1
|
Piao X, Tang Y, Li X, Zhang W, Yang W, Xu X, Wang W, Jiang J, Xu J, Hu K, Xu M, Liu M, Sun M, Jin L. Supercoiled DNA percentage: A key in-process control of linear DNA template for mRNA drug substance manufacturing. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102223. [PMID: 38948330 PMCID: PMC11214521 DOI: 10.1016/j.omtn.2024.102223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 05/16/2024] [Indexed: 07/02/2024]
Abstract
The development of messenger RNA (mRNA) vaccines and therapeutics necessitates the production of high-quality in vitro-transcribed mRNA drug substance with specific critical quality attributes (CQAs), which are closely tied to the uniformity of linear DNA template. The supercoiled plasmid DNA is the precursor to the linear DNA template, and the supercoiled DNA percentage is commonly regarded as a key in-process control (IPC) during the manufacturing of linear DNA template. In this study, we investigate the influence of supercoiled DNA percentage on key mRNA CQAs, including purity, capping efficiency, double-stranded RNA (dsRNA), and distribution of poly(A) tail. Our findings reveal a significant impact of supercoiled DNA percentage on mRNA purity and in vitro transcription yield. Notably, we observe that the impact on mRNA purity can be mitigated through oligo-dT chromatography, alleviating the tight range of DNA supercoiled percentage to some extent. Overall, this study provides valuable insights into IPC strategies for DNA template chemistry, manufacturing, and controls (CMC) and process development for mRNA drug substance.
Collapse
Affiliation(s)
- Xijun Piao
- CATUG Biotechnology, Suzhou 215000, China
- Wuhan CATUG Biotechnology, Wuhan 430074, China
| | - Yujie Tang
- CATUG Biotechnology, Suzhou 215000, China
- CATUG Life Technology, Suzhou 215000, China
| | - Xiuzhi Li
- CATUG Biotechnology, Suzhou 215000, China
- CATUG Life Technology, Suzhou 215000, China
| | - Weicheng Zhang
- CATUG Biotechnology, Suzhou 215000, China
- CATUG Life Technology, Suzhou 215000, China
| | - Wei Yang
- Wuhan CATUG Biotechnology, Wuhan 430074, China
| | - Xining Xu
- CATUG Biotechnology, Suzhou 215000, China
| | - Wenjing Wang
- CATUG Biotechnology, Suzhou 215000, China
- CATUG Life Technology, Suzhou 215000, China
| | - Jiajia Jiang
- CATUG Biotechnology, Suzhou 215000, China
- CATUG Life Technology, Suzhou 215000, China
| | - Jun Xu
- CATUG Biotechnology, Suzhou 215000, China
- CATUG Life Technology, Suzhou 215000, China
| | - Kunkun Hu
- Wuhan CATUG Biotechnology, Wuhan 430074, China
| | - Meiling Xu
- Wuhan CATUG Biotechnology, Wuhan 430074, China
| | - Mengjie Liu
- Wuhan CATUG Biotechnology, Wuhan 430074, China
| | - Mengfei Sun
- CATUG Biotechnology, Suzhou 215000, China
- CATUG Life Technology, Suzhou 215000, China
| | - Lin Jin
- CATUG Biotechnology, Suzhou 215000, China
- Wuhan CATUG Biotechnology, Wuhan 430074, China
- CATUG Inc, Cambridge, MA 02141, United States
- CATUG Life Technology, Suzhou 215000, China
| |
Collapse
|
2
|
Gau BC, Dawdy AW, Wang HL, Bare B, Castaneda CH, Friese OV, Thompson MS, Lerch TF, Cirelli DJ, Rouse JC. Oligonucleotide mapping via mass spectrometry to enable comprehensive primary structure characterization of an mRNA vaccine against SARS-CoV-2. Sci Rep 2023; 13:9038. [PMID: 37270636 DOI: 10.1038/s41598-023-36193-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 05/30/2023] [Indexed: 06/05/2023] Open
Abstract
Oligonucleotide mapping via liquid chromatography with UV detection coupled to tandem mass spectrometry (LC-UV-MS/MS) was recently developed to support development of Comirnaty, the world's first commercial mRNA vaccine which immunizes against the SARS-CoV-2 virus. Analogous to peptide mapping of therapeutic protein modalities, oligonucleotide mapping described here provides direct primary structure characterization of mRNA, through enzymatic digestion, accurate mass determinations, and optimized collisionally-induced fragmentation. Sample preparation for oligonucleotide mapping is a rapid, one-pot, one-enzyme digestion. The digest is analyzed via LC-MS/MS with an extended gradient and resulting data analysis employs semi-automated software. In a single method, oligonucleotide mapping readouts include a highly reproducible and completely annotated UV chromatogram with 100% maximum sequence coverage, and a microheterogeneity assessment of 5' terminus capping and 3' terminus poly(A)-tail length. Oligonucleotide mapping was pivotal to ensure the quality, safety, and efficacy of mRNA vaccines by providing: confirmation of construct identity and primary structure and assessment of product comparability following manufacturing process changes. More broadly, this technique may be used to directly interrogate the primary structure of RNA molecules in general.
Collapse
Affiliation(s)
- Brian C Gau
- BioTherapeutics Pharmaceutical Sciences, Pfizer Inc, Chesterfield, MO, USA.
| | - Andrew W Dawdy
- BioTherapeutics Pharmaceutical Sciences, Pfizer Inc, Chesterfield, MO, USA.
| | - Hanliu Leah Wang
- BioTherapeutics Pharmaceutical Sciences, Pfizer Inc, Chesterfield, MO, USA
| | - Bradley Bare
- BioTherapeutics Pharmaceutical Sciences, Pfizer Inc, Chesterfield, MO, USA
| | - Carlos H Castaneda
- BioTherapeutics Pharmaceutical Sciences, Pfizer Inc, Chesterfield, MO, USA
| | - Olga V Friese
- BioTherapeutics Pharmaceutical Sciences, Pfizer Inc, Chesterfield, MO, USA
| | | | - Thomas F Lerch
- BioTherapeutics Pharmaceutical Sciences, Pfizer Inc, Chesterfield, MO, USA
| | - David J Cirelli
- BioTherapeutics Pharmaceutical Sciences, Pfizer Inc, Andover, MA, USA
| | - Jason C Rouse
- BioTherapeutics Pharmaceutical Sciences, Pfizer Inc, Andover, MA, USA
| |
Collapse
|
3
|
Bartolo-Aguilar Y, Chávez-Cabrera C, Flores-Cotera LB, Badillo-Corona JA, Oliver-Salvador C, Marsch R. The potential of cold-shock promoters for the expression of recombinant proteins in microbes and mammalian cells. J Genet Eng Biotechnol 2022; 20:173. [PMID: 36580173 PMCID: PMC9800685 DOI: 10.1186/s43141-022-00455-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 12/15/2022] [Indexed: 12/30/2022]
Abstract
BACKGROUND Low-temperature expression of recombinant proteins may be advantageous to support their proper folding and preserve bioactivity. The generation of expression vectors regulated under cold conditions can improve the expression of some target proteins that are difficult to express in different expression systems. The cspA encodes the major cold-shock protein from Escherichia coli (CspA). The promoter of cspA has been widely used to develop cold shock-inducible expression platforms in E. coli. Moreover, it is often necessary to employ expression systems other than bacteria, particularly when recombinant proteins require complex post-translational modifications. Currently, there are no commercial platforms available for expressing target genes by cold shock in eukaryotic cells. Consequently, genetic elements that respond to cold shock offer the possibility of developing novel cold-inducible expression platforms, particularly suitable for yeasts, and mammalian cells. CONCLUSIONS This review covers the importance of the cellular response to low temperatures and the prospective use of cold-sensitive promoters to direct the expression of recombinant proteins. This concept may contribute to renewing interest in applying white technologies to produce recombinant proteins that are difficult to express.
Collapse
Affiliation(s)
- Yaneth Bartolo-Aguilar
- Department of Biotechnology and Bioengineering, Cinvestav-IPN, Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, 07360, Mexico City, Mexico
- Instituto Politécnico Nacional-Unidad Profesional Interdisciplinaria de Biotecnología, Av. Acueducto s/n, Colonia Barrio La Laguna Ticomán, 07340, Mexico City, Mexico
| | - Cipriano Chávez-Cabrera
- Colegio de Estudios Científicos y Tecnológicos del Estado de Michoacán, CECyTE Michoacán, Héroes de la Revolución S/N, Col. Centro, 61880, Churumuco de Morelos, Michoacán, Mexico.
| | - Luis Bernardo Flores-Cotera
- Department of Biotechnology and Bioengineering, Cinvestav-IPN, Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, 07360, Mexico City, Mexico
| | - Jesús Agustín Badillo-Corona
- Instituto Politécnico Nacional-Unidad Profesional Interdisciplinaria de Biotecnología, Av. Acueducto s/n, Colonia Barrio La Laguna Ticomán, 07340, Mexico City, Mexico
| | - Carmen Oliver-Salvador
- Instituto Politécnico Nacional-Unidad Profesional Interdisciplinaria de Biotecnología, Av. Acueducto s/n, Colonia Barrio La Laguna Ticomán, 07340, Mexico City, Mexico
| | - Rodolfo Marsch
- Department of Biotechnology and Bioengineering, Cinvestav-IPN, Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, 07360, Mexico City, Mexico
| |
Collapse
|
4
|
AT Homopolymer Strings in Salmonella enterica Subspecies I Contribute to Speciation and Serovar Diversity. Microorganisms 2021; 9:microorganisms9102075. [PMID: 34683396 PMCID: PMC8538453 DOI: 10.3390/microorganisms9102075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 09/08/2021] [Accepted: 09/27/2021] [Indexed: 11/17/2022] Open
Abstract
Adenine and thymine homopolymer strings of at least 8 nucleotides (AT 8+mers) were characterized in Salmonella enterica subspecies I. The motif differed between other taxonomic classes but not between Salmonella enterica serovars. The motif in plasmids was possibly associated with serovar. Approximately 12.3% of the S. enterica motif loci had mutations. Mutability of AT 8+mers suggests that genomes undergo frequent repair to maintain optimal gene content, and that the motif facilitates self-recognition; in addition, serovar diversity is associated with plasmid content. A theory that genome regeneration accounts for both persistence of predominant Salmonella serovars and serovar diversity provides a new framework for investigating root causes of foodborne illness.
Collapse
|
5
|
Hashemi A, Gorji-Bahri G. MicroRNA: Promising Roles in Cancer Therapy. Curr Pharm Biotechnol 2020; 21:1186-1203. [PMID: 32310047 DOI: 10.2174/1389201021666200420101613] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 03/17/2020] [Accepted: 03/31/2020] [Indexed: 12/19/2022]
Abstract
MicroRNAs (miRNA) are small non-coding RNAs that act as one of the main regulators of gene expression. They are involved in maintaining a proper balance of diverse processes, including differentiation, proliferation, and cell death in normal cells. Cancer biology can also be affected by these molecules by modulating the expression of oncogenes or tumor suppressor genes. Thus, miRNA based anticancer therapy is currently being developed either alone or in combination with chemotherapy agents used in cancer management, aiming at promoting tumor regression and increasing cure rate. Access to large quantities of RNA agents can facilitate RNA research and development. In addition to currently used in vitro methods, fermentation-based approaches have recently been developed, which can cost-effectively produce biological RNA agents with proper folding needed for the development of RNA-based therapeutics. Nevertheless, a major challenge in translating preclinical studies to clinical for miRNA-based cancer therapy is the efficient delivery of these agents to target cells. Targeting miRNAs/anti-miRNAs using antibodies and/or peptides can minimize cellular and systemic toxicity. Here, we provide a brief review of miRNA in the following aspects: biogenesis and mechanism of action of miRNAs, the role of miRNAs in cancer as tumor suppressors or oncogenes, the potential of using miRNAs as novel and promising therapeutics, miRNA-mediated chemo-sensitization, and currently utilized methods for the in vitro and in vivo production of RNA agents. Finally, an update on the viral and non-viral delivery systems is addressed.
Collapse
Affiliation(s)
- Atieh Hashemi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Gilar Gorji-Bahri
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
Kladwang W, Topkar VV, Liu B, Rangan R, Hodges TL, Keane SC, Al-Hashimi H, Das R. Anomalous Reverse Transcription through Chemical Modifications in Polyadenosine Stretches. Biochemistry 2020; 59:2154-2170. [PMID: 32407625 DOI: 10.1021/acs.biochem.0c00020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Thermostable reverse transcriptases are workhorse enzymes underlying nearly all modern techniques for RNA structure mapping and for the transcriptome-wide discovery of RNA chemical modifications. Despite their wide use, these enzymes' behaviors at chemical modified nucleotides remain poorly understood. Wellington-Oguri et al. recently reported an apparent loss of chemical modification within putatively unstructured polyadenosine stretches modified by dimethyl sulfate or 2' hydroxyl acylation, as probed by reverse transcription. Here, reanalysis of these and other publicly available data, capillary electrophoresis experiments on chemically modified RNAs, and nuclear magnetic resonance spectroscopy on (A)12 and variants show that this effect is unlikely to arise from an unusual structure of polyadenosine. Instead, tests of different reverse transcriptases on chemically modified RNAs and molecules synthesized with single 1-methyladenosines implicate a previously uncharacterized reverse transcriptase behavior: near-quantitative bypass through chemical modifications within polyadenosine stretches. All tested natural and engineered reverse transcriptases (MMLV; SuperScript II, III, and IV; TGIRT-III; and MarathonRT) exhibit this anomalous bypass behavior. Accurate DMS-guided structure modeling of the polyadenylated HIV-1 3' untranslated region requires taking into account this anomaly. Our results suggest that poly(rA-dT) hybrid duplexes can trigger an unexpectedly effective reverse transcriptase bypass and that chemical modifications in mRNA poly(A) tails may be generally undercounted.
Collapse
Affiliation(s)
- Wipapat Kladwang
- Department of Biochemistry, Stanford University School of Medicine, Stanford, California 94305, United States
| | - Ved V Topkar
- Biophysics Program, Stanford University, Stanford, California 94305, United States
| | - Bei Liu
- Department of Biochemistry, Duke University School of Medicine, Durham, North Carolina 27710, United States
| | - Ramya Rangan
- Biophysics Program, Stanford University, Stanford, California 94305, United States
| | - Tracy L Hodges
- Biophysics Program, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Sarah C Keane
- Biophysics Program, University of Michigan, Ann Arbor, Michigan 48109, United States.,Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Hashim Al-Hashimi
- Department of Biochemistry, Duke University School of Medicine, Durham, North Carolina 27710, United States.,Department of Chemistry, Duke University School of Medicine, Durham, North Carolina 27710, United States
| | - Rhiju Das
- Department of Biochemistry, Stanford University School of Medicine, Stanford, California 94305, United States.,Biophysics Program, Stanford University, Stanford, California 94305, United States.,Department of Physics, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
7
|
Wellington-Oguri R, Fisker E, Zada M, Wiley M, Townley J, Players E. Evidence of an Unusual Poly(A) RNA Signature Detected by High-Throughput Chemical Mapping. Biochemistry 2020; 59:2041-2046. [PMID: 32412236 DOI: 10.1021/acs.biochem.0c00215] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Homopolymeric adenosine RNA plays numerous roles in both cells and noncellular genetic material. We report herein an unusual poly(A) signature in chemical mapping data generated by the Eterna Massive Open Laboratory. Poly(A) sequences of length seven or more show unexpected results in the selective 2'-hydroxyl acylation read out by primer extension (SHAPE) and dimethyl sulfate (DMS) chemical probing. This unusual signature first appears in poly(A) sequences of length seven and grows to its maximum strength at length ∼10. In a long poly(A) sequence, the substitution of a single A by any other nucleotide disrupts the signature, but only for the 6 or so nucleotides on the 5' side of the substitution.
Collapse
Affiliation(s)
- Roger Wellington-Oguri
- Eterna Massive Open Laboratory, Stanford University, B400 Beckman Center, Stanford, California 93405, United States
| | - Eli Fisker
- Eterna Massive Open Laboratory, Stanford University, B400 Beckman Center, Stanford, California 93405, United States
| | - Mathew Zada
- Eterna Massive Open Laboratory, Stanford University, B400 Beckman Center, Stanford, California 93405, United States
| | - Michelle Wiley
- Eterna Massive Open Laboratory, Stanford University, B400 Beckman Center, Stanford, California 93405, United States
| | - Jill Townley
- Eterna Massive Open Laboratory, Stanford University, B400 Beckman Center, Stanford, California 93405, United States
| | - Eterna Players
- Eterna Massive Open Laboratory, Stanford University, B400 Beckman Center, Stanford, California 93405, United States
| |
Collapse
|
8
|
Tretyakova I, Plante KS, Rossi SL, Lawrence WS, Peel JE, Gudjohnsen S, Wang E, Mirchandani D, Tibbens A, Lamichhane TN, Lukashevich IS, Comer JE, Weaver SC, Pushko P. Venezuelan equine encephalitis vaccine with rearranged genome resists reversion and protects non-human primates from viremia after aerosol challenge. Vaccine 2020; 38:3378-3386. [PMID: 32085953 DOI: 10.1016/j.vaccine.2020.02.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 02/02/2020] [Accepted: 02/03/2020] [Indexed: 02/07/2023]
Abstract
Live-attenuated V4020 vaccine for Venezuelan equine encephalitis virus (VEEV) containing attenuating rearrangement of the virus structural genes was evaluated in a non-human primate model for immunogenicity and protective efficacy against aerosol challenge with wild-type VEEV. The genomic RNA of V4020 vaccine virus was encoded in the pMG4020 plasmid under control of the CMV promoter and contained the capsid gene downstream from the glycoprotein genes. It also included attenuating mutations from the VEE TC83 vaccine, with E2-120Arg substitution genetically engineered to prevent reversion mutations. The population of V4020 vaccine virus derived from pMG4020-transfected Vero cells was characterized by next generation sequencing (NGS) and indicated no detectable genetic reversions. Cynomolgus macaques were vaccinated with V4020 vaccine virus. After one or two vaccinations including by intramuscular route, high levels of virus-neutralizing antibodies were confirmed with no viremia or apparent adverse reactions to vaccinations. The protective effect of vaccination was evaluated using an aerosol challenge with VEEV. After challenge, macaques had no detectable viremia, demonstrating a protective effect of vaccination with live V4020 VEEV vaccine.
Collapse
Affiliation(s)
- Irina Tretyakova
- Medigen, Inc., 8420 Gas House Pike, Suite S, Frederick, MD 21701, USA.
| | - Kenneth S Plante
- Institute for Human Infections and Immunity and Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA; World Reference Center for Emerging Viruses and Arboviruses, University of Texas Medical Branch, Galveston, TX, USA
| | - Shannan L Rossi
- Institute for Human Infections and Immunity and Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - William S Lawrence
- Institute for Human Infections and Immunity and Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Jennifer E Peel
- Institute for Human Infections and Immunity and Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Sif Gudjohnsen
- Institute for Human Infections and Immunity and Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA; World Reference Center for Emerging Viruses and Arboviruses, University of Texas Medical Branch, Galveston, TX, USA
| | - Eryu Wang
- Institute for Human Infections and Immunity and Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Divya Mirchandani
- Institute for Human Infections and Immunity and Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA; World Reference Center for Emerging Viruses and Arboviruses, University of Texas Medical Branch, Galveston, TX, USA
| | - Alexander Tibbens
- Medigen, Inc., 8420 Gas House Pike, Suite S, Frederick, MD 21701, USA
| | - Tek N Lamichhane
- Medigen, Inc., 8420 Gas House Pike, Suite S, Frederick, MD 21701, USA
| | - Igor S Lukashevich
- Department of Pharmacology and Toxicology, University of Louisville, 505 S Hancock St., Louisville, KY 40202, USA
| | - Jason E Comer
- Institute for Human Infections and Immunity and Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA; World Reference Center for Emerging Viruses and Arboviruses, University of Texas Medical Branch, Galveston, TX, USA
| | - Scott C Weaver
- Institute for Human Infections and Immunity and Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA; World Reference Center for Emerging Viruses and Arboviruses, University of Texas Medical Branch, Galveston, TX, USA
| | - Peter Pushko
- Medigen, Inc., 8420 Gas House Pike, Suite S, Frederick, MD 21701, USA.
| |
Collapse
|