposition process and microbiome of one of the most promising biobased and biodegradable plastics, poly(butylene succinate-co-adipate) (PBSA), under field soil conditions under both ambient and future predicted climates (for the time between 2070 and 2100). We show that the gravimetric and molar mass of PBSA is already largely reduced (28-33%) after 328 days under both climates. We provide novel information on the PBSA microbiome encompassing the three domains of life: Archaea, Bacteria, and Eukarya (fungi). We show that PBSA begins to decompose after the increase in relative abundances of aquatic fungi (Tetracladium spp.) and nitrogen-fixing bacteria. The PBSA microbiome is distinct from that of surrounding soils, suggesting that PBSA serves as a new ecological habitat. We conclude that the microbial decomposition process of PBSA in soil is more complex than previously thought by involving interkingdom relationships, especially between bacteria and fungi.
Collapse
Affiliation(s)
- Witoon Purahong
- Department of Soil Ecology, UFZ-Helmholtz Centre for Environmental Research, Theodor-Lieser-Str. 4, Halle (Saale) D-06120, Germany
| | - Sara Fareed Mohamed Wahdan
- Department of Soil Ecology, UFZ-Helmholtz Centre for Environmental Research, Theodor-Lieser-Str. 4, Halle (Saale) D-06120, Germany
- Department of Botany, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt
| | - Daniel Heinz
- Department of Chemistry, Martin Luther University Halle-Wittenberg, Halle (Saale) D-06099, Germany
| | - Katalee Jariyavidyanont
- Center of Engineering Sciences, Martin Luther University Halle-Wittenberg, Halle (Saale) D-06099, Germany
| | - Chanita Sungkapreecha
- Center of Engineering Sciences, Martin Luther University Halle-Wittenberg, Halle (Saale) D-06099, Germany
| | - Benjawan Tanunchai
- Department of Soil Ecology, UFZ-Helmholtz Centre for Environmental Research, Theodor-Lieser-Str. 4, Halle (Saale) D-06120, Germany
| | - Chakriya Sansupa
- Department of Soil Ecology, UFZ-Helmholtz Centre for Environmental Research, Theodor-Lieser-Str. 4, Halle (Saale) D-06120, Germany
| | - Dolaya Sadubsarn
- Department of Soil Ecology, UFZ-Helmholtz Centre for Environmental Research, Theodor-Lieser-Str. 4, Halle (Saale) D-06120, Germany
| | - Razan Alaneed
- Department of Chemistry, Martin Luther University Halle-Wittenberg, Halle (Saale) D-06099, Germany
| | - Anna Heintz-Buschart
- Department of Soil Ecology, UFZ-Helmholtz Centre for Environmental Research, Theodor-Lieser-Str. 4, Halle (Saale) D-06120, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, Leipzig D-04103, Germany
| | - Martin Schädler
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, Leipzig D-04103, Germany
- Department of Community Ecology, UFZ-Helmholtz Centre for Environmental Research, Theodor-Lieser-Str. 4, Halle (Saale) D-06120, Germany
| | - Andreas Geissler
- Department of Macromolecular Chemistry and Paper Chemistry, Technical University of Darmstadt, Darmstadt D-64287, Germany
| | - Joerg Kressler
- Department of Chemistry, Martin Luther University Halle-Wittenberg, Halle (Saale) D-06099, Germany
| | - François Buscot
- Department of Soil Ecology, UFZ-Helmholtz Centre for Environmental Research, Theodor-Lieser-Str. 4, Halle (Saale) D-06120, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, Leipzig D-04103, Germany
| |
Collapse
|
16
|
Ijoma GN, Heri SM, Matambo TS, Tekere M. Trends and Applications of Omics Technologies to Functional Characterisation of Enzymes and Protein Metabolites Produced by Fungi. J Fungi (Basel) 2021; 7:700. [PMID: 34575737 PMCID: PMC8464691 DOI: 10.3390/jof7090700] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/19/2021] [Accepted: 08/23/2021] [Indexed: 12/14/2022] Open
Abstract
Identifying and adopting industrial applications for proteins and enzymes derived from fungi strains have been at the focal point of several studies in recent times. To facilitate such studies, it is necessary that advancements and innovation in mycological and molecular characterisation are concomitant. This review aims to provide a detailed overview of the necessary steps employed in both qualitative and quantitative research using the omics technologies that are pertinent to fungi characterisation. This stems from the understanding that data provided from the functional characterisation of fungi and their metabolites is important towards the techno-economic feasibility of large-scale production of biological products. The review further describes how the functional gaps left by genomics, internal transcribe spacer (ITS) regions are addressed by transcriptomics and the various techniques and platforms utilised, including quantitive reverse transcription polymerase chain reaction (RT-qPCR), hybridisation techniques, and RNA-seq, and the insights such data provide on the effect of environmental changes on fungal enzyme production from an expressional standpoint. The review also offers information on the many available bioinformatics tools of analysis necessary for the analysis of the overwhelming data synonymous with the omics approach to fungal characterisation.
Collapse
Affiliation(s)
- Grace N. Ijoma
- Institute for the Development of Energy for African Sustainability (IDEAS), College of Science, Engineering and Technology, University of South Africa, P.O. Box 392, UNISA, Pretoria 0001, South Africa; (S.M.H.); (T.S.M.)
| | - Sylvie M. Heri
- Institute for the Development of Energy for African Sustainability (IDEAS), College of Science, Engineering and Technology, University of South Africa, P.O. Box 392, UNISA, Pretoria 0001, South Africa; (S.M.H.); (T.S.M.)
| | - Tonderayi S. Matambo
- Institute for the Development of Energy for African Sustainability (IDEAS), College of Science, Engineering and Technology, University of South Africa, P.O. Box 392, UNISA, Pretoria 0001, South Africa; (S.M.H.); (T.S.M.)
| | - Memory Tekere
- Department of Environmental Science, College of Agricultural and Environmental Science, University of South Africa, P.O. Box 392, UNISA, Pretoria 0001, South Africa;
| |
Collapse
|
17
|
Characterization of SdGA, a cold-adapted glucoamylase from Saccharophagus degradans. ACTA ACUST UNITED AC 2021; 30:e00625. [PMID: 34041001 PMCID: PMC8141877 DOI: 10.1016/j.btre.2021.e00625] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 04/24/2021] [Accepted: 04/28/2021] [Indexed: 11/24/2022]
Abstract
We investigated the structural and functional properties of SdGA, a glucoamylase (GA) from Saccharophagus degradans, a marine bacterium which degrades different complex polysaccharides at high rate. SdGA is composed mainly by a N-terminal GH15_N domain linked to a C-terminal catalytic domain (CD) found in the GH15 family of glycosylhydrolases with an overall structure similar to other bacterial GAs. The protein was expressed in Escherichia coli cells, purified and its biochemical properties were investigated. Although SdGA has a maximum activity at 39 °C and pH 6.0, it also shows high activity in a wide range, from low to mild temperatures, like cold-adapted enzymes. Furthermore, SdGA has a higher content of flexible residues and a larger CD due to various amino acid insertions compared to other thermostable GAs. We propose that this novel SdGA, is a cold-adapted enzyme that might be suitable for use in different industrial processes that require enzymes which act at low or medium temperatures.
Collapse
|
18
|
Baeza M, Zúñiga S, Peragallo V, Barahona S, Alcaino J, Cifuentes V. Identification of Stress-Related Genes and a Comparative Analysis of the Amino Acid Compositions of Translated Coding Sequences Based on Draft Genome Sequences of Antarctic Yeasts. Front Microbiol 2021; 12:623171. [PMID: 33633709 PMCID: PMC7902016 DOI: 10.3389/fmicb.2021.623171] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 01/15/2021] [Indexed: 12/16/2022] Open
Abstract
Microorganisms inhabiting cold environments have evolved strategies to tolerate and thrive in those extreme conditions, mainly the low temperature that slow down reaction rates. Among described molecular and metabolic adaptations to enable functioning in the cold, there is the synthesis of cold-active proteins/enzymes. In bacterial cold-active proteins, reduced proline content and highly flexible and larger catalytic active sites than mesophylls counterparts have been described. However, beyond the low temperature, microorganisms' physiological requirements may differ according to their growth velocities, influencing their global protein compositions. This hypothesis was tested in this work using eight cold-adapted yeasts isolated from Antarctica, for which their growth parameters were measured and their draft genomes determined and bioinformatically analyzed. The optimal temperature for yeasts' growth ranged from 10 to 22°C, and yeasts having similar or same optimal temperature for growth displayed significative different growth rates. The sizes of the draft genomes ranged from 10.7 (Tetracladium sp.) to 30.7 Mb (Leucosporidium creatinivorum), and the GC contents from 37 (Candida sake) to 60% (L. creatinivorum). Putative genes related to various kinds of stress were identified and were especially numerous for oxidative and cold stress responses. The putative proteins were classified according to predicted cellular function and subcellular localization. The amino acid composition was compared among yeasts considering their optimal temperature for growth and growth rates. In several groups of predicted proteins, correlations were observed between their contents of flexible amino acids and both the yeasts' optimal temperatures for growth and their growth rates. In general, the contents of flexible amino acids were higher in yeasts growing more rapidly as their optimal temperature for growth was lower. The contents of flexible amino acids became lower among yeasts with higher optimal temperatures for growth as their growth rates increased.
Collapse
Affiliation(s)
- Marcelo Baeza
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Sergio Zúñiga
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Vicente Peragallo
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Salvador Barahona
- Centro de Biotecnología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Jennifer Alcaino
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Víctor Cifuentes
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| |
Collapse
|
19
|
Liang H, Wang X, Yan J, Luo L. Characterizing the Intra-Vineyard Variation of Soil Bacterial and Fungal Communities. Front Microbiol 2019; 10:1239. [PMID: 31214155 PMCID: PMC6554343 DOI: 10.3389/fmicb.2019.01239] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 05/17/2019] [Indexed: 12/20/2022] Open
Abstract
Vineyard soil microbial communities potentially mediate grapevine growth, grape production as well as wine terroir. Simultaneously assessing shifts of microbial community composition at the intra-vineyard scale allows us to decouple correlations among environmental variables, thus providing insights into vineyard management. Here we investigated bacterial and fungal community compositions and their relationships with edaphic properties in soils collected from a commercial vineyard at four different soil depths (0-5, 5-10, 10-20, and 20-40 cm). Soil organic carbon (SOC) content, invertase activity and phosphatase activity decreased along depth gradient in the 0-20 cm soil fraction (P < 0.001). The soil bacterial biomass and α-diversity were significantly higher than those of fungi (P ≤ 0.001). Statistical analyses revealed that SOC content, pH, C/N ratio and total phosphorus (TP) were significant determinants of soil bacterial (R = 0.494, P = 0.001) and fungal (R = 0.443, P = 0.001) community structure. The abundance of dominated bacterial phyla (Proteobacteria, Acidobacteria and Actinobacteria) and fungal phyla (Ascomycota, Zygomycota and Basidiomycota) slightly varied among all soil samples. Genus Lactococcus, which comprised 2.72% of the soil bacterial community, showed increasing pattern with depth. Importantly, Candidatus Nitrososphaera, Monographella and Fusarium were also detected with high abundances in soil samples, indicating their ecological function in soil nitrogen cycle and the potential risk in grapevine disease. Overall, this work detected the intra-vineyard variation of bacterial and fungal communities and their relationships with soil characteristics, which was beneficial to vineyard soil management and grapevine disease prevention.
Collapse
Affiliation(s)
- Hebin Liang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Xiaowen Wang
- Food Testing Institute, Shenzhen Academy of Metrology and Quality Inspection, Shenzhen, China.,National Nutrition Food Testing Center, Shenzhen, China
| | - Junwei Yan
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Lixin Luo
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| |
Collapse
|
20
|
Lincoln L, More VS, More SS. Purification and biochemical characterization of extracellular glucoamylase from Paenibacillus amylolyticus strain. J Basic Microbiol 2019; 59:375-384. [PMID: 30681161 DOI: 10.1002/jobm.201800540] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 11/19/2018] [Accepted: 12/16/2018] [Indexed: 11/06/2022]
Abstract
In the present study, glucoamylase produced from a soil bacterium Paenibacillus amylolyticus NEO03 was cultured under submerged fermentation conditions. The extracellular enzyme was purified by starch adsorption chromatography and further by gel filtration, with 2.73-fold and recovery of 40.02%. The protein exhibited molecular mass of ∼66,000 Da as estimated by SDS-PAGE and depicted to be a monomer. The enzyme demonstrated optimum activity at pH range 6.0-7.0 and temperature range 30-40 °C. Glucoamylase was mostly activated by Mn2+ metal ions and depicted no dependency on Ca2+ ions. The enzyme preferentially hydrolyzed all the starch substrates. High substrate specificity was demonstrated towards soluble starch and kinetic values Km and Vmax were 2.84 mg/ml and 239.2 U/ml, respectively. The products of hydrolysis of soluble starch were detected by thin layer chromatography which showed only D -glucose, indicating a true glucoamylase. The secreted glucoamylase from P. amylolyticus strain possesses properties suitable for saccharification processes such as biofuel production.
Collapse
Affiliation(s)
- Lynette Lincoln
- Department of Biochemistry, School of Sciences, Jain University, Bangalore, Karnataka, India
| | - Veena S More
- Department of Biotechnology, Sapthagiri College of Engineering, Bangalore, Karnataka, India
| | - Sunil S More
- School of Basic and Applied Sciences, Dayananda Sagar University, Bangalore, Karnataka, India
| |
Collapse
|
21
|
He J, Cui Z, Ji X, Luo Y, Wei Y, Zhang Q. Novel Histidine Kinase Gene HisK2301 from Rhodosporidium kratochvilovae Contributes to Cold Adaption by Promoting Biosynthesis of Polyunsaturated Fatty Acids and Glycerol. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:653-660. [PMID: 30558417 DOI: 10.1021/acs.jafc.8b04859] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Hybrid histidine kinase (HHKs) are widespread in fungi, but their roles in the regulation of fungal adaptation to environmental stresses remain largely unclear. To elucidate this, we cloned HisK2301 from Rhodosporidium kratochvilovae strain YM25235, characterized HisK2301 as a novel HHK, and further investigated the role of HisK2301 by overexpressing it in YM25235. Our results revealed that HisK2301 can promote adaptation of YM25235 to cold, osmotic, and salt stresses. During cold stress, HisK2301 significantly enhanced the biosynthesis of polyunsaturated fatty acids (PUFA) and intracellular glycerol. HisK2301 also augmented the expression levels of Δ12/Δ15 fatty acid desaturase ( RKD12) and glycerol-3-phosphate dehydrogenase1 ( GPD1), which are responsible for PUFA and glycerol biosynthesis, respectively. To conclude, our findings give the first insight into the defense and mechanisms of HisK2301 in fungi against cold stress and suggest the potential use of the novel cold-adapted HHK HisK2301 in industrial processes, such as large-scale production of PUFA.
Collapse
Affiliation(s)
- Jing He
- Faculty of Life Science and Technology , Kunming University of Science and Technology , Kunming , Yunnan 650500 , PR China
- Genetic Diagnosis Center, Yunnan Provincial Key Laboratory for Birth Defects and Genetic Diseases , The First People's Hospital of Yunnan Province , Kunming , Yunnan 650032 , PR China
| | - Zhicheng Cui
- Faculty of Life Science and Technology , Kunming University of Science and Technology , Kunming , Yunnan 650500 , PR China
| | - Xiuling Ji
- Faculty of Life Science and Technology , Kunming University of Science and Technology , Kunming , Yunnan 650500 , PR China
| | - Yiyong Luo
- Faculty of Life Science and Technology , Kunming University of Science and Technology , Kunming , Yunnan 650500 , PR China
| | - Yunlin Wei
- Faculty of Life Science and Technology , Kunming University of Science and Technology , Kunming , Yunnan 650500 , PR China
| | - Qi Zhang
- Faculty of Life Science and Technology , Kunming University of Science and Technology , Kunming , Yunnan 650500 , PR China
| |
Collapse
|
22
|
Sanchez AC, Ravanal MC, Andrews BA, Asenjo JA. Heterologous expression and biochemical characterization of a novel cold-active α-amylase from the Antarctic bacteria Pseudoalteromonas sp. 2-3. Protein Expr Purif 2018; 155:78-85. [PMID: 30496815 DOI: 10.1016/j.pep.2018.11.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 11/20/2018] [Accepted: 11/25/2018] [Indexed: 11/27/2022]
Abstract
α-Amylase is an endo-acting enzyme which catalyzes random hydrolysis of starch. These enzymes are used in various biotechnological processes including the textile, paper, food, biofuels, detergents and pharmaceutical industries. The use of active enzymes at low temperatures has a high potential because these enzymes would avoid the demand for heating during the process thereby reducing costs. In this work, the gene of α-amylase from Pseudoalteromonas sp. 2-3 (Antarctic bacteria) has been sequenced and expressed in Escherichia coli BL21(DE3). The ORF of the α-amylase gene cloned into pET22b(+) is 1824 bp long and codes for a protein of 607 amino acid residues including a His6-tag. The mature protein has a calculated molecular mass of 68.8 kDa. Recombinant α-amylase was purified with Ni-NTA affinity chromatography. The purified enzyme is active on potato starch with a Km of 6.94 mg/ml and Vmax of 0.27 mg/ml*min. The pH optimum is 8.0 and the optimal temperature is 20 °C. This enzyme was strongly activated by Ca2+; results consistent with other α-amylases. To the best of our knowledge, this enzyme has the lowest temperature optimum so far reported for α-amylases.
Collapse
Affiliation(s)
- Anamaria C Sanchez
- Centre for Biotechnology and Bioengineering (CeBiB), Department of Chemical Engineering, Biotechnology and Materials, University of Chile, Beauchef 851, Santiago, Chile.
| | - María Cristina Ravanal
- Instituto de Ciencia y Tecnología de los Alimentos (ICYTAL), Facultad de Ciencias Agrarias, Universidad Austral de Chile, Avda. Julio Sarrazín s/n, Isla Teja, Valdivia, Chile.
| | - Barbara A Andrews
- Centre for Biotechnology and Bioengineering (CeBiB), Department of Chemical Engineering, Biotechnology and Materials, University of Chile, Beauchef 851, Santiago, Chile.
| | - Juan A Asenjo
- Centre for Biotechnology and Bioengineering (CeBiB), Department of Chemical Engineering, Biotechnology and Materials, University of Chile, Beauchef 851, Santiago, Chile.
| |
Collapse
|
23
|
Adeoyo OR, Pletschke BI, Dames JF. Purification and characterization of an amyloglucosidase from an ericoid mycorrhizal fungus (Leohumicola incrustata). AMB Express 2018; 8:154. [PMID: 30269298 PMCID: PMC6163121 DOI: 10.1186/s13568-018-0685-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 09/24/2018] [Indexed: 11/10/2022] Open
Abstract
This study aimed to purify and characterize amyloglucosidase (AMG) from Leohumicola incrustata. AMG was purified to homogeneity from cell-free culture filtrate of an ERM fungus grown in a modified Melin-Norkrans liquid medium. The molecular mass of the AMG was estimated to be 101 kDa by combining the results of Sephadex G-100 gel filtration, sodium dodecyl sulphate-polyacrylamide gel electrophoresis, and zymography. The Km and kcat values were 0.38 mg mL-1 and 70 s-1, respectively, using soluble starch as a substrate. The enzyme was stable at 45 °C (pH 5.0), retaining over 65% activity after a pre-incubation period of 24 h. The metal inhibition profile of the AMG showed that Mn2+ and Ca2+ enhanced activity, while it was stable to metals ions, except a few (Al3+, Co2+, Hg2+ and Cd2+) that were inhibitory at a concentration higher than 5 mM. Thin layer chromatography revealed that only glucose was produced as the product of starch hydrolysis. The amylase from L. incrustata is a glucoamylase with promising characteristics such as temperature stability over an extended period, high substrate affinity and stability to a range of chemicals. Also, this study reports for the first time the possibility of using some culturable ERM fungi to produce enzymes for the bio-economy.
Collapse
|
24
|
Villarreal P, Carrasco M, Barahona S, Alcaíno J, Cifuentes V, Baeza M. Antarctic yeasts: analysis of their freeze-thaw tolerance and production of antifreeze proteins, fatty acids and ergosterol. BMC Microbiol 2018; 18:66. [PMID: 29976143 PMCID: PMC6034288 DOI: 10.1186/s12866-018-1214-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 06/27/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Microorganisms have evolved a number of mechanisms to thrive in cold environments, including the production of antifreeze proteins, high levels of polyunsaturated fatty acids, and ergosterol. In this work, several yeast species isolated from Antarctica were analyzed with respect to their freeze-thaw tolerance and production of the three abovementioned compounds, which may also have economic importance. RESULTS The freeze-thaw tolerance of yeasts was widely variable among species, and a clear correlation with the production of any of the abovementioned compounds was not observed. Antifreeze proteins that were partially purified from Goffeauzyma gastrica maintained their antifreeze activities after several freeze-thaw cycles. A relatively high volumetric production of ergosterol was observed in the yeasts Vishniacozyma victoriae, G. gastrica and Leucosporidium creatinivorum, i.e., 19, 19 and 16 mg l- 1, respectively. In addition, a high percentage of linoleic acid with respect to total fatty acids was observed in V. victoriae (10%), Wickerhamomyces anomalus (12%) and G. gastrica (13%), and a high percentage of alpha linoleic acid was observed in L. creatinivorum (3.3%). CONCLUSIONS Given these results, the abovementioned yeasts are good candidates to be evaluated for use in the production of antifreeze proteins, fatty acids, and ergosterol at the industrial scale.
Collapse
Affiliation(s)
- Pablo Villarreal
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Mario Carrasco
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Salvador Barahona
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Jennifer Alcaíno
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Víctor Cifuentes
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Marcelo Baeza
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| |
Collapse
|
25
|
Xian L, Feng JX. Purification and biochemical characterization of a novel mesophilic glucoamylase from Aspergillus tritici WZ99. Int J Biol Macromol 2017; 107:1122-1130. [PMID: 28951303 DOI: 10.1016/j.ijbiomac.2017.09.095] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 09/20/2017] [Accepted: 09/22/2017] [Indexed: 11/17/2022]
Abstract
Glucoamylase, cleaving the nonreducing end of starch releasing glucose, is an important enzyme in starch processing. The optimal temperature for industrial glucoamylase activity is 60-70°C, which is not compatible with the optimal growth temperature for Saccharomyces cerevisiae. In this study, 26 fungal strains producing amylolytic activities that were more active at 30°C than at 60°C were isolated from 151 environmental samples. Fungal strain WZ99, producing extracellular amylolytic activities with the lowest optimal temperature at 40°C, was identified as Aspergillus tritici by analysis of morphological and molecular data. An extracellular glucoamylase was purified from A. tritici WZ99. The optimal pH of the enzyme was 4.0-5.0 and optimal temperature was 45°C. The glucoamylase was stable at pH 4.5-10.0 and below 40°C. Metal ions at four concentrations did not inhibit the enzyme activity. The glucoamylase contained a catalytic domain belonging to glycosyl hydrolase family 15 and thus was named as AtriGA15A. The enzyme shared the highest identity of 54% with a glucoamylase from Rasamsonia emersonii. This glucoamylase showing excellent comprehensive enzymatic characteristics might have potential applications in starch-based bioethanol production and starch processing.
Collapse
Affiliation(s)
- Liang Xian
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning 530004, China
| | - Jia-Xun Feng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning 530004, China.
| |
Collapse
|