1
|
Zhang G, Guo W, Yi X, Zhang Z, Zhang L, Liu X, Wu F, Wu Q, Chen GQ. Engineered Halomonas for production of gamma-aminobutyric acid and 2-pyrrolidone. BIORESOURCE TECHNOLOGY 2024; 413:131448. [PMID: 39244106 DOI: 10.1016/j.biortech.2024.131448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 09/03/2024] [Accepted: 09/03/2024] [Indexed: 09/09/2024]
Abstract
Gamma-Aminobutyric acid (GABA) is a derivative of L-glutamate, also a precursor for the synthesis of 2-pyrrolidone, which is a monomer of nylon-4. This study achieved a one-step biosynthesis of GABA and 2-pyrrolidone by Halomonas bluephagenesis overexpressing key genes involved in GABA and 2-pyrrolidone synthesis and deleting GABA degradation genes combined with reducing the degradation of 2-pyrrolidone precursor. The resulting H. bluephagenesis strain WLp07 was employed in whole-cell catalysis, producing 357 g/L of GABA and 72 wt% of PHA. Furthermore, a self-flocculating H. bluephagenesis allowed rapid, convenient recycling of the cells, achieving 880 g/L of GABA over three cycles. Shake flask studies showed that engineered H. bluephagenesis harboring β-alanine CoA transferase was able to synthesized 2-pyrrolidone from GABA. H. bluephagenesis as a chassis of next generation industrial biotechnology (NGIB), demonstrated its diverse ability to produce GABA and 2-pyrrolidone in addition to intracellular PHA.
Collapse
Affiliation(s)
- Ge Zhang
- Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Weike Guo
- Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Xueqing Yi
- Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Zhongnan Zhang
- Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Lizhan Zhang
- Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xu Liu
- Beijing PhaBuilder Biotechnology Co., LTD, Shunyi District, Beijing 101399, China
| | - Fuqing Wu
- Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China; Beijing PhaBuilder Biotechnology Co., LTD, Shunyi District, Beijing 101399, China
| | - Qiong Wu
- Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, China; MOE Key Lab of Industrial Biocatalysts, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Guo-Qiang Chen
- Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, China; MOE Key Lab of Industrial Biocatalysts, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
2
|
Zhu L, Wang Z, Gao L, Chen X. Unraveling the Potential of γ-Aminobutyric Acid: Insights into Its Biosynthesis and Biotechnological Applications. Nutrients 2024; 16:2760. [PMID: 39203897 PMCID: PMC11357613 DOI: 10.3390/nu16162760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/09/2024] [Accepted: 08/16/2024] [Indexed: 09/03/2024] Open
Abstract
γ-Aminobutyric acid (GABA) is a widely distributed non-protein amino acid that serves as a crucial inhibitory neurotransmitter in the brain, regulating various physiological functions. As a result of its potential benefits, GABA has gained substantial interest in the functional food and pharmaceutical industries. The enzyme responsible for GABA production is glutamic acid decarboxylase (GAD), which catalyzes the irreversible decarboxylation of glutamate. Understanding the crystal structure and catalytic mechanism of GAD is pivotal in advancing our knowledge of GABA production. This article provides an overview of GAD's sources, structure, and catalytic mechanism, and explores strategies for enhancing GABA production through fermentation optimization, metabolic engineering, and genetic engineering. Furthermore, the effects of GABA on the physiological functions of animal organisms are also discussed. To meet the increasing demand for GABA, various strategies have been investigated to enhance its production, including optimizing fermentation conditions to facilitate GAD activity. Additionally, metabolic engineering techniques have been employed to increase the availability of glutamate as a precursor for GABA biosynthesis. By fine-tuning fermentation conditions and utilizing metabolic and genetic engineering techniques, it is possible to achieve higher yields of GABA, thus opening up new avenues for its application in functional foods and pharmaceuticals. Continuous research in this field holds immense promise for harnessing the potential of GABA in addressing various health-related challenges.
Collapse
Affiliation(s)
- Lei Zhu
- School of Biological Engineering, Dalian Polytechnic University, Dalian 116034, China;
| | - Zhefeng Wang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, National Technology Innovation Center for Synthetic Biology, Tianjin 300308, China;
| | - Le Gao
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, National Technology Innovation Center for Synthetic Biology, Tianjin 300308, China;
| | - Xiaoyi Chen
- School of Biological Engineering, Dalian Polytechnic University, Dalian 116034, China;
| |
Collapse
|
3
|
Jeong S, Singh H, Jung JH, Jung KW, Ryu S, Lim S. Comparative genomics of Deinococcus radiodurans: unveiling genetic discrepancies between ATCC 13939K and BAA-816 strains. Front Microbiol 2024; 15:1410024. [PMID: 38962131 PMCID: PMC11219805 DOI: 10.3389/fmicb.2024.1410024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 06/04/2024] [Indexed: 07/05/2024] Open
Abstract
The Deinococcus genus is renowned for its remarkable resilience against environmental stresses, including ionizing radiation, desiccation, and oxidative damage. This resilience is attributed to its sophisticated DNA repair mechanisms and robust defense systems, enabling it to recover from extensive damage and thrive under extreme conditions. Central to Deinococcus research, the D. radiodurans strains ATCC BAA-816 and ATCC 13939 facilitate extensive studies into this remarkably resilient genus. This study focused on delineating genetic discrepancies between these strains by sequencing our laboratory's ATCC 13939 specimen (ATCC 13939K) and juxtaposing it with ATCC BAA-816. We uncovered 436 DNA sequence differences within ATCC 13939K, including 100 single nucleotide variations, 278 insertions, and 58 deletions, which could induce frameshifts altering protein-coding genes. Gene annotation revisions accounting for gene fusions and the reconciliation of gene lengths uncovered novel protein-coding genes and refined the functional categorizations of established ones. Additionally, the analysis pointed out genome structural variations due to insertion sequence (IS) elements, underscoring the D. radiodurans genome's plasticity. Notably, ATCC 13939K exhibited a loss of six ISDra2 elements relative to BAA-816, restoring genes fragmented by ISDra2, such as those encoding for α/β hydrolase and serine protease, and revealing new open reading frames, including genes imperative for acetoin decomposition. This comparative genomic study offers vital insights into the metabolic capabilities and resilience strategies of D. radiodurans.
Collapse
Affiliation(s)
- Soyoung Jeong
- Radiation Biotechnology Division, Korea Atomic Energy Research Institute, Jeongeup, Republic of Korea
- Department of Food and Animal Biotechnology, Seoul National University, Seoul, Republic of Korea
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
| | - Harinder Singh
- Department of Biological Sciences, Sunandan Divatia School of Science, NMIMS Deemed to be University, Mumbai, India
| | - Jong-Hyun Jung
- Radiation Biotechnology Division, Korea Atomic Energy Research Institute, Jeongeup, Republic of Korea
| | - Kwang-Woo Jung
- Radiation Biotechnology Division, Korea Atomic Energy Research Institute, Jeongeup, Republic of Korea
| | - Sangryeol Ryu
- Department of Food and Animal Biotechnology, Seoul National University, Seoul, Republic of Korea
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
| | - Sangyong Lim
- Radiation Biotechnology Division, Korea Atomic Energy Research Institute, Jeongeup, Republic of Korea
- Department of Radiation Science, University of Science and Technology, Daejeon, Republic of Korea
| |
Collapse
|
4
|
Bae SH, Sim MS, Jeong KJ, He D, Kwon I, Kim TW, Kim HU, Choi JI. Intracellular Flux Prediction of Recombinant Escherichia coli Producing Gamma-Aminobutyric Acid. J Microbiol Biotechnol 2024; 34:978-984. [PMID: 38379308 DOI: 10.4014/jmb.2312.12022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/08/2024] [Accepted: 01/10/2024] [Indexed: 02/22/2024]
Abstract
Genome-scale metabolic model (GEM) can be used to simulate cellular metabolic phenotypes under various environmental or genetic conditions. This study utilized the GEM to observe the internal metabolic fluxes of recombinant Escherichia coli producing gamma-aminobutyric acid (GABA). Recombinant E. coli was cultivated in a fermenter under three conditions: pH 7, pH 5, and additional succinic acids. External fluxes were calculated from cultivation results, and internal fluxes were calculated through flux optimization. Based on the internal flux analysis, glycolysis and pentose phosphate pathways were repressed under cultivation at pH 5, even though glutamate dehydrogenase increased GABA production. Notably, this repression was halted by adding succinic acid. Furthermore, proper sucA repression is a promising target for developing strains more capable of producing GABA.
Collapse
Affiliation(s)
- Sung Han Bae
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Myung Sub Sim
- Department of Biotechnology and Bioengineering, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Ki Jun Jeong
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Dan He
- College of Life Science and Agriculture Forestry, Qiqihar University, Qiqihar, 161006, Heilongjiang, China
| | - Inchan Kwon
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Tae Wan Kim
- Department of Biotechnology and Bioengineering, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Hyun Uk Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Jong-Il Choi
- Department of Biotechnology and Bioengineering, Chonnam National University, Gwangju, 61186, Republic of Korea
| |
Collapse
|
5
|
Wang J, Ma W, Zhou J, Wang X, Zhao L. Microbial chassis design and engineering for production of gamma-aminobutyric acid. World J Microbiol Biotechnol 2024; 40:159. [PMID: 38607454 DOI: 10.1007/s11274-024-03951-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 03/10/2024] [Indexed: 04/13/2024]
Abstract
Gamma-aminobutyric acid (GABA) is a non-protein amino acid which is widely applied in agriculture and pharmaceutical additive industries. GABA is synthesized from glutamate through irreversible α-decarboxylation by glutamate decarboxylase. Recently, microbial synthesis has become an inevitable trend to produce GABA due to its sustainable characteristics. Therefore, reasonable microbial platform design and metabolic engineering strategies for improving production of GABA are arousing a considerable attraction. The strategies concentrate on microbial platform optimization, fermentation process optimization, rational metabolic engineering as key metabolic pathway modification, promoter optimization, site-directed mutagenesis, modular transporter engineering, and dynamic switch systems application. In this review, the microbial producers for GABA were summarized, including lactic acid bacteria, Corynebacterium glutamicum, and Escherichia coli, as well as the efficient strategies for optimizing them to improve the production of GABA.
Collapse
Affiliation(s)
- Jianli Wang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
- State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, 214122, China
| | - Wenjian Ma
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
- State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
| | - Jingwen Zhou
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
| | - Xiaoyuan Wang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China.
- State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China.
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, 214122, China.
| | - Lei Zhao
- WuXi Biologics Co., Ltd., Wuxi, 214062, China
| |
Collapse
|
6
|
Milon RB, Hu P, Zhang X, Hu X, Ren L. Recent advances in the biosynthesis and industrial biotechnology of Gamma-amino butyric acid. BIORESOUR BIOPROCESS 2024; 11:32. [PMID: 38647854 PMCID: PMC10992975 DOI: 10.1186/s40643-024-00747-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 03/03/2024] [Indexed: 04/25/2024] Open
Abstract
GABA (Gamma-aminobutyric acid), a crucial neurotransmitter in the central nervous system, has gained significant attention in recent years due to its extensive benefits for human health. The review focused on recent advances in the biosynthesis and production of GABA. To begin with, the investigation evaluates GABA-producing strains and metabolic pathways, focusing on microbial sources such as Lactic Acid Bacteria, Escherichia coli, and Corynebacterium glutamicum. The metabolic pathways of GABA are elaborated upon, including the GABA shunt and critical enzymes involved in its synthesis. Next, strategies to enhance microbial GABA production are discussed, including optimization of fermentation factors, different fermentation methods such as co-culture strategy and two-step fermentation, and modification of the GABA metabolic pathway. The review also explores methods for determining glutamate (Glu) and GABA levels, emphasizing the importance of accurate quantification. Furthermore, a comprehensive market analysis and prospects are provided, highlighting current trends, potential applications, and challenges in the GABA industry. Overall, this review serves as a valuable resource for researchers and industrialists working on GABA advancements, focusing on its efficient synthesis processes and various applications, and providing novel ideas and approaches to improve GABA yield and quality.
Collapse
Affiliation(s)
- Ripon Baroi Milon
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing, 211816, People's Republic of China
| | - Pengchen Hu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing, 211816, People's Republic of China
| | - Xueqiong Zhang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing, 211816, People's Republic of China
| | - Xuechao Hu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing, 211816, People's Republic of China
- Shanghai JanStar Technology Development Co, Ltd., No. 1288, Huateng Road, Shanghai, People's Republic of China
| | - Lujing Ren
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing, 211816, People's Republic of China.
| |
Collapse
|
7
|
Lu P, Bai R, Gao T, Chen J, Jiang K, Zhu Y, Lu Y, Zhang S, Xu F, Zhao H. Systemic metabolic engineering of Enterobacter aerogenes for efficient 2,3-butanediol production. Appl Microbiol Biotechnol 2024; 108:146. [PMID: 38240862 PMCID: PMC10798932 DOI: 10.1007/s00253-023-12911-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 11/05/2023] [Accepted: 11/14/2023] [Indexed: 01/22/2024]
Abstract
2,3-Butanediol (2,3-BDO) is an important gateway molecule for many chemical derivatives. Currently, microbial production is gradually being recognized as a green and sustainable alternative to petrochemical synthesis, but the titer, yield, and productivity of microbial 2,3-BDO remain suboptimal. Here, we used systemic metabolic engineering strategies to debottleneck the 2,3-BDO production in Enterobacter aerogenes. Firstly, the pyruvate metabolic network was reconstructed by deleting genes for by-product synthesis to improve the flux toward 2,3-BDO synthesis, which resulted in a 90% increase of the product titer. Secondly, the 2,3-BDO productivity of the IAM1183-LPCT/D was increased by 55% due to the heterologous expression of DR1558 which boosted cell resistance to abiotic stress. Thirdly, carbon sources were optimized to further improve the yield of target products. The IAM1183-LPCT/D showed the highest titer of 2,3-BDO from sucrose, 20% higher than that from glucose, and the yield of 2,3-BDO reached 0.49 g/g. Finally, the titer of 2,3-BDO of IAM1183-LPCT/D in a 5-L fermenter reached 22.93 g/L, 85% higher than the wild-type strain, and the titer of by-products except ethanol was very low. KEY POINTS: Deletion of five key genes in E. aerogenes improved 2,3-BDO production The titer of 2,3-BDO was increased by 90% by regulating metabolic flux Response regulator DR1558 was expressed to increase 2,3-BDO productivity.
Collapse
Affiliation(s)
- Ping Lu
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Ruoxuan Bai
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Ting Gao
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Jiale Chen
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Ke Jiang
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Yalun Zhu
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Ye Lu
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Shuting Zhang
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Fangxu Xu
- Liaoning Province Key Laboratory of Cordyceps Militaris With Functional Value, Experimental Teaching Center, Shenyang Normal University, Shenyang, 110034, China
| | - Hongxin Zhao
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
| |
Collapse
|
8
|
Yang SK, Jeong S, Baek I, Choi JI, Lim S, Jung JH. Deionococcus proteotlycius Genomic Library Exploration Enhances Oxidative Stress Resistance and Poly-3-hydroxybutyrate Production in Recombinant Escherichia coli. Microorganisms 2023; 11:2135. [PMID: 37763980 PMCID: PMC10538107 DOI: 10.3390/microorganisms11092135] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/18/2023] [Accepted: 08/22/2023] [Indexed: 09/29/2023] Open
Abstract
Cell growth is inhibited by abiotic stresses during industrial processes, which is a limitation of microbial cell factories. Microbes with robust phenotypes are critical for its maximizing the yield of the target products in industrial biotechnology. Currently, there are several reports on the enhanced production of industrial metabolite through the introduction of Deinococcal genes into host cells, which confers cellular robustness. Deinococcus is known for its unique genetic function thriving in extreme environments such as radiation, UV, and oxidants. In this study, we established that Deinococcus proteolyticus showed greater resistance to oxidation and UV-C than commonly used D. radiodurans. By screening the genomic library of D. proteolyticus, we isolated a gene (deipr_0871) encoding a response regulator, which not only enhanced oxidative stress, but also promoted the growth of the recombinant E. coli strain. The transcription analysis indicated that the heterologous expression of deipr_0871 upregulated oxidative-stress-related genes such as ahpC and sodA, and acetyl-CoA-accumulation-associated genes via soxS regulon. Deipr_0871 was applied to improve the production of the valuable metabolite, poly-3-hydroxybutyrate (PHB), in the synthetic E. coli strain, which lead to the remarkably higher PHB than the control strain. Therefore, the stress tolerance gene from D. proteolyticus should be used in the modification of E. coli for the production of PHB and other biomaterials.
Collapse
Affiliation(s)
- Seul-Ki Yang
- Radiation Biotechnology Division, Korea Atomic Energy Research Institute, Jeongeup 56212, Republic of Korea (S.L.)
- Graduate School of Biotechnology and Institute of Life Science and Resources, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Soyoung Jeong
- Radiation Biotechnology Division, Korea Atomic Energy Research Institute, Jeongeup 56212, Republic of Korea (S.L.)
- Department of Food and Animal Biotechnology, Seoul National University, Seoul 08826, Republic of Korea
| | - Inwoo Baek
- Radiation Biotechnology Division, Korea Atomic Energy Research Institute, Jeongeup 56212, Republic of Korea (S.L.)
| | - Jong-il Choi
- Department of Biotechnology and Bioengineering, Chonnam National University, Gwangju 61186, Republic of Korea;
| | - Sangyong Lim
- Radiation Biotechnology Division, Korea Atomic Energy Research Institute, Jeongeup 56212, Republic of Korea (S.L.)
- Department of Radiation Science and Technology, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Jong-Hyun Jung
- Radiation Biotechnology Division, Korea Atomic Energy Research Institute, Jeongeup 56212, Republic of Korea (S.L.)
| |
Collapse
|
9
|
Yao C, Shi F, Wang X. Chromosomal editing of Corynebacterium glutamicum ATCC 13032 to produce gamma-aminobutyric acid. Biotechnol Appl Biochem 2023; 70:7-21. [PMID: 35106837 DOI: 10.1002/bab.2324] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 01/18/2022] [Indexed: 11/08/2022]
Abstract
Corynebacterium glutamicum has been used as a sustainable microbial producer for various bioproducts using cheap biomass resources. In this study, a high GABA-producing C. glutamicum strain was constructed by chromosomal editing. Lactobacillus brevis-derived gadB2 was introduced into the chromosome of C. glutamicum ATCC 13032 to produce gamma-aminobutyric acid and simultaneously blocked the biosynthesis of lactate and acetate. GABA transport and degradation in C. glutamicum were also blocked to improve GABA production. As precursor of GABA, l-glutamic acid synthesis in C. glutamicum was enhanced by introducing E. coli gdhA encoding glutamic dehydrogenase, and the copy numbers of gdhA and gadB2 were also optimized for higher GABA production. The final C. glutamicum strain CGY705 could produce 33.17 g/L GABA from glucose in a 2.4-L bioreactor after 78 h fed-batch fermentation. Since all deletion and expression of genes were performed using chromosomal editing, fermentation of the GABA-producing strains constructed in this study does not need supplementation of any antibiotics and inducers. The strategy used in this study has potential value in the development of GABA-producing bacteria.
Collapse
Affiliation(s)
- Chengzhen Yao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu Province, China
| | - Feng Shi
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu Province, China.,Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Xiaoyuan Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu Province, China.,Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| |
Collapse
|
10
|
Son J, Sohn YJ, Baritugo KA, Jo SY, Song HM, Park SJ. Recent advances in microbial production of diamines, aminocarboxylic acids, and diacids as potential platform chemicals and bio-based polyamides monomers. Biotechnol Adv 2023; 62:108070. [PMID: 36462631 DOI: 10.1016/j.biotechadv.2022.108070] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/16/2022] [Accepted: 11/24/2022] [Indexed: 12/03/2022]
Abstract
Recently, bio-based manufacturing processes of value-added platform chemicals and polymers in biorefineries using renewable resources have extensively been developed for sustainable and carbon dioxide (CO2) neutral-based industry. Among them, bio-based diamines, aminocarboxylic acids, and diacids have been used as monomers for the synthesis of polyamides having different carbon numbers and ubiquitous and versatile industrial polymers and also as precursors for further chemical and biological processes to afford valuable chemicals. Until now, these platform bio-chemicals have successfully been produced by biorefinery processes employing enzymes and/or microbial host strains as main catalysts. In this review, we discuss recent advances in bio-based production of diamines, aminocarboxylic acids, and diacids, which has been developed and improved by systems metabolic engineering strategies of microbial consortia and optimization of microbial conversion processes including whole cell bioconversion and direct fermentative production.
Collapse
Affiliation(s)
- Jina Son
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea
| | - Yu Jung Sohn
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea
| | - Kei-Anne Baritugo
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea
| | - Seo Young Jo
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea
| | - Hye Min Song
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea
| | - Si Jae Park
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea.
| |
Collapse
|
11
|
Borin GP, Oliveira JVDC. Assessing the intracellular primary metabolic profile of Trichoderma reesei and Aspergillus niger grown on different carbon sources. FRONTIERS IN FUNGAL BIOLOGY 2022; 3:998361. [PMID: 37746225 PMCID: PMC10512294 DOI: 10.3389/ffunb.2022.998361] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 08/29/2022] [Indexed: 09/26/2023]
Abstract
Trichoderma reesei and Aspergillus niger are efficient biological platforms for the production of various industrial products, including cellulases and organic acids. Nevertheless, despite the extensive research on these fungi, integrated analyses of omics-driven approaches are still missing. In this study, the intracellular metabolic profile of T. reesei RUT-C30 and A. niger N402 strains grown on glucose, lactose, carboxymethylcellulose (CMC), and steam-exploded sugarcane bagasse (SEB) as carbon sources for 48 h was analysed by proton nuclear magnetic resonance. The aim was to verify the changes in the primary metabolism triggered by these substrates and use transcriptomics data from the literature to better understand the dynamics of the observed alterations. Glucose and CMC induced higher fungal growth whereas fungi grown on lactose showed the lowest dry weight. Metabolic profile analysis revealed that mannitol, trehalose, glutamate, glutamine, and alanine were the most abundant metabolites in both fungi regardless of the carbon source. These metabolites are of particular interest for the mobilization of carbon and nitrogen, and stress tolerance inside the cell. Their concomitant presence indicates conserved mechanisms adopted by both fungi to assimilate carbon sources of different levels of recalcitrance. Moreover, the higher levels of galactose intermediates in T. reesei suggest its better adaptation in lactose, whereas glycolate and malate in CMC might indicate activation of the glyoxylate shunt. Glycerol and 4-aminobutyrate accumulated in A. niger grown on CMC and lactose, suggesting their relevant role in these carbon sources. In SEB, a lower quantity and diversity of metabolites were identified compared to the other carbon sources, and the metabolic changes and higher xylanase and pNPGase activities indicated a better utilization of bagasse by A. niger. Transcriptomic analysis supported the observed metabolic changes and pathways identified in this work. Taken together, we have advanced the knowledge about how fungal primary metabolism is affected by different carbon sources, and have drawn attention to metabolites still unexplored. These findings might ultimately be considered for developing more robust and efficient microbial factories.
Collapse
Affiliation(s)
- Gustavo Pagotto Borin
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), São Paulo, Brazil
- Graduate Program in Genetics and Molecular Biology, Institute of Biology, University of Campinas (UNICAMP), São Paulo, Brazil
| | - Juliana Velasco de Castro Oliveira
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), São Paulo, Brazil
- Graduate Program in Genetics and Molecular Biology, Institute of Biology, University of Campinas (UNICAMP), São Paulo, Brazil
| |
Collapse
|
12
|
Kang SB, Choi JI. Enhanced cadaverine production by recombinant Corynebacterium glutamicum with a heterologous DR1558 regulator at low pH condition. Process Biochem 2021. [DOI: 10.1016/j.procbio.2021.08.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
13
|
Somasundaram S, Jeong J, Hong SH. Cell surface display of Neurospora crassa glutamate decarboxylase on Escherichia coli for extracellular Gamma-aminobutyric acid production from high cell density culture. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2021.108196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
14
|
Soma Y, Takahashi M, Fujiwara Y, Tomiyasu N, Goto M, Hanai T, Izumi Y, Bamba T. Quantitative metabolomics for dynamic metabolic engineering using stable isotope labeled internal standards mixture (SILIS). J Biosci Bioeng 2021; 133:46-55. [PMID: 34620543 DOI: 10.1016/j.jbiosc.2021.09.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 09/13/2021] [Accepted: 09/13/2021] [Indexed: 11/28/2022]
Abstract
The production of chemicals and fuels from renewable resources using engineered microbes is an attractive alternative for current fossil-dependent industries. Metabolic engineering has contributed to pathway engineering for the production of chemicals and fuels by various microorganisms. Recently, dynamic metabolic engineering harnessing synthetic biological tools has become a next-generation strategy in this field. The dynamic regulation of metabolic flux during fermentation optimizes metabolic states according to each fermentation stage such as cell growth phase and compound production phase. However, it is necessary to repeat the evaluation and redesign of the dynamic regulation system to achieve the practical use of engineered microbes. In this study, we performed quantitative metabolome analysis to investigate the effects of dynamic metabolic flux regulation on engineered Escherichia coli for γ-amino butyrate (GABA) fermentation. We prepared a stable isotope-labeled internal standard mixture (SILIS) for the stable isotope dilution method (SIDM), a mass spectrometry-based quantitative metabolome analysis method. We found multiple candidate bottlenecks for GABA production. Some metabolic reactions in the GABA production pathway should be engineered for further improvement in the direct GABA fermentation with dynamic metabolic engineering strategy.
Collapse
Affiliation(s)
- Yuki Soma
- Division of Metabolomics, Research Center for Transomics Medicine, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Masatomo Takahashi
- Division of Metabolomics, Research Center for Transomics Medicine, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Yuri Fujiwara
- Division of Metabolomics, Research Center for Transomics Medicine, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Noriyuki Tomiyasu
- Division of Metabolomics, Research Center for Transomics Medicine, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Maiko Goto
- Division of Metabolomics, Research Center for Transomics Medicine, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Taizo Hanai
- Laboratory for Synthetic Biology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, W5-729, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Yoshihiro Izumi
- Division of Metabolomics, Research Center for Transomics Medicine, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Takeshi Bamba
- Division of Metabolomics, Research Center for Transomics Medicine, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
| |
Collapse
|
15
|
Recent progress in metabolic engineering of Corynebacterium glutamicum for the production of C4, C5, and C6 chemicals. KOREAN J CHEM ENG 2021. [DOI: 10.1007/s11814-021-0788-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
16
|
Luo H, Liu Z, Xie F, Bilal M, Liu L, Yang R, Wang Z. Microbial production of gamma-aminobutyric acid: applications, state-of-the-art achievements, and future perspectives. Crit Rev Biotechnol 2021; 41:491-512. [PMID: 33541153 DOI: 10.1080/07388551.2020.1869688] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Gamma-aminobutyric acid (GABA) is an important non-protein amino acid with wide-ranging applications. Currently, GABA can be produced by a variety of methods, including chemical synthesis, plant enrichment, enzymatic methods, and microbial production. Among these methods, microbial production has gained increasing attention to meet the strict requirements of an additive in the fields of food, pharmaceutical, and livestock. In addition, renewable and abundant resources, such as glucose and lignocellulosic biomass can also be used for GABA microbial production under mild and environmentally friendly processing conditions. In this review, the applications, metabolic pathways and physiological functions of GABA in different microorganisms were firstly discussed. A comprehensive overview of the current status of process engineering strategies for enhanced GABA production, including fermentation optimization and whole-cell conversion from different feedstocks by various host strains is also provided. We also presented the state-of-the-art achievements in strain development strategies for industrial lactic acid bacteria (LAB), Corynebacterium glutamicum and Escherichia coli to enhance the performance of GABA bioproduction. In order to use bio-based GABA in the fields of food and pharmaceutical, some Generally Recognized as Safe (GRAS) strains such as LAB and C. glutamicum will be the promising chassis hosts. Toward the end of this review, current challenges and valuable research directions/strategies on the improvements of process and strain engineering for economic microbial production of GABA are also suggested.
Collapse
Affiliation(s)
- Hongzhen Luo
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, China
| | - Zheng Liu
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, China
| | - Fang Xie
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, China
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, China
| | - Lina Liu
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, China
| | - Rongling Yang
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, China
| | - Zhaoyu Wang
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, China
| |
Collapse
|