1
|
Hur DH, Lee J, Park SJ, Jeong KJ. Engineering of Pseudomonas putida to produce medium-chain-length polyhydroxyalkanoate from crude glycerol. Int J Biol Macromol 2024; 281:136411. [PMID: 39393726 DOI: 10.1016/j.ijbiomac.2024.136411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 09/14/2024] [Accepted: 10/06/2024] [Indexed: 10/13/2024]
Abstract
The development of biodegradable polymers is crucial for addressing environmental issues and waste management challenges, and a medium-chain-length polyhydroxyalkanoate(MCL-PHA) exhibits significant application potential in diverse industrial and environmental contexts owing to its versatility and biodegradability. Here, Pseudomonas putida was metabolically engineered to produce MCL-PHA from crude glycerol. To increase the precursor pool, we first deleted the phaC1ZC2 operon and introduced a plasmid-based overexpression of phaC2 and phaG, and the MCL-PHA content derived from glycerol increased to 18.27 wt% at 60 h. Subsequently, by optimizing the acoA expression through promoter selection and UTR design, the MCL-PHA content further increased to 19.93 wt% at 72 h. Additionally, a notable increase in MCL-PHA production was achieved using PhaC2 designed to have no substrate-trapping effect (PhaC2A477A478). This improvement was guided by filling structural data gaps using AlphaFold2 and docking simulations that revealed the substrate-trapping phenomenon. High-level production of MCL-PHA was achieved through fed-batch fermentation using the final engineered P. putida from refined glycerol, which yielded 34.9 g/L of MCL-PHA with 44.64 wt% at 180 h. Furthermore, using crude glycerol as the sole carbon source enabled the production of 49.5 g/L of MCL-PHA with 45.41 wt% at 180 h in fed-batch culture.
Collapse
Affiliation(s)
- Dong Hoon Hur
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Joonyoung Lee
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Si Jae Park
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea.
| | - Ki Jun Jeong
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea; Graduate School of Engineering Biology, KAIST, Daejeon 34141, Republic of Korea; KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.
| |
Collapse
|
2
|
Pinyaphong P, La-up A. Optimization of 1,3-propanediol production from fermentation of crude glycerol by immobilized Bacillus pumilus. Heliyon 2024; 10:e35349. [PMID: 39170159 PMCID: PMC11336579 DOI: 10.1016/j.heliyon.2024.e35349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 08/23/2024] Open
Abstract
This study investigates the application of crude glycerol to the production of 1,3-propanediol by immobilized cells of Bacillus pumilus. This is a novel application of a naturally occurring producer obtained from a wastewater storage pond in Thailand. Crude glycerol was obtained through the methanolysis of palm oil, which was catalyzed using rice bran lipase. Ten components of the fermentation medium were screened using a Plackett-Burman design. The statistical significance of the results was determined using multiple linear regression with a backward elimination approach. The significance level was set to 5 % (p < 0.05). Only crude glycerol, (NH4)2SO4, MgSO4, and CaCl2 significantly affected 1,3-propanediol production by immobilized B. pumilus. Furthermore, preliminary screenings of environmental conditions used for 1,3-propanediol production were conducted using a Plackett-Burman design. The results showed that the temperature, time, and quantity of immobilized cells were factors that significantly affected 1,3-propanediol yield. Therefore, the quantities of crude glycerol, (NH4)2SO4, MgSO4, and CaCl2 and the temperature, time, and quantity of immobilized cells were optimized using response surface methodology based on a Box-Behnken design. The model predicted a maximum 1,3-propanediol yield of 45.68 g/L with the following conditions: 60 g/L crude glycerol, 5 g/L (NH4)2SO4, 0.55 g/L MgSO4, 0.05 g/L CaCl2, a fermentation duration of 101 h, and a temperature of 25 °C, with 250 g of immobilized cells. The validation trials confirmed a production level of 44.12 ± 1.81 g/L, indicating a 2.86-fold production increase relative to the control group. Overall, this study demonstrates the potential of using crude glycerol as a substrate to improve the yields of 1,3-propanediol produced by B. pumilus.
Collapse
Affiliation(s)
- Porntippa Pinyaphong
- Department of Chemistry, Faculty of Science and Technology, Uttaradit Rajabhat University, Uttaradit, 53000, Thailand
| | - Aroon La-up
- Mahidol University, Nakhonsawan Campus, Nakhonsawan, 60130, Thailand
| |
Collapse
|
3
|
Jo MH, Ju JH, Heo SY, Son CB, Jeong KJ, Oh BR. High production of enantiopure (R,R)-2,3-butanediol from crude glycerol by Klebsiella pneumoniae with an engineered oxidative pathway and a two-stage agitation strategy. Microb Cell Fact 2024; 23:205. [PMID: 39044245 PMCID: PMC11267846 DOI: 10.1186/s12934-024-02480-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/08/2024] [Indexed: 07/25/2024] Open
Abstract
BACKGROUND (R,R)-2,3-butanediol (BDO) is employed in a variety of applications and is gaining prominence due to its unique physicochemical features. The use of glycerol as a carbon source for 2,3-BDO production in Klebsiella pneumoniae has been limited, since 1,3-propanediol (PDO) is generated during glycerol fermentation. RESULTS In this study, the inactivation of the budC gene in K. pneumoniae increased the production rate of (R,R)-2,3-BDO from 21.92 ± 2.10 to 92.05 ± 1.20%. The major isomer form of K. pneumoniae (meso-2,3-BDO) was shifted to (R,R)-2,3-BDO. The purity of (R,R)-2,3-BDO was examined by agitation speed, and 98.54% of (R,R)-2,3-BDO was obtained at 500 rpm. However, as the cultivation period got longer, the purity of (R,R)-2,3-BDO declined. For this problem, a two-step agitation speed control strategy (adjusted from 500 to 400 rpm after 24 h) and over-expression of the dhaD gene involved in (R,R)-2,3-BDO biosynthesis were used. Nevertheless, the purity of (R,R)-2,3-BDO still gradually decreased over time. Finally, when pure glycerol was replaced with crude glycerol, the titer of 89.47 g/L of (R,R)-2,3-BDO (1.69 g/L of meso-2,3-BDO), productivity of 1.24 g/L/h, and yield of 0.35 g/g consumed crude glycerol was achieved while maintaining a purity of 98% or higher. CONCLUSIONS This study is meaningful in that it demonstrated the highest production and productivity among studies in that produced (R,R)-2,3-BDO with a high purity in Klebsiella sp. strains. In addition, to the best of our knowledge, this is the first study to produce (R,R)-2,3-BDO using glycerol as the sole carbon source.
Collapse
Affiliation(s)
- Min-Ho Jo
- Microbial Biotechnology Research Center, Jeonbuk Branch Institute, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup, Jeonbuk, 56212, Republic of Korea
- Department of Chemical and Biomolecular Engineering and Institute for the BioCentury, KAIST, Daejeon, 34141, Republic of Korea
| | - Jung-Hyun Ju
- Microbial Biotechnology Research Center, Jeonbuk Branch Institute, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup, Jeonbuk, 56212, Republic of Korea
| | - Sun-Yeon Heo
- Microbial Biotechnology Research Center, Jeonbuk Branch Institute, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup, Jeonbuk, 56212, Republic of Korea
| | - Chang-Bum Son
- Microbial Biotechnology Research Center, Jeonbuk Branch Institute, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup, Jeonbuk, 56212, Republic of Korea
| | - Ki Jun Jeong
- Department of Chemical and Biomolecular Engineering and Institute for the BioCentury, KAIST, Daejeon, 34141, Republic of Korea
| | - Baek-Rock Oh
- Microbial Biotechnology Research Center, Jeonbuk Branch Institute, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup, Jeonbuk, 56212, Republic of Korea.
| |
Collapse
|
4
|
Pan DT, Wang P, Wang XL, Sun YQ, Xiu ZL. Dynamic flux balance analysis of 1,3-propanediol production by clostridium butyricum fermentation. Biotechnol Prog 2024; 40:e3411. [PMID: 37985220 DOI: 10.1002/btpr.3411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 10/23/2023] [Accepted: 11/01/2023] [Indexed: 11/22/2023]
Abstract
To study the relationship between the yield of 1,3-propanediol (1,3-PDO) and the flux change of the Clostridium butyricum metabolic pathway, an optimized calculation method based on dynamic flux balance analysis was used by combining genome-scale flux balance analysis with a kinetic model. A more comprehensive and extensive metabolic pathway was obtained by optimization calculations. The primary extended branches include: the dihydroxyacetone node, which enters the pentose phosphate pathway; the α-oxoglutarate node, which has synthetic metabolic pathways for glutamic acid and amino acids; and the serine and homocysteine nodes, which produce cystathionine before homocysteine enters the methionine cycle pathway. According to the expanded metabolic network, the flux distribution of key nodes in the metabolic pathway and the relationship between the flux distribution ratio of nodes and the yield of 1,3-PDO were analyzed. At the dihydroxyacetone node, the flux of dihydroxyacetone converted to dihydroxyacetone phosphate was positively correlated with the yield of 1,3-PDO. As an important intermediate product, the flux change in the metabolic pathway of α-oxoglutarate reacting with amino acids to produce glutamic acid is positively correlated with the yield. When pyruvate was used as the central node to convert into lactic acid and α-oxoglutarate, the proportion of branch flux was negatively correlated with the yield of 1,3-PDO. These studies provide a theoretical basis for the optimization and further study of the metabolic pathway of C. butyricum.
Collapse
Affiliation(s)
- Duo-Tao Pan
- Institute of Information and Engineering, Shenyang University of Chemical and Technology, Shenyang, PR China
| | - Pan Wang
- Institute of Information and Engineering, Shenyang University of Chemical and Technology, Shenyang, PR China
| | - Xiao-Li Wang
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, PR China
| | - Ya-Qin Sun
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, PR China
| | - Zhi-Long Xiu
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, PR China
| |
Collapse
|
5
|
Agrawal D, Budakoti M, Kumar V. Strategies and tools for the biotechnological valorization of glycerol to 1, 3-propanediol: Challenges, recent advancements and future outlook. Biotechnol Adv 2023; 66:108177. [PMID: 37209955 DOI: 10.1016/j.biotechadv.2023.108177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/10/2023] [Accepted: 05/17/2023] [Indexed: 05/22/2023]
Abstract
Global efforts towards decarbonization, environmental sustainability, and a growing impetus for exploiting renewable resources such as biomass have spurred the growth and usage of bio-based chemicals and fuels. In light of such developments, the biodiesel industry will likely flourish, as the transport sector is taking several initiatives to attain carbon-neutral mobility. However, this industry would inevitably generate glycerol as an abundant waste by-product. Despite being a renewable organic carbon source and assimilated by several prokaryotes, presently realizing glycerol-based biorefinery is a distant reality. Among several platform chemicals such as ethanol, lactic acid, succinic acid, 2, 3-butanediol etc. 1, 3-propanediol (1, 3-PDO) is the only chemical naturally produced by fermentation with glycerol as a native substrate. The recent commercialization of glycerol-based 1, 3-PDO by Metabolic Explorer, France, has revived research interests in developing alternate cost-competitive, scalable and marketable bioprocesses. The current review outlines natural glycerol assimilating and 1, 3-PDO-producing microbes, their metabolic pathways, and associated genes. Later, technical barriers are carefully examined, such as the direct use of industrial glycerol as input material and genetic and metabolic issues related to microbes alleviating their industrial use. Biotechnological interventions exploited in the past five years, which can substantially circumvent these challenges, such as microbial bioprospecting, mutagenesis, metabolic, evolutionary and bioprocess engineering, including their combinations, are discussed in detail. The concluding section sheds light on some of the emerging and most promising breakthroughs which have resulted in evolving new, efficient, and robust microbial cell factories and/or bioprocesses for glycerol-based 1, 3-PDO production.
Collapse
Affiliation(s)
- Deepti Agrawal
- Biochemistry and Biotechnology Area, Material Resource Efficiency Division, CSIR- Indian Institute of Petroleum, Mohkampur, Dehradun 248005, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDG Campus, Postal Staff College Area, Sector 19, Kamla Nehru Nagar, Ghaziabad 201002, India.
| | - Mridul Budakoti
- Biochemistry and Biotechnology Area, Material Resource Efficiency Division, CSIR- Indian Institute of Petroleum, Mohkampur, Dehradun 248005, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDG Campus, Postal Staff College Area, Sector 19, Kamla Nehru Nagar, Ghaziabad 201002, India
| | - Vinod Kumar
- Centre for Climate and Environmental Protection, School of Water, Energy and Environment, Cranfield University, Cranfield MK43 0AL, UK
| |
Collapse
|
6
|
Jo MH, Ju JH, Heo SY, Cho J, Jeong KJ, Kim MS, Kim CH, Oh BR. Production of 1,2-propanediol from glycerol in Klebsiella pneumoniae GEM167 with flux enhancement of the oxidative pathway. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:18. [PMID: 36747250 PMCID: PMC9903448 DOI: 10.1186/s13068-023-02269-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 01/27/2023] [Indexed: 02/08/2023]
Abstract
BACKGROUND To support the sustainability of biodiesel production, by-products, such as crude glycerol, should be converted into high-value chemical products. 1,2-propanediol (1,2-PDO) has been widely used as a building block in the chemical and pharmaceutical industries. Recently, the microbial bioconversion of lactic acid into 1,2-PDO is attracting attention to overcome limitations of previous biosynthetic pathways for production of 1,2-PDO. In this study, we examined the effect of genetic engineering, metabolic engineering, and control of bioprocess factors on the production of 1,2-PDO from lactic acid by K. pneumoniae GEM167 with flux enhancement of the oxidative pathway, using glycerol as carbon source. RESULTS We developed K. pneumoniae GEM167ΔadhE/pBR-1,2PDO, a novel bacterial strain that has blockage of ethanol biosynthesis and biosynthesized 1,2-PDO from lactic acid when glycerol is carbon source. Increasing the agitation speed from 200 to 400 rpm not only increased 1,2-PDO production by 2.24-fold to 731.0 ± 24.7 mg/L at 48 h but also increased the amount of a by-product, 2,3-butanediol. We attempted to inhibit 2,3-butanediol biosynthesis using the approaches of pH control and metabolic engineering. Control of pH at 7.0 successfully increased 1,2-PDO production (1016.5 ± 37.3 mg/L at 48 h), but the metabolic engineering approach was not successful. The plasmid in this strain maintained 100% stability for 72 h. CONCLUSIONS This study is the first to report the biosynthesis of 1,2-PDO from lactic acid in K. pneumoniae when glycerol was carbon source. The 1,2-PDO production was enhanced by blocking the synthesis of 2,3-butanediol through pH control. Our results indicate that K. pneumoniae GEM167 has potential for the production of additional valuable chemical products from metabolites produced through oxidative pathways.
Collapse
Affiliation(s)
- Min-Ho Jo
- grid.249967.70000 0004 0636 3099Microbial Biotechnology Research Center, Jeonbuk Branch Institute, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup, Jeonbuk 56212 Republic of Korea
| | - Jung-Hyun Ju
- grid.249967.70000 0004 0636 3099Microbial Biotechnology Research Center, Jeonbuk Branch Institute, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup, Jeonbuk 56212 Republic of Korea
| | - Sun-Yeon Heo
- grid.249967.70000 0004 0636 3099Microbial Biotechnology Research Center, Jeonbuk Branch Institute, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup, Jeonbuk 56212 Republic of Korea
| | - Jaehoon Cho
- grid.454135.20000 0000 9353 1134Green and Sustainable Materials R&D Department, Korea Institute of Industrial Technology, Cheonan, Chungcheongnam 31056 Republic of Korea
| | - Ki Jun Jeong
- grid.37172.300000 0001 2292 0500Department of Chemical and Biomolecular Engineering and Institute for the BioCentury, KAIST, Daejeon, 34141 Republic of Korea
| | - Min-Soo Kim
- grid.249967.70000 0004 0636 3099Microbial Biotechnology Research Center, Jeonbuk Branch Institute, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup, Jeonbuk 56212 Republic of Korea
| | - Chul-Ho Kim
- grid.249967.70000 0004 0636 3099Microbial Biotechnology Research Center, Jeonbuk Branch Institute, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup, Jeonbuk 56212 Republic of Korea
| | - Baek-Rock Oh
- Microbial Biotechnology Research Center, Jeonbuk Branch Institute, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup, Jeonbuk, 56212, Republic of Korea.
| |
Collapse
|
7
|
Lee JA, Kim HU, Na JG, Ko YS, Cho JS, Lee SY. Factors affecting the competitiveness of bacterial fermentation. Trends Biotechnol 2022; 41:798-816. [PMID: 36357213 DOI: 10.1016/j.tibtech.2022.10.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/05/2022] [Accepted: 10/12/2022] [Indexed: 11/09/2022]
Abstract
Sustainable production of chemicals and materials from renewable non-food biomass using biorefineries has become increasingly important in an effort toward the vision of 'net zero carbon' that has recently been pledged by countries around the world. Systems metabolic engineering has allowed the efficient development of microbial strains overproducing an increasing number of chemicals and materials, some of which have been translated to industrial-scale production. Fermentation is one of the key processes determining the overall economics of bioprocesses, but has recently been attracting less research attention. In this Review, we revisit and discuss factors affecting the competitiveness of bacterial fermentation in connection to strain development by systems metabolic engineering. Future perspectives for developing efficient fermentation processes are also discussed.
Collapse
Affiliation(s)
- Jong An Lee
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 four), KAIST Institute for BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea; Systems Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative Laboratory, KAIST, Daejeon 34141, Republic of Korea
| | - Hyun Uk Kim
- Systems Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative Laboratory, KAIST, Daejeon 34141, Republic of Korea; Systems Biology and Medicine Laboratory, Department of Chemical and Biomolecular Engineering, KAIST, Daejeon 34141, Republic of Korea; BioProcess Engineering Research Center and BioInformatics Research Center, KAIST, Daejeon 34141, Republic of Korea
| | - Jeong-Geol Na
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul 04107, Republic of Korea
| | - Yoo-Sung Ko
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 four), KAIST Institute for BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea; Systems Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative Laboratory, KAIST, Daejeon 34141, Republic of Korea
| | - Jae Sung Cho
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 four), KAIST Institute for BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea; Systems Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative Laboratory, KAIST, Daejeon 34141, Republic of Korea
| | - Sang Yup Lee
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 four), KAIST Institute for BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea; Systems Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative Laboratory, KAIST, Daejeon 34141, Republic of Korea; BioProcess Engineering Research Center and BioInformatics Research Center, KAIST, Daejeon 34141, Republic of Korea.
| |
Collapse
|
8
|
Bioconversion of Glycerol into Lactic Acid by a New Bacterial Strain from the Brazilian Cerrado Soil. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8100477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A lactic-acid-producing strain was isolated from the Brazilian Cerrado soil (Brazilian savanna). Glycerol, a byproduct of the biodiesel industry, can be converted into various chemical intermediates of industrial value by biotechnological routes. Klebsiella pneumoniae can metabolize glycerol in environments with or without oxygen and bioconvert it into several chemicals with high value-added, such as lactic acid, 3-hydroxypropionic acid and 1,3 propanediol. The wild-type bacterial strain (2GPP) isolated from a soil sample from the Brazilian Cerrado was determined to be a K. pneumoniae complex that was capable of successfully metabolizing glycerol. Fermentations were performed with different temperatures, pH, and inoculum concentrations to evaluate the best lactic acid production. At first, 1,3-propanediol and L-(+)-lactic acid were produced in mini reactors. A lactic acid production of 3.8 g·L−1 and a decrease in 1,3-propanediol output were observed. Thus, by adjusting process variables such as pH and temperature during fermentation, it was possible to maximize the production of lactic acid and decrease the formation of 1,3-propanediol by utilizing experimental design strategies.
Collapse
|
9
|
Teng Y, Guo C, Xie M, Feng A, Lu X, Zong H, Zhuge B. Modification of substrate and product transport systems in Klebsiella pneumoniae to improve 1,3-propanediol production. FEMS Microbiol Lett 2022; 369:6613194. [PMID: 35731629 DOI: 10.1093/femsle/fnac056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 05/26/2022] [Accepted: 06/18/2022] [Indexed: 11/14/2022] Open
Abstract
Substrate uptake and product export are important for microbial growth and product synthesis. Here, the glycerol uptake facilitator (GlpF) and the members of the resistance-nodulation-cell division (RND) type efflux system were overexpressed in Klebsiella pneumoniae to promote 1,3-propanediol (1,3-PDO) production. Overexpression of the endogenous K. pneumoniae GlpF improved glycerol dehydratase activity and promoted 1,3-PDO titer from 55.6 to 65.1 g/L. RND members AcrA and the AcrE had no impact on 1,3-PDO production. RND members AcrF and the TolC increased 1,3-PDO titer from 55.6 g/L to 68.4 and 65.4 g/L, respectively. MexB significantly decreased glycerol dehydratase activity and 1,3-PDO titer. Notably, MexF dramatically enhanced glycerol dehydratase activity and promoted 1,3-PDO titer and glycerol conversion rate to 74.0 g/L and 0.62 mol/mol, respectively. However, coexpression of the endogenous GlpF and MexF did not further improve 1,3-PDO production. The results present here provided novel information about the applications of the uptake of glycerol and the efflux of 1,3-PDO.
Collapse
Affiliation(s)
- Yu Teng
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China.,The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Chao Guo
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China.,The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Mengmeng Xie
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China.,The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Ao Feng
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China.,The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Xinyao Lu
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China.,The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Hong Zong
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China.,The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Bin Zhuge
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China.,The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
10
|
Wong N, Jantama K. Engineering Escherichia coli for a high yield of 1,3-propanediol near the theoretical maximum through chromosomal integration and gene deletion. Appl Microbiol Biotechnol 2022; 106:2937-2951. [PMID: 35416488 DOI: 10.1007/s00253-022-11898-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 03/15/2022] [Accepted: 03/26/2022] [Indexed: 11/02/2022]
Abstract
Glycerol dehydratase (gdrAB-dhaB123) operon from Klebsiella pneumoniae and NADPH-dependent 1,3-propanediol oxidoreductase (yqhD) from Escherichia coli were stably integrated on the chromosomal DNA of E. coli under the control of the native-host ldhA and pflB constitutive promoters, respectively. The developed E. coli NSK015 (∆ldhA::gdrAB-dhaB123 ∆ackA::FRT ∆pflB::yqhD ∆frdABCD::cat-sacB) produced 1,3-propanediol (1,3-PDO) at the level of 36.8 g/L with a yield of 0.99 mol/mol of glycerol consumed when glucose was used as a co-substrate with glycerol. Co-substrate of glycerol and cassava starch was also utilized for 1,3-PDO production with the concentration and yield of 31.9 g/L and 0.84 mol/mol of glycerol respectively. This represents a work for efficient 1,3-PDO production in which the overexpression of heterologous genes on the E. coli host genome devoid of plasmid expression systems. Plasmids, antibiotics, IPTG, and rich nutrients were omitted during 1,3-PDO production. This may allow a further application of E. coli NSK015 for the efficient 1,3-PDO production in an economically industrial scale. KEY POINTS: • gdrAB-dhaB123 and yqhD were overexpressed in E. coli devoid of a plasmid system • E. coli NSK015 produced a high yield of 1,3-PDO at 99% theoretical maximum • Cassava starch was alternatively used as substrate for economical 1,3-PDO production.
Collapse
Affiliation(s)
- Nonthaporn Wong
- Metabolic Engineering Research Unit, School of Biotechnology, Institute of Agricultural Technology, Suranaree Sub-District, Suranaree University of Technology, 111 University Avenue, Muang district, Nakhon Ratchasima, 30000, Thailand
| | - Kaemwich Jantama
- Metabolic Engineering Research Unit, School of Biotechnology, Institute of Agricultural Technology, Suranaree Sub-District, Suranaree University of Technology, 111 University Avenue, Muang district, Nakhon Ratchasima, 30000, Thailand.
| |
Collapse
|
11
|
Jo MH, Kim B, Ju JH, Heo SY, Ahn KH, Lee HJ, Yeom HS, Jang H, Kim MS, Kim CH, Oh BR. Tremella fuciformis TFCUV5 Mycelial Culture-derived Exopolysaccharide Production and Its Anti-aging Effects on Skin Cells. BIOTECHNOL BIOPROC E 2021. [DOI: 10.1007/s12257-020-0361-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
12
|
Ju JH, Heo SY, Choi SW, Kim YM, Kim MS, Kim CH, Oh BR. Effective bioconversion of 1,3-propanediol from biodiesel-derived crude glycerol using organic acid resistance-enhanced Lactobacillus reuteri JH83. BIORESOURCE TECHNOLOGY 2021; 337:125361. [PMID: 34320778 DOI: 10.1016/j.biortech.2021.125361] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 06/13/2023]
Abstract
Organic acids produced during the fermentation of lactic acid bacteria inhibit cellular growth and the production of 1,3-propanediol (1,3-PDO). Lactobacillus reuteri JH83, which has an increase of 18.6% in organic acid resistance, was obtained through electron beam irradiation mutagenesis irrelevant to the problem of genetically modified organisms. The maximum bioconversion of 1,3-PDO in fed-batch fermentation using pure glycerol by L. reuteri JH83 was 93.2 g/L at 72 h, and the productivity was 1.29 g/L·h, which achieved an increase by 34.6%, compared to that of the wild-type strain. In addition, the result of fed-batch fermentation for the production of 1,3-PDO using crude glycerol was not significantly different from that of pure glycerol. Additionally, transcriptome analysis confirmed changes in the expression levels of sucrose phosphorylase, which is a major facilitator superfamily transporter, and muramyl ligase family proteins, which protect lactic acid bacteria from various stressors, such as organic acids.
Collapse
Affiliation(s)
- Jung-Hyun Ju
- Microbial Biotechnology Research Center, Jeonbuk Branch Institute, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup, Jeonbuk 56212, Republic of Korea
| | - Sun-Yeon Heo
- Microbial Biotechnology Research Center, Jeonbuk Branch Institute, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup, Jeonbuk 56212, Republic of Korea
| | - Sang-Wha Choi
- Microbial Biotechnology Research Center, Jeonbuk Branch Institute, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup, Jeonbuk 56212, Republic of Korea
| | - Young-Min Kim
- Department of Food Science & Technology and Functional Food Research Center, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Min-Soo Kim
- Microbial Biotechnology Research Center, Jeonbuk Branch Institute, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup, Jeonbuk 56212, Republic of Korea
| | - Chul-Ho Kim
- Microbial Biotechnology Research Center, Jeonbuk Branch Institute, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup, Jeonbuk 56212, Republic of Korea
| | - Baek-Rock Oh
- Microbial Biotechnology Research Center, Jeonbuk Branch Institute, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup, Jeonbuk 56212, Republic of Korea.
| |
Collapse
|
13
|
Chilakamarry CR, Sakinah AMM, Zularisam AW, Pandey A. Glycerol waste to value added products and its potential applications. SYSTEMS MICROBIOLOGY AND BIOMANUFACTURING 2021; 1:378-396. [PMID: 38624889 PMCID: PMC8182736 DOI: 10.1007/s43393-021-00036-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/27/2021] [Accepted: 06/01/2021] [Indexed: 02/06/2023]
Abstract
The rapid industrial and economic development runs on fossil fuel and other energy sources. Limited oil reserves, environmental issues, and high transportation costs lead towards carbon unbiased renewable and sustainable fuel. Compared to other carbon-based fuels, biodiesel is attracted worldwide as a biofuel for the reduction of global dependence on fossil fuels and the greenhouse effect. During biodiesel production, approximately 10% of glycerol is formed in the transesterification process in a biodiesel plant. The ditching of crude glycerol is important as it contains salt, free fatty acids, and methanol that cause contamination of soil and creates environmental challenges for researchers. However, the excessive cost of crude glycerol refining and market capacity encourage the biodiesel industries for developing a new idea for utilising and produced extra sources of income and treat biodiesel waste. This review focuses on the significance of crude glycerol in the value-added utilisation and conversion to bioethanol by a fermentation process and describes the opportunities of glycerol in various applications. Graphic abstract
Collapse
Affiliation(s)
- Chaitanya Reddy Chilakamarry
- Faculty of Chemical and Process Engineering Technology, Universiti Malaysia Pahang, Gambang, Kuantan , Malaysia 26300
| | - A. M. Mimi Sakinah
- Faculty of Chemical and Process Engineering Technology, Universiti Malaysia Pahang, Gambang, Kuantan , Malaysia 26300
| | - A. W. Zularisam
- Faculty of Civil Engineering Technology , Universiti Malaysia Pahang, Gambang, Kuantan , Malaysia 26300
| | - Ashok Pandey
- Centre for Innovation and Translational Research, CSIR-Indian Institute of Toxicology Research, Lucknow, 226 001 India
| |
Collapse
|
14
|
Li NN, Li W, Feng JX, Zhang WW, Zhang R, Du SH, Liu SY, Xue GH, Yan C, Cui JH, Zhao HQ, Feng YL, Gan L, Zhang Q, Chen C, Liu D, Yuan J. High alcohol-producing Klebsiella pneumoniae causes fatty liver disease through 2,3-butanediol fermentation pathway in vivo. Gut Microbes 2021; 13:1979883. [PMID: 34632939 PMCID: PMC8510565 DOI: 10.1080/19490976.2021.1979883] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 08/26/2021] [Accepted: 08/30/2021] [Indexed: 02/08/2023] Open
Abstract
High alcohol-producing Klebsiella pneumoniae (HiAlc Kpn) in the gut microbiota had been demonstrated to be the causative agent of fatty liver disease (FLD). However, the catabolic pathways for alcohol production in vivo remain unclear. Here, we characterized the genome of HiAlc and medium alcohol-producing (MedAlc) Kpn and constructed an adh (an essential gene encoding alcohol dehydrogenase) knock-out HiAlc Kpn W14 strain (W14Δadh) using CRISPR-Cas9 system. Subsequently, we established the mouse model via gavage administration of HiAlc Kpn W14 and W14 Δadh strains, respectively. Proteome and metabolome analysis showed that 10 proteins and six major metabolites involved in the 2,3-butanediol fermentation pathway exhibited at least a three-fold change or greater during intestinal growth. Compared with HiAlc Kpn W14-fed mice, W14Δadh-fed mice with weak alcohol-producing ability did not show apparent pathological changes at 4 weeks, although some steatotic hepatocytes were observed at 12 weeks. Our data demonstrated that carbohydrate substances are catabolized to produce alcohol and 2,3-butanediol via the 2,3-butanediol fermentation pathway in HiAlc Kpn, which could be a promising clinical diagnostic marker. The production of high amounts of endogenous alcohol is responsible for the observed steatosis effects in hepatocytes in vivo.
Collapse
Affiliation(s)
- Nan-Nan Li
- Bacteriology Laboratory, Capital Institute of Pediatrics, Beijing, China
- Graduate School of Peking Union Medical College, Beijing, China
| | - Wei Li
- Computational Virology Group, Center for Bacteria and Viruses Resources and Bioinformation, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China, Beijing, China
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China, Beijing, China
| | - Jun-Xia Feng
- Bacteriology Laboratory, Capital Institute of Pediatrics, Beijing, China
| | - Wei-Wei Zhang
- Bacteriology Laboratory, Capital Institute of Pediatrics, Beijing, China
| | - Rui Zhang
- Bacteriology Laboratory, Capital Institute of Pediatrics, Beijing, China
| | - Shu-Heng Du
- Bacteriology Laboratory, Capital Institute of Pediatrics, Beijing, China
| | - Shi-Yu Liu
- Bacteriology Laboratory, Capital Institute of Pediatrics, Beijing, China
| | - Guan-Hua Xue
- Bacteriology Laboratory, Capital Institute of Pediatrics, Beijing, China
| | - Chao Yan
- Bacteriology Laboratory, Capital Institute of Pediatrics, Beijing, China
| | - Jing-Hua Cui
- Bacteriology Laboratory, Capital Institute of Pediatrics, Beijing, China
| | - Han-Qing Zhao
- Bacteriology Laboratory, Capital Institute of Pediatrics, Beijing, China
| | - Yan-Ling Feng
- Bacteriology Laboratory, Capital Institute of Pediatrics, Beijing, China
| | - Lin Gan
- Bacteriology Laboratory, Capital Institute of Pediatrics, Beijing, China
| | - Qun Zhang
- Bacteriology Laboratory, Capital Institute of Pediatrics, Beijing, China
| | - Chen Chen
- Biomedical inovation center, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Di Liu
- Computational Virology Group, Center for Bacteria and Viruses Resources and Bioinformation, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China, Beijing, China
| | - Jing Yuan
- Bacteriology Laboratory, Capital Institute of Pediatrics, Beijing, China
- Graduate School of Peking Union Medical College, Beijing, China
| |
Collapse
|
15
|
Zhang F, Liu J, Han X, Gao C, Ma C, Tao F, Xu P. Kinetic characteristics of long-term repeated fed-batch (LtRFb) l-lactic acid fermentation by a Bacillus coagulans strain. Eng Life Sci 2020; 20:562-570. [PMID: 33304229 PMCID: PMC7708950 DOI: 10.1002/elsc.202000043] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Application of degradable plastics is the most critical solution to plastic pollution. As the precursor of biodegradable plastic PLA (polylactic acid), efficient production of l-lactic acid is vital for the commercial replacement of traditional plastics. Bacillus coagulans H-2, a robust strain, was investigated for effective production of l-lactic acid using long-term repeated fed-batch (LtRFb) fermentation. Kinetic characteristics of l-lactic acid fermentation were analyzed by two models, showing that cell-growth coupled production gradually replaces cell-maintenance coupled production during fermentation. With the LtRFb strategy, l-lactic acid was produced at a high final concentration of 192.7 g/L, on average, and a yield of up to 93.0% during 20 batches of repeated fermentation within 487.5 h. Thus, strain H-2 can be used in the industrial production of l-lactic acid with optimization based on kinetic modeling.
Collapse
Affiliation(s)
- Fan Zhang
- State Key Laboratory of Microbial MetabolismJoint International Research Laboratory of Metabolic & Developmental Sciencesand School of Life Sciences & BiotechnologyShanghai Jiao Tong UniversityShanghaiP. R. China
| | - Jiongqin Liu
- State Key Laboratory of Microbial MetabolismJoint International Research Laboratory of Metabolic & Developmental Sciencesand School of Life Sciences & BiotechnologyShanghai Jiao Tong UniversityShanghaiP. R. China
| | - Xiao Han
- State Key Laboratory of Microbial MetabolismJoint International Research Laboratory of Metabolic & Developmental Sciencesand School of Life Sciences & BiotechnologyShanghai Jiao Tong UniversityShanghaiP. R. China
| | - Chao Gao
- State Key Laboratory of Microbial TechnologyShandong UniversityQingdaoP. R. China
| | - Cuiqing Ma
- State Key Laboratory of Microbial TechnologyShandong UniversityQingdaoP. R. China
| | - Fei Tao
- State Key Laboratory of Microbial MetabolismJoint International Research Laboratory of Metabolic & Developmental Sciencesand School of Life Sciences & BiotechnologyShanghai Jiao Tong UniversityShanghaiP. R. China
| | - Ping Xu
- State Key Laboratory of Microbial MetabolismJoint International Research Laboratory of Metabolic & Developmental Sciencesand School of Life Sciences & BiotechnologyShanghai Jiao Tong UniversityShanghaiP. R. China
| |
Collapse
|
16
|
Wang XL, Zhou JJ, Shen JT, Zheng YF, Sun YQ, Xiu ZL. Sequential fed-batch fermentation of 1,3-propanediol from glycerol by Clostridium butyricum DL07. Appl Microbiol Biotechnol 2020; 104:9179-9191. [PMID: 32997204 DOI: 10.1007/s00253-020-10931-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 08/30/2020] [Accepted: 09/23/2020] [Indexed: 12/17/2022]
Abstract
The demand for 1,3-propanediol (1,3-PDO) has increased sharply due to its role as a monomer for the synthesis of polytrimethylene terephthalate (PTT). Although Clostridium butyricum is considered to be one of the most promising bioproducers for 1,3-PDO, its low productivity hinders its application on industrial scale because of the longer time needed for anaerobic cultivation. In this study, an excellent C. butyricum (DL07) strain was obtained with high-level titer and productivity of 1,3-PDO, i.e., 104.8 g/L and 3.38 g/(L•h) vs. 94.2 g/L and 3.04 g/(L•h) using pure or crude glycerol as substrate in fed-batch fermentation, respectively. Furthermore, a novel sequential fed-batch fermentation was investigated, in which the next bioreactor was inoculated by C. butyricum DL07 cells growing at exponential phase in the prior bioreactor. It could run steadily for at least eight cycles. The average concentration of 1,3-PDO in eight cycles was 85 g/L with the average productivity of 3.1 g/(L•h). The sequential fed-batch fermentation could achieve semi-continuous production of 1,3-PDO with higher productivity than repeated fed-batch fermentation and would greatly contribute to the industrial production of 1,3-PDO by C. butyricum. KEY POINTS: • A novel C. butyricum strain was screened to produce 104.8 g/L 1,3-PDO from glycerol. • Corn steep liquor powder was used as a cheap nitrogen source for 1,3-PDO production. • A sequential fed-batch fermentation process was established for 1,3-PDO production. • An automatic glycerol feeding strategy was applied in the production of 1,3-PDO.
Collapse
Affiliation(s)
- Xiao-Li Wang
- School of Bioengineering, Dalian University of Technology, Dalian, 116024, Liaoning Province, People's Republic of China
| | - Jin-Jie Zhou
- School of Bioengineering, Dalian University of Technology, Dalian, 116024, Liaoning Province, People's Republic of China
| | - Jun-Tao Shen
- School of Bioengineering, Dalian University of Technology, Dalian, 116024, Liaoning Province, People's Republic of China
| | - Ya-Feng Zheng
- School of Bioengineering, Dalian University of Technology, Dalian, 116024, Liaoning Province, People's Republic of China
| | - Ya-Qin Sun
- School of Bioengineering, Dalian University of Technology, Dalian, 116024, Liaoning Province, People's Republic of China
| | - Zhi-Long Xiu
- School of Bioengineering, Dalian University of Technology, Dalian, 116024, Liaoning Province, People's Republic of China.
| |
Collapse
|
17
|
Zhao P, Ren M, Ge X, Tian P, Tan T. Development of orthogonal T7 expression system in
Klebsiella pneumoniae. Biotechnol Bioeng 2020; 117:2446-2459. [DOI: 10.1002/bit.27434] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 05/10/2020] [Accepted: 05/17/2020] [Indexed: 11/11/2022]
Affiliation(s)
- Peng Zhao
- Beijing Key Laboratory of Bioprocess, College of Life Science and TechnologyBeijing University of Chemical Technology Beijing China
| | - Minrui Ren
- Beijing Key Laboratory of Bioprocess, College of Life Science and TechnologyBeijing University of Chemical Technology Beijing China
| | - Xizhen Ge
- College of Biochemical EngineeringBeijing Union University Beijing China
| | - Pingfang Tian
- Beijing Key Laboratory of Bioprocess, College of Life Science and TechnologyBeijing University of Chemical Technology Beijing China
| | - Tianwei Tan
- Beijing Key Laboratory of Bioprocess, College of Life Science and TechnologyBeijing University of Chemical Technology Beijing China
| |
Collapse
|
18
|
Ju JH, Wang D, Heo SY, Kim MS, Seo JW, Kim YM, Kim DH, Kang SA, Kim CH, Oh BR. Enhancement of 1,3-propanediol production from industrial by-product by Lactobacillus reuteri CH53. Microb Cell Fact 2020; 19:6. [PMID: 31931797 PMCID: PMC6956512 DOI: 10.1186/s12934-019-1275-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Accepted: 12/24/2019] [Indexed: 12/14/2022] Open
Abstract
Background 1,3-propanediol (1,3-PDO) is the most widely studied value-added product that can be produced by feeding glycerol to bacteria, including Lactobacillus sp. However, previous research reported that L. reuteri only produced small amounts and had low productivity of 1,3-PDO. It is urgent to develop procedures that improve the production and productivity of 1,3-PDO. Results We identified a novel L. reuteri CH53 isolate that efficiently converted glycerol into 1,3-PDO, and performed batch co-fermentation with glycerol and glucose to evaluate its production of 1,3-PDO and other products. We optimized the fermentation conditions and nitrogen sources to increase the productivity. Fed-batch fermentation using corn steep liquor (CSL) as a replacement for beef extract led to 1,3-PDO production (68.32 ± 0.84 g/L) and productivity (1.27 ± 0.02 g/L/h) at optimized conditions (unaerated and 100 rpm). When CSL was used as an alternative nitrogen source, the activity of the vitamin B12-dependent glycerol dehydratase (dhaB) and 1,3-propanediol oxidoreductase (dhaT) increased. Also, the productivity and yield of 1,3-PDO increased as well. These results showed the highest productivity in Lactobacillus species. In addition, hurdle to 1,3-PDO production in this strain were identified via analysis of the half-maximal inhibitory concentration for growth (IC50) of numerous substrates and metabolites. Conclusions We used CSL as a low-cost nitrogen source to replace beef extract for 1,3-PDO production in L. reuteri CH53. These cells efficiently utilized crude glycerol and CSL to produce 1,3-PDO. This strain has great promise for the production of 1,3-PDO because it is generally recognized as safe (GRAS) and non-pathogenic. Also, this strain has high productivity and high conversion yield.
Collapse
Affiliation(s)
- Jung-Hyun Ju
- Microbial Biotechnology Research Center, Jeonbuk Branch Institute, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup, Jeonbuk, 56212, Republic of Korea.,Department of Food Science & Technology and Functional Food Research Center, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Dexin Wang
- Radiation Utilization and Facilities Management Division, Korea Atomic Energy Research Institute, Jeongeup, Jeonbuk, 56212, Republic of Korea.,Institute for Molecular Biology and Genetics, Center for Fungal Pathogenesis, Chonbuk National University, Jeonju, Jeonbuk, 54896, Republic of Korea
| | - Sun-Yeon Heo
- Microbial Biotechnology Research Center, Jeonbuk Branch Institute, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup, Jeonbuk, 56212, Republic of Korea
| | - Min-Soo Kim
- Microbial Biotechnology Research Center, Jeonbuk Branch Institute, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup, Jeonbuk, 56212, Republic of Korea
| | - Jeong-Woo Seo
- Microbial Biotechnology Research Center, Jeonbuk Branch Institute, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup, Jeonbuk, 56212, Republic of Korea
| | - Young-Min Kim
- Department of Food Science & Technology and Functional Food Research Center, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Dae-Hyuk Kim
- Institute for Molecular Biology and Genetics, Center for Fungal Pathogenesis, Chonbuk National University, Jeonju, Jeonbuk, 54896, Republic of Korea
| | - Soon-Ah Kang
- Department of Conversing Technology, Graduate School of Venture, Hoseo University, Seoul, 06724, Republic of Korea
| | - Chul-Ho Kim
- Microbial Biotechnology Research Center, Jeonbuk Branch Institute, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup, Jeonbuk, 56212, Republic of Korea.
| | - Baek-Rock Oh
- Microbial Biotechnology Research Center, Jeonbuk Branch Institute, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup, Jeonbuk, 56212, Republic of Korea.
| |
Collapse
|
19
|
Mitrea L, Vodnar DC. Klebsiella pneumoniae-A Useful Pathogenic Strain for Biotechnological Purposes: Diols Biosynthesis under Controlled and Uncontrolled pH Levels. Pathogens 2019; 8:pathogens8040293. [PMID: 31835652 PMCID: PMC6963399 DOI: 10.3390/pathogens8040293] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 11/18/2019] [Accepted: 12/10/2019] [Indexed: 02/07/2023] Open
Abstract
Despite being a well-known human pathogen, Klebsiella pneumoniae plays a significant role in the biotechnology field, being considered as a microbial cell factory in terms of valuable chemical biosynthesis. In this work, Klebsiella pneumoniae DSMZ 2026 was investigated for its potential to biosynthesize 1,3-propanediol (PDO) and 2,3-butanediol (BDO) during batch fermentation under controlled and uncontrolled pH levels. The bacterial strain was cultivated at a bioreactor level, and it was inoculated in 2 L of specific mineral broth containing 50 g/L of glycerol as the main carbon source. The process was conducted under anaerobic conditions at 37 °C and 180 RPM (rotations per minute) for 24 h. The effect of pH oscillation on the biosynthesis of PDO and BDO was investigated. Samples were taken every 3 h and specific tests were performed: pH measurement, main substrate consumption, PDO and BDO production. The cell morphology was analyzed on both solid and liquid media. After 24 h of cultivation, the maximum concentrations of PDO and BDO were 28.63 ± 2.20 g/L and 18.10 ± 1.10 g/L when the pH value was maintained at 7. Decreased concentrations of PDO and BDO were achieved (11.08 ± 0.14 g/L and 7.35 ± 0.00 g/L, respectively) when the pH level was not maintained at constant values. Moreover, it was identified the presence of other metabolites (lactic, citric, and succinic acids) in the cultivation media at the beginning of the process, after 12 h and 24 h of cultivation.
Collapse
|
20
|
Biodiesel’s trash is a biorefineries’ treasure: the use of “dirty” glycerol as an industrial fermentation substrate. World J Microbiol Biotechnol 2019; 36:2. [DOI: 10.1007/s11274-019-2776-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 11/22/2019] [Indexed: 10/25/2022]
|
21
|
Biodiesel-Derived Glycerol Obtained from Renewable Biomass-A Suitable Substrate for the Growth of Candida zeylanoides Yeast Strain ATCC 20367. Microorganisms 2019; 7:microorganisms7080265. [PMID: 31426397 PMCID: PMC6722897 DOI: 10.3390/microorganisms7080265] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 08/14/2019] [Accepted: 08/15/2019] [Indexed: 12/17/2022] Open
Abstract
Used kitchen oil represents a feasible and renewable biomass to produce green biofuels such as biodiesel. Biodiesel production generates large amounts of by-products such as the crude glycerol fraction, which can be further used biotechnologically as a valuable nutrient for many microorganisms. In this study, we transesterified used kitchen oil with methanol and sodium hydroxide in order to obtain biodiesel and crude glycerol fractions. The crude glycerol fraction consisting of 30% glycerol was integrated into a bioreactor cultivation process as a nutrient source for the growth of Candida zeylanoides ATCC 20367. Cell viability and biomass production were similar to those obtained with batch cultivations on pure glycerol or glucose as the main nutrient substrates. However, the biosynthesis of organic acids (e.g., citric and succinic) was significantly different compared to pure glycerol and glucose used as main carbon sources.
Collapse
|
22
|
Boosting productivity of heterotrophic microalgae by efficient control of the oxygen transfer coefficient using a microbubble sparger. ALGAL RES 2019. [DOI: 10.1016/j.algal.2019.101474] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
23
|
Westbrook AW, Miscevic D, Kilpatrick S, Bruder MR, Moo-Young M, Chou CP. Strain engineering for microbial production of value-added chemicals and fuels from glycerol. Biotechnol Adv 2019; 37:538-568. [DOI: 10.1016/j.biotechadv.2018.10.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Revised: 10/03/2018] [Accepted: 10/10/2018] [Indexed: 12/22/2022]
|
24
|
Recent Advances in the Metabolic Engineering of Klebsiella pneumoniae: A Potential Platform Microorganism for Biorefineries. BIOTECHNOL BIOPROC E 2019. [DOI: 10.1007/s12257-018-0346-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
25
|
Effects of gltA and arcA Mutations on Biomass and 1,3-Propanediol Production in Klebsiella pneumoniae. BIOTECHNOL BIOPROC E 2019. [DOI: 10.1007/s12257-018-0246-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
26
|
Production of Lipid Containing High Levels of Docosahexaenoic Acid by Cultivation of Aurantiochytrium sp. KRS101 Using Jerusalem Artichoke Extract. BIOTECHNOL BIOPROC E 2019. [DOI: 10.1007/s12257-018-0419-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|