1
|
Xie Z, McAuliffe O, Jin YS, Miller MJ. Invited review: Genomic modifications of lactic acid bacteria and their applications in dairy fermentation. J Dairy Sci 2024; 107:8749-8764. [PMID: 38969005 DOI: 10.3168/jds.2024-24989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 06/11/2024] [Indexed: 07/07/2024]
Abstract
Lactic acid bacteria (LAB) have a long history of safe use in milk fermentation and are generally recognized as health-promoting microorganisms when present in fermented foods. Lactic acid bacteria are also important components of the human intestinal microbiota and are widely used as probiotics. Considering their safe and health-beneficial properties, LAB are considered appropriate vehicles that can be genetically modified for food, industrial and pharmaceutical applications. Here, this review describes (1) the potential opportunities for application of genetically modified LAB strains in dairy fermentation and (2) the various genomic modification tools for LAB strains, such as random mutagenesis, adaptive laboratory evolution, conjugation, homologous recombination, recombineering, and CRISPR (clustered regularly interspaced short palindromic repeat)-Cas (CRISPR-associated protein)-based genome engineering. Finally, this review also discusses the potential future developments of these genomic modification technologies and their applications in dairy fermentations.
Collapse
Affiliation(s)
- Zifan Xie
- Food Science and Human Nutrition, University of Illinois Urbana-Champaign, Urbana, IL 61801
| | - Olivia McAuliffe
- Teagasc Food Research Centre, Moorepark, Fermoy, Cork, Ireland P61 C996; School of Biological Sciences, Queen's University Belfast, Belfast, Northern Ireland BT9 5DL
| | - Yong-Su Jin
- Food Science and Human Nutrition, University of Illinois Urbana-Champaign, Urbana, IL 61801; Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801
| | - Michael J Miller
- Food Science and Human Nutrition, University of Illinois Urbana-Champaign, Urbana, IL 61801; Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801.
| |
Collapse
|
2
|
Wang L, Hu J, Li K, Zhao Y, Zhu M. Advancements in gene editing technologies for probiotic-enabled disease therapy. iScience 2024; 27:110791. [PMID: 39286511 PMCID: PMC11403445 DOI: 10.1016/j.isci.2024.110791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024] Open
Abstract
Probiotics typically refer to microorganisms that have been identified for their health benefits, and they are added to foods or supplements to promote the health of the host. A growing number of probiotic strains have been identified lately and developed into valuable regulatory pharmaceuticals for nutritional and medical applications. Gene editing technologies play a crucial role in addressing the need for safe and therapeutic probiotics in disease treatment. These technologies offer valuable assistance in comprehending the underlying mechanisms of probiotic bioactivity and in the development of advanced probiotics. This review aims to offer a comprehensive overview of gene editing technologies applied in the engineering of both traditional and next-generation probiotics. It further explores the potential for on-demand production of customized products derived from enhanced probiotics, with a particular emphasis on the future of gene editing in the development of live biotherapeutics.
Collapse
Affiliation(s)
- Lixuan Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, China, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Hu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, China, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kun Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, China, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuliang Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, China, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Motao Zhu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, China, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
3
|
Zimmermann A, Prieto-Vivas JE, Voordeckers K, Bi C, Verstrepen KJ. Mutagenesis techniques for evolutionary engineering of microbes - exploiting CRISPR-Cas, oligonucleotides, recombinases, and polymerases. Trends Microbiol 2024; 32:884-901. [PMID: 38493013 DOI: 10.1016/j.tim.2024.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 02/07/2024] [Accepted: 02/09/2024] [Indexed: 03/18/2024]
Abstract
The natural process of evolutionary adaptation is often exploited as a powerful tool to obtain microbes with desirable traits. For industrial microbes, evolutionary engineering is often used to generate variants that show increased yields or resistance to stressful industrial environments, thus obtaining superior microbial cell factories. However, even in large populations, the natural supply of beneficial mutations is typically low, which implies that obtaining improved microbes is often time-consuming and inefficient. To overcome this limitation, different techniques have been developed that boost mutation rates. While some of these methods simply increase the overall mutation rate across a genome, others use recent developments in DNA synthesis, synthetic biology, and CRISPR-Cas techniques to control the type and location of mutations. This review summarizes the most important recent developments and methods in the field of evolutionary engineering in model microorganisms. It discusses how both in vitro and in vivo approaches can increase the genetic diversity of the host, with a special emphasis on in vivo techniques for the optimization of metabolic pathways for precision fermentation.
Collapse
Affiliation(s)
- Anna Zimmermann
- VIB Laboratory for Systems Biology, VIB-KU Leuven Center for Microbiology, Leuven, 3001, Belgium; CMPG Laboratory of Genetics and Genomics, Department M2S, KU Leuven, Leuven, 3001, Belgium
| | - Julian E Prieto-Vivas
- VIB Laboratory for Systems Biology, VIB-KU Leuven Center for Microbiology, Leuven, 3001, Belgium; CMPG Laboratory of Genetics and Genomics, Department M2S, KU Leuven, Leuven, 3001, Belgium
| | - Karin Voordeckers
- VIB Laboratory for Systems Biology, VIB-KU Leuven Center for Microbiology, Leuven, 3001, Belgium; CMPG Laboratory of Genetics and Genomics, Department M2S, KU Leuven, Leuven, 3001, Belgium
| | - Changhao Bi
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China; College of Life Science, Tianjin Normal University, Tianjin, China
| | - Kevin J Verstrepen
- VIB Laboratory for Systems Biology, VIB-KU Leuven Center for Microbiology, Leuven, 3001, Belgium; CMPG Laboratory of Genetics and Genomics, Department M2S, KU Leuven, Leuven, 3001, Belgium; VIB-VIB Joint Center of Synthetic Biology, National Center of Technology Innovation for Synthetic Biology, Tianjin, China.
| |
Collapse
|
4
|
Parvin T, Sadras SR. Advanced probiotics: bioengineering and their therapeutic application. Mol Biol Rep 2024; 51:361. [PMID: 38403783 DOI: 10.1007/s11033-024-09309-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 02/01/2024] [Indexed: 02/27/2024]
Abstract
The role of gut bacteria in human health has long been acknowledged and dysbiosis of the gut microbiota has been correlated with a variety of disorders. Synthetic biology has rapidly grown over the past few years offering a variety of biological applications such as harnessing the relationship between bacteria and human health. Lactic acid bacteria (LAB) are thought to be appropriate chassis organisms for genetic modification with potential biomedical applications. A thorough understanding of the molecular mechanisms behind their beneficial qualities is essential to assist the multifunctional medicinal sectors. Effective genome editing will aid in the creation of next-generation designer probiotics with enhanced resilience and specialized capabilities, furthering our knowledge of the molecular mechanisms behind the physiological impacts of probiotics and their interactions with the host and microbiota. The goal of this review is to provide a brief overview of the methods used to create modified probiotics with the scientific rationale behind gene editing technology, the mechanism of action of engineered probiotics along with their application to treat conditions like inflammatory bowel disease, cancer, bacterial infections, and various metabolic diseases. In addition, application concerns and future directions are also presented.
Collapse
Affiliation(s)
- Tamanna Parvin
- Department of Biochemistry and Molecular Biology, School of Life Science, Pondicherry University, Puducherry, India.
| | - Sudha Rani Sadras
- Department of Biochemistry and Molecular Biology, School of Life Science, Pondicherry University, Puducherry, India
| |
Collapse
|
5
|
Cautereels C, Smets J, De Saeger J, Cool L, Zhu Y, Zimmermann A, Steensels J, Gorkovskiy A, Jacobs TB, Verstrepen KJ. Orthogonal LoxPsym sites allow multiplexed site-specific recombination in prokaryotic and eukaryotic hosts. Nat Commun 2024; 15:1113. [PMID: 38326330 PMCID: PMC10850332 DOI: 10.1038/s41467-024-44996-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 01/12/2024] [Indexed: 02/09/2024] Open
Abstract
Site-specific recombinases such as the Cre-LoxP system are routinely used for genome engineering in both prokaryotes and eukaryotes. Importantly, recombinases complement the CRISPR-Cas toolbox and provide the additional benefit of high-efficiency DNA editing without generating toxic DNA double-strand breaks, allowing multiple recombination events at the same time. However, only a handful of independent, orthogonal recombination systems are available, limiting their use in more complex applications that require multiple specific recombination events, such as metabolic engineering and genetic circuits. To address this shortcoming, we develop 63 symmetrical LoxP variants and test 1192 pairwise combinations to determine their cross-reactivity and specificity upon Cre activation. Ultimately, we establish a set of 16 orthogonal LoxPsym variants and demonstrate their use for multiplexed genome engineering in both prokaryotes (E. coli) and eukaryotes (S. cerevisiae and Z. mays). Together, this work yields a significant expansion of the Cre-LoxP toolbox for genome editing, metabolic engineering and other controlled recombination events, and provides insights into the Cre-LoxP recombination process.
Collapse
Affiliation(s)
- Charlotte Cautereels
- VIB Laboratory for Systems Biology, VIB-KU Leuven Center for Microbiology, Leuven, 3001, Belgium
- CMPG Laboratory of Genetics and Genomics, Department M2S, KU Leuven, Leuven, 3001, Belgium
| | - Jolien Smets
- VIB Laboratory for Systems Biology, VIB-KU Leuven Center for Microbiology, Leuven, 3001, Belgium
- CMPG Laboratory of Genetics and Genomics, Department M2S, KU Leuven, Leuven, 3001, Belgium
| | - Jonas De Saeger
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark-Zwijnaarde 71, 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark-Zwijnaarde 71, 9052, Ghent, Belgium
| | - Lloyd Cool
- VIB Laboratory for Systems Biology, VIB-KU Leuven Center for Microbiology, Leuven, 3001, Belgium
- CMPG Laboratory of Genetics and Genomics, Department M2S, KU Leuven, Leuven, 3001, Belgium
- Laboratory of Socioecology and Social Evolution, KU Leuven, Leuven, Belgium
| | - Yanmei Zhu
- VIB Laboratory for Systems Biology, VIB-KU Leuven Center for Microbiology, Leuven, 3001, Belgium
- CMPG Laboratory of Genetics and Genomics, Department M2S, KU Leuven, Leuven, 3001, Belgium
| | - Anna Zimmermann
- VIB Laboratory for Systems Biology, VIB-KU Leuven Center for Microbiology, Leuven, 3001, Belgium
- CMPG Laboratory of Genetics and Genomics, Department M2S, KU Leuven, Leuven, 3001, Belgium
| | - Jan Steensels
- VIB Laboratory for Systems Biology, VIB-KU Leuven Center for Microbiology, Leuven, 3001, Belgium
- CMPG Laboratory of Genetics and Genomics, Department M2S, KU Leuven, Leuven, 3001, Belgium
| | - Anton Gorkovskiy
- VIB Laboratory for Systems Biology, VIB-KU Leuven Center for Microbiology, Leuven, 3001, Belgium
- CMPG Laboratory of Genetics and Genomics, Department M2S, KU Leuven, Leuven, 3001, Belgium
| | - Thomas B Jacobs
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark-Zwijnaarde 71, 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark-Zwijnaarde 71, 9052, Ghent, Belgium
| | - Kevin J Verstrepen
- VIB Laboratory for Systems Biology, VIB-KU Leuven Center for Microbiology, Leuven, 3001, Belgium.
- CMPG Laboratory of Genetics and Genomics, Department M2S, KU Leuven, Leuven, 3001, Belgium.
| |
Collapse
|
6
|
Recent advances in genetic tools for engineering probiotic lactic acid bacteria. Biosci Rep 2023; 43:232386. [PMID: 36597861 PMCID: PMC9842951 DOI: 10.1042/bsr20211299] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 12/19/2022] [Accepted: 01/03/2023] [Indexed: 01/05/2023] Open
Abstract
Synthetic biology has grown exponentially in the last few years, with a variety of biological applications. One of the emerging applications of synthetic biology is to exploit the link between microorganisms, biologics, and human health. To exploit this link, it is critical to select effective synthetic biology tools for use in appropriate microorganisms that would address unmet needs in human health through the development of new game-changing applications and by complementing existing technological capabilities. Lactic acid bacteria (LAB) are considered appropriate chassis organisms that can be genetically engineered for therapeutic and industrial applications. Here, we have reviewed comprehensively various synthetic biology techniques for engineering probiotic LAB strains, such as clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 mediated genome editing, homologous recombination, and recombineering. In addition, we also discussed heterologous protein expression systems used in engineering probiotic LAB. By combining computational biology with genetic engineering, there is a lot of potential to develop next-generation synthetic LAB with capabilities to address bottlenecks in industrial scale-up and complex biologics production. Recently, we started working on Lactochassis project where we aim to develop next generation synthetic LAB for biomedical application.
Collapse
|
7
|
Xiao L, Yang Y, Han S, Rui X, Ma K, Zhang C, Wang G, Li W. Effects of genes required for exopolysaccharides biosynthesis in Lacticaseibacillus paracasei S-NB on cell surface characteristics and probiotic properties. Int J Biol Macromol 2022; 224:292-305. [DOI: 10.1016/j.ijbiomac.2022.10.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/27/2022] [Accepted: 10/13/2022] [Indexed: 11/05/2022]
|
8
|
Shaw D, Miravet‐Verde S, Piñero‐Lambea C, Serrano L, Lluch‐Senar M. LoxTnSeq: random transposon insertions combined with cre/lox recombination and counterselection to generate large random genome reductions. Microb Biotechnol 2021; 14:2403-2419. [PMID: 33325626 PMCID: PMC8601177 DOI: 10.1111/1751-7915.13714] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 11/04/2020] [Accepted: 11/04/2020] [Indexed: 12/13/2022] Open
Abstract
The removal of unwanted genetic material is a key aspect in many synthetic biology efforts and often requires preliminary knowledge of which genomic regions are dispensable. Typically, these efforts are guided by transposon mutagenesis studies, coupled to deepsequencing (TnSeq) to identify insertion points and gene essentiality. However, epistatic interactions can cause unforeseen changes in essentiality after the deletion of a gene, leading to the redundancy of these essentiality maps. Here, we present LoxTnSeq, a new methodology to generate and catalogue libraries of genome reduction mutants. LoxTnSeq combines random integration of lox sites by transposon mutagenesis, and the generation of mutants via Cre recombinase, catalogued via deep sequencing. When LoxTnSeq was applied to the naturally genome reduced bacterium Mycoplasma pneumoniae, we obtained a mutant pool containing 285 unique deletions. These deletions spanned from > 50 bp to 28 Kb, which represents 21% of the total genome. LoxTnSeq also highlighted large regions of non-essential genes that could be removed simultaneously, and other non-essential regions that could not, providing a guide for future genome reductions.
Collapse
Affiliation(s)
- Daniel Shaw
- Centre for Genomic Regulation (CRG)The Barcelona Institute of Science and TechnologyDr. Aiguader 88Barcelona08003Spain
| | - Samuel Miravet‐Verde
- Centre for Genomic Regulation (CRG)The Barcelona Institute of Science and TechnologyDr. Aiguader 88Barcelona08003Spain
| | - Carlos Piñero‐Lambea
- Centre for Genomic Regulation (CRG)The Barcelona Institute of Science and TechnologyDr. Aiguader 88Barcelona08003Spain
- Present address:
Pulmobiotics ltdDr. Aiguader 88Barcelona08003Spain
| | - Luis Serrano
- Centre for Genomic Regulation (CRG)The Barcelona Institute of Science and TechnologyDr. Aiguader 88Barcelona08003Spain
- Universitat Pompeu Fabra (UPF)Barcelona08002Spain
- ICREAPg. Lluís Companys 23Barcelona08010Spain
| | - Maria Lluch‐Senar
- Centre for Genomic Regulation (CRG)The Barcelona Institute of Science and TechnologyDr. Aiguader 88Barcelona08003Spain
- Basic Sciences DepartmentFaculty of Medicine and Health SciencesUniversitat Internacional de CatalunyaSant Cugat del Vallès08195Spain
| |
Collapse
|
9
|
Chawley P, Rana A, Jagadevan S. Envisioning role of ammonia oxidizing bacteria in bioenergy production and its challenges: a review. Crit Rev Biotechnol 2021; 42:931-952. [PMID: 34641754 DOI: 10.1080/07388551.2021.1976099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Ammonia oxidizing bacteria (AOB) play a key role in the biological oxidation of ammonia to nitrite and mark their significance in the biogeochemical nitrogen cycle. There has been significant development in harnessing the ammonia oxidizing potential of AOB in the past few decades. However, very little is known about the potential applications of AOB in the bioenergy sector. As alternate sources of energy represent a thrust area for environmental sustainability, the role of AOB in bioenergy production becomes a significant area of exploration. This review highlights the role of AOB in bioenergy production and emphasizes the understanding of the genetic make-up and key cellular biochemical reactions occurring in AOB, thereby leading to the exploration of its various functional aspects. Recent outcomes in novel ammonia/nitrite oxidation steps occurring in a model AOB - Nitrosomonas europaea propel us to explore several areas of environmental implementation. Here we present the significant role of AOB in microbial fuel cells (MFC) where Nitrosomonas sp. play both anodic and cathodic functions in the generation of bioelectricity. This review also presents the potential role of AOB in curbing fuel demand by producing alternative liquid fuel such as methanol and biodiesel. Herein, the multiple roles of AOB in bioenergy production namely: bioelectricity generation, bio-methanol, and biodiesel production have been presented.
Collapse
Affiliation(s)
- Parmita Chawley
- Department of Environmental Science and Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, Jharkhand, India
| | - Anu Rana
- Department of Environmental Science and Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, Jharkhand, India
| | - Sheeja Jagadevan
- Department of Environmental Science and Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, Jharkhand, India
| |
Collapse
|
10
|
Wang S, Tian R, Liu B, Wang H, Liu J, Li C, Li M, Evivie SE, Li B. Effects of carbon concentration, oxygen, and controlled pH on the engineering strain Lactiplantibacillus casei E1 in the production of bioethanol from sugarcane molasses. AMB Express 2021; 11:95. [PMID: 34176008 PMCID: PMC8236424 DOI: 10.1186/s13568-021-01257-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 06/16/2021] [Indexed: 01/28/2023] Open
Abstract
Sugarcane molasses are considered a potential source for bioethanol's commercial production because of its availability and low market price. It contains high concentrations of fermentable sugars that can be directly metabolized by microbial fermentation. Heterofermentative lactic acid bacteria, especially Lactiplantibacillus casei, have a high potential to be a biocatalyst in ethanol production that they are characterized by strong abilities of carbohydrate metabolism, ethanol synthesis, and high alcohol tolerance. This study aimed to evaluate the feasibility of producing ethanol by Lactiplantibacillus casei used the ethanologen engineering strain L. casei E1 as a starter culture and cane molasses as substrate medium. The effects of environmental factors on the metabolism of L. casei E1 were analyzed by high-performance liquid chromatography (HPLC) system, and the gene expression of key enzymes in carbon source metabolism was detected using quantitative real-time PCR (RT-qPCR). Results showed that the strain could grow well, ferment sugar quickly in cane molasses. By fermenting this bacterium anaerobically at 37 °C for 36 h incubation in 5 °BX molasses when the fermenter's pH was controlled at 6.0, ethanol yield reached 13.77 g/L, and carbohydrate utilization percentage was 78.60%. RT-qPCR results verified the strain preferentially ferment glucose and fructose of molasses to ethanol at the molecular level. In addition, the metabolism of sugars, especially fructose, would be inhibited by elevating acidity. Our findings support the theoretical basis for exploring Lactic acid bacteria as a starter culture for converting sugarcane molasses into ethanol.
Collapse
Affiliation(s)
- Song Wang
- Food College, Northeast Agricultural University, Harbin, 150030, China
- Shandong Yuwang Ecological Food Industry Co., Ltd, Dezhou, 251200, Shandong, China
| | - Ran Tian
- Food College, Northeast Agricultural University, Harbin, 150030, China
| | - Buwei Liu
- Food College, Northeast Agricultural University, Harbin, 150030, China
| | - Hongcai Wang
- Shandong Yuwang Ecological Food Industry Co., Ltd, Dezhou, 251200, Shandong, China
| | - Jun Liu
- Shandong Yuwang Ecological Food Industry Co., Ltd, Dezhou, 251200, Shandong, China
| | - Chenghui Li
- Shandong Yuwang Ecological Food Industry Co., Ltd, Dezhou, 251200, Shandong, China
| | - Mingyue Li
- Shandong Yuwang Ecological Food Industry Co., Ltd, Dezhou, 251200, Shandong, China
| | - Smith Etareri Evivie
- Food College, Northeast Agricultural University, Harbin, 150030, China
- Department of Animal Science, Faculty of Agriculture, University of Benin, Benin City, 300001, Nigeria
- Department of Food Science and Human Nutrition, Faculty of Agriculture, University of Benin, Benin City, 300001, Nigeria
| | - Bailiang Li
- Food College, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
11
|
Shaw D, Serrano L, Lluch-Senar M. Lox'd in translation: contradictions in the nomenclature surrounding common lox-site mutants and their implications in experiments. MICROBIOLOGY (READING, ENGLAND) 2021; 167:000997. [PMID: 33284099 PMCID: PMC8116776 DOI: 10.1099/mic.0.000997] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 11/13/2020] [Indexed: 11/20/2022]
Abstract
The Cre-Lox system is a highly versatile and powerful DNA recombinase mechanism, mainly used in genetic engineering to insert or remove desired DNA sequences. It is widely utilized across multiple fields of biology, with applications ranging from plants, to mammals, to microbes. A key feature of this system is its ability to allow recombination between mutant lox sites. Two of the most commonly used mutant sites are named lox66 and lox71, which recombine to create a functionally inactive double mutant lox72 site. However, a large portion of the published literature has incorrectly annotated these mutant lox sites, which in turn can lead to difficulties in replication of methods, design of proper vectors and confusion over the proper nomenclature. Here, we demonstrate common errors in annotations, the impacts they can have on experimental viability, and a standardized naming convention. We also show an example of how this incorrect annotation can induce toxic effects in bacteria that lack optimal DNA repair systems, exemplified by Mycoplasma pneumoniae.
Collapse
Affiliation(s)
- Daniel Shaw
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
| | - Luis Serrano
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
- Universitat Pompeu Fabra (UPF), Barcelona 08002, Spain
- ICREA, Pg. Lluís Companys 23, Barcelona 08010, Spain
| | - Maria Lluch-Senar
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
- Pulmobiotics SL, Carrer del Dr. Aiguader, 88, 08003 Barcelona, Spain
| |
Collapse
|
12
|
CRISPR-Cas-mediated gene editing in lactic acid bacteria. Mol Biol Rep 2020; 47:8133-8144. [PMID: 32926267 DOI: 10.1007/s11033-020-05820-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 09/05/2020] [Indexed: 12/12/2022]
Abstract
The high efficiency, convenience and diversity of clustered regular interspaced short palindromic repeats (CRISPR)/CRISPR-associated (Cas) systems are driving a technological revolution in the gene editing of lactic acid bacteria (LAB). Cas-RNA cassettes have been adopted as tools to perform gene deletion, insertion and point mutation in several species of LAB. In this article, we describe the basic mechanisms of the CRISPR-Cas system, and the current gene editing methods available, focusing on the CRISPR-Cas models developed for LAB. We also compare the different types of CRISPR-Cas-based genomic manipulations classified according to the different Cas proteins and the type of recombineering, and discuss the rapidly evolving landscape of CRISPR-Cas application in LAB.
Collapse
|
13
|
Wang C, Cui Y, Qu X. Optimization of electrotransformation (ETF) conditions in lactic acid bacteria (LAB). J Microbiol Methods 2020; 174:105944. [DOI: 10.1016/j.mimet.2020.105944] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 05/11/2020] [Accepted: 05/11/2020] [Indexed: 10/24/2022]
|
14
|
Abstract
Clostridia are a group of Gram-positive anaerobic bacteria of medical and industrial importance for which limited genetic methods are available. Here, we demonstrate an approach to make large genomic deletions and insertions in the model Clostridium phytofermentans by combining designed group II introns (targetrons) and Cre recombinase. We apply these methods to delete a 50-gene prophage island by programming targetrons to position markerless lox66 and lox71 sites, which mediate deletion of the intervening 39-kb DNA region using Cre recombinase. Gene expression and growth of the deletion strain showed that the prophage genes contribute to fitness on nonpreferred carbon sources. We also inserted an inducible fluorescent reporter gene into a neutral genomic site by recombination-mediated cassette exchange (RMCE) between genomic and plasmid-based tandem lox sites bearing heterospecific spacers to prevent intracassette recombination. These approaches generally enable facile markerless genome engineering in clostridia to study their genome structure and regulation.IMPORTANCE Clostridia are anaerobic bacteria with important roles in intestinal and soil microbiomes. The inability to experimentally modify the genomes of clostridia has limited their study and application in biotechnology. Here, we developed a targetron-recombinase system to efficiently make large targeted genomic deletions and insertions using the model Clostridium phytofermentans We applied this approach to reveal the importance of a prophage to host fitness and introduce an inducible reporter by recombination-mediated cassette exchange.
Collapse
|
15
|
Restructured Lactococcus lactis strains with emergent properties constructed by a novel highly efficient screening system. Microb Cell Fact 2019; 18:198. [PMID: 31727072 PMCID: PMC6854693 DOI: 10.1186/s12934-019-1249-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 10/31/2019] [Indexed: 12/22/2022] Open
Abstract
Background After 2.83% genome reduction in Lactococcus lactis NZ9000, a good candidate host for proteins production was obtained in our previous work. However, the gene deletion process was time consuming and laborious. Here, we proposed a convenient gene deletion method suitable for large-scale genome reduction in L. lactis NZ9000. Results Plasmid pNZ5417 containing a visually selectable marker PnisZ-lacZ was constructed, which allowed more efficient and convenient screening of gene deletion mutants. Using this plasmid, two large nonessential DNA regions, L-4A and L-5A, accounting for 1.25% of the chromosome were deleted stepwise in L. lactis 9k-3. When compared with the parent strain, the mutant L. lactis 9k-5A showed better growth characteristics, transformability, carbon metabolic capacity, and amino acids biosynthesis. Conclusions Thus, this study provides a convenient and efficient system for large-scale genome deletion in L. lactis through application of visually selectable marker, which could be helpful for rapid genome streamlining and generation of restructured L. lactis strains that can be used as cell factories.
Collapse
|
16
|
Börner RA, Kandasamy V, Axelsen AM, Nielsen AT, Bosma EF. Genome editing of lactic acid bacteria: opportunities for food, feed, pharma and biotech. FEMS Microbiol Lett 2019; 366:5251984. [PMID: 30561594 PMCID: PMC6322438 DOI: 10.1093/femsle/fny291] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 12/16/2018] [Indexed: 12/16/2022] Open
Abstract
This mini-review provides a perspective of traditional, emerging and future applications of lactic acid bacteria (LAB) and how genome editing tools can be used to overcome current challenges in all these applications. It also describes available tools and how these can be further developed, and takes current legislation into account. Genome editing tools are necessary for the construction of strains for new applications and products, but can also play a crucial role in traditional ones, such as food and probiotics, as a research tool for gaining mechanistic insights and discovering new properties. Traditionally, recombinant DNA techniques for LAB have strongly focused on being food-grade, but they lack speed and the number of genetically tractable strains is still rather limited. Further tool development will enable rapid construction of multiple mutants or mutant libraries on a genomic level in a wide variety of LAB strains. We also propose an iterative Design–Build–Test–Learn workflow cycle for LAB cell factory development based on systems biology, with ‘cell factory’ expanding beyond its traditional meaning of production strains and making use of genome editing tools to advance LAB understanding, applications and strain development.
Collapse
Affiliation(s)
- Rosa A Börner
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet B220, 2800 Kongens Lyngby, Denmark
| | - Vijayalakshmi Kandasamy
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet B220, 2800 Kongens Lyngby, Denmark
| | - Amalie M Axelsen
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet B220, 2800 Kongens Lyngby, Denmark
| | - Alex T Nielsen
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet B220, 2800 Kongens Lyngby, Denmark
| | - Elleke F Bosma
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet B220, 2800 Kongens Lyngby, Denmark
| |
Collapse
|
17
|
Huang H, Song X, Yang S. Development of a RecE/T-Assisted CRISPR-Cas9 Toolbox for Lactobacillus. Biotechnol J 2019; 14:e1800690. [PMID: 30927506 DOI: 10.1002/biot.201800690] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 02/26/2019] [Indexed: 12/29/2022]
Abstract
Lactobacilli are members of a large family involved in industrial food fermentation, therapeutics, and health promotion. However, the development of genetic manipulation tools for this genus lags behind its relative industrial and medical significance. The development of clustered regularly interspaced short palindromic repeat (CRISPR)-based genome engineering for Lactobacillus is now underway. However, some Lactobacillus species are sensitive to CRISPR-Cas9 induced double strand breaks (DSBs) due to a deficiency in homology-directed repair (HDR), which allows chromosomal genetic editing. Here, phage-derived RecE/T is coupled with CRISPR-Cas9 and the transcriptional activity of broad-spectrum host promoters is assessed to set up a versatile toolbox containing a recombination helper plasmid and a broad host CRISPR-Cas9 editing plasmid, which enables efficient genome editing in Lactobacillus plantarum (L. plantarum) WCFS1 and Lactobacillus brevis (L. brevis) ATCC367. The RecE/T-assisted CRISPR-Cas9 toolbox realizes single gene deletions at an efficiency of 50-100% in seven days. Furthermore, the chromosomal gene replacement of Lp_0537 using a P23 -pyruvate decarboxylase (pdc) expression cassette is accomplished with an efficiency of 35.7%. This study establises a RecE/T-assisted CRISPR genome editing toolbox for L. plantarum WCFS1 and L. brevis ATCC367 and also demonstrate that RecE/T-assisted CRISPR-Cas9 is an effective genome editing system, which can be readily implemented in Lactobacilli.
Collapse
Affiliation(s)
- He Huang
- Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, 200032, Shanghai, China
| | - Xin Song
- School of Medical Instrument and Food Engineering, Shanghai Engineering Research Center of Food Microbiology, University of Shanghai for Science and Technology, 516 Jungong Road, 200093, Shanghai, China
| | - Sheng Yang
- Jiangsu National Synergetic Innovation Center for Advanced Materials, SICAM, 200 North Zhongshan Road, Nanjing, China.,Shanghai Research and Development Center of Industrial Biotechnology, Shanghai, China
| |
Collapse
|
18
|
Targeted and Repetitive Chromosomal Integration Enables High-Level Heterologous Gene Expression in Lactobacillus casei. Appl Environ Microbiol 2019; 85:AEM.00033-19. [PMID: 30824448 DOI: 10.1128/aem.00033-19] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 02/23/2019] [Indexed: 12/18/2022] Open
Abstract
Lactobacillus casei is a potential cell factory for the production of enzymes and bioactive molecules using episomal plasmids, which suffer from genetic instability. While chromosomal integration strategies can provide genetic stability of recombinant proteins, low expression yields limit their application. To address this problem, we developed a two-step integration strategy in Lb. casei by combination of the LCABL_13040-50-60 recombineering system (comprised of LCABL_1340, LCABL_13050, and LCABL_13060) with the Cre/loxP site-specific recombination system, with an efficiency of ∼3.7 × 103 CFU/µg DNA. A gfp gene was successfully integrated into six selected chromosomal sites, and the relative fluorescence intensities (RFUs) of the resulting integrants varied up to ∼3.7-fold depending on the integrated site, among which the LCABL_07270 site gfp integration showed the highest RFU. However, integrants with gfp gene(s) integrated into the LCABL_07270 site showed various RFUs, ranging from 993 ± 89 to 7,289 ± 564 and corresponding to 1 to 13.68 ± 1.08 copies of gfp gene integration. Moreover, the integrant with 13.68 ± 1.08 copies of the gfp gene had a more stable RFU after 63 generations compared to that of a plasmid-engineered strain. To investigate the feasibility of this system for bioactive molecules with high expression levels, the fimbrial adhesin gene, faeG, from Escherichia coli was tested and successfully integrated into the LCABL_07270 site with 5.51 ± 0.25 copies, and the integrated faeG achieved stable expression. All results demonstrate that this two-step integration system could achieve a high yield of heterologous gene expression by repetitive integration at a targeted chromosomal location in Lb. casei IMPORTANCE Lactic acid bacteria (LAB), including Lactobacillus casei, have the potential for overexpression of heterologous proteins, such as bioactive molecules and enzymes. However, traditional genetic tools for expression of these proteins show genetic instability or low yields of the desired product. In this study, we provide a procedure for repetitive integration of genes at various chromosomal locations, achieving high-level and stable expression of proteins in Lb. casei without selective pressure. The protocol developed in this study provides an essential reference for chromosomal overexpression of proteins or bioactive molecules in LAB.
Collapse
|
19
|
Steensels J, Gorkovskiy A, Verstrepen KJ. SCRaMbLEing to understand and exploit structural variation in genomes. Nat Commun 2018; 9:1937. [PMID: 29789533 PMCID: PMC5964227 DOI: 10.1038/s41467-018-04308-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 04/19/2018] [Indexed: 01/05/2023] Open
Affiliation(s)
- Jan Steensels
- VIB-KU Leuven Center for Microbiology, Gaston Geenslaan 1, 3001, Leuven, Belgium.,CMPG Laboratory of Genetics and Genomics, Department M2S, KU Leuven, Gaston Geenslaan 1, 3001, Leuven, Belgium
| | - Anton Gorkovskiy
- VIB-KU Leuven Center for Microbiology, Gaston Geenslaan 1, 3001, Leuven, Belgium.,CMPG Laboratory of Genetics and Genomics, Department M2S, KU Leuven, Gaston Geenslaan 1, 3001, Leuven, Belgium
| | - Kevin J Verstrepen
- VIB-KU Leuven Center for Microbiology, Gaston Geenslaan 1, 3001, Leuven, Belgium. .,CMPG Laboratory of Genetics and Genomics, Department M2S, KU Leuven, Gaston Geenslaan 1, 3001, Leuven, Belgium.
| |
Collapse
|