1
|
Mohamad Alias NN, Beng Ong EB, Liew MWO. Removal and monitoring of residual nucleic acids from core streptavidin inclusion bodies for increased refolding yield. Protein Expr Purif 2025; 225:106591. [PMID: 39181482 DOI: 10.1016/j.pep.2024.106591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/19/2024] [Accepted: 08/21/2024] [Indexed: 08/27/2024]
Abstract
Commercial production of recombinant streptavidin (SAV) using soluble expression route is cost-prohibitive, resulting from its inherent toxicity toward commercially available Escherichia coli hosts (such as BL21) and low productivity of existing manufacturing processes. Quality challenges can also result from binding of streptavidin in the host cells. One way to overcome these challenges is to allow formation of inclusion bodies (IBs). Nevertheless, carried-over cellular contaminants during IBs preparation can hinder protein refolding and application of SAV in nucleic acid-based applications. Hence, removing associated contaminants in recombinant IBs is imperative for maximum product outcomes. In this study, the IBs isolation method from our group was improved to remove residual DNA found in refolded core SAV (cSAV). The improvements were attained by incorporating quantitative real-time polymerase chain reactions (qPCR) for residual DNA monitoring. We attained 99 % cellular DNA removal from cSAV IBs via additional wash and sonication steps, and the addition of benzonase nuclease during lysis. A 10 % increment of cSAV refolding yield (72 %) and 83 % reduction of residual DNA from refolding of 1 mg cSAV IBs were observed under extensive sonication. Refolding of cSAV was not affected and its activity was not compromised. The optimized process reported here highlights the importance of obtaining cSAV IBs with minimal contaminants prior to refolding to increase product yield, and the usefulness of the qPCR method to monitor nucleic acid removed from each step of the process.
Collapse
Affiliation(s)
- Nurul Nadia Mohamad Alias
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
| | - Eugene Boon Beng Ong
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia.
| | - Mervyn W O Liew
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia.
| |
Collapse
|
2
|
Petrov GV, Galkina DA, Koldina AM, Grebennikova TV, Eliseeva OV, Chernoryzh YY, Lebedeva VV, Syroeshkin AV. Controlling the Quality of Nanodrugs According to Their New Property-Radiothermal Emission. Pharmaceutics 2024; 16:180. [PMID: 38399241 PMCID: PMC10891502 DOI: 10.3390/pharmaceutics16020180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/22/2024] [Accepted: 01/24/2024] [Indexed: 02/25/2024] Open
Abstract
Previous studies have shown that complexly shaped nanoparticles (NPs) have their intrinsic radiothermal emission in the millimeter range. This article presents a method for controlling the quality of nanodrugs-immunobiological preparations (IBPs)-based on the detection of their intrinsic radiothermal emissions. The emissivity of interferon (IFN) medicals, determined without opening the primary package, is as follows (µW/m2): IFN-α2b-80 ± 9 (105 IU per package), IFN-β1a-40 ± 5 (24 × 106 IU per package), IFN-γ-30 ± 4 (105 IU per package). The emissivity of virus-like particles (VLP), determined using vaccines Gam-VLP-multivac (120 μg) in an injection bottle (crimp cap vials), was as follows: 12 ± 1 µW/m2, Gam-VLP-rota vaccines-9 ± 1 µW/m2. This study shows the reproducibility of emissivity over the course of a year, subject to the storage conditions of the immunobiological products. It has been shown that accelerated aging and a longer shelf life are accompanied by the coagulation of active NPs, and lead to a manyfold drop in emissivity. The dependence of radiothermal emission on temperature has a complex, non-monotonic nature. The emission intensity depends on the form of dosage, but remains within the order of magnitude for IFN-α2b for intranasal aqueous solution, ointments, and suppositories. The possibility of the remote quantitative control of the first phases of the immune response (increased synthesis of IFNs) to the intranasal administration of VLP vaccines has been demonstrated in experimental animals.
Collapse
Affiliation(s)
- Gleb V. Petrov
- Department of Pharmaceutical and Toxicological Chemistry, Medical Institute, RUDN University, 6 Miklukho-Maklaya Street, 117198 Moscow, Russia
| | - Daria A. Galkina
- Department of Pharmaceutical and Toxicological Chemistry, Medical Institute, RUDN University, 6 Miklukho-Maklaya Street, 117198 Moscow, Russia
| | - Alena M. Koldina
- Department of Pharmaceutical and Toxicological Chemistry, Medical Institute, RUDN University, 6 Miklukho-Maklaya Street, 117198 Moscow, Russia
| | - Tatiana V. Grebennikova
- Federal Government Budgetary Institution “National Research Center for Epidemiology and Microbiology Named after Honorary Academician N.F. Gamaleya” of the Ministry of Health of the Russian Federation, 18 Gamaleya St., 123098 Moscow, Russia
| | - Olesya V. Eliseeva
- Federal Government Budgetary Institution “National Research Center for Epidemiology and Microbiology Named after Honorary Academician N.F. Gamaleya” of the Ministry of Health of the Russian Federation, 18 Gamaleya St., 123098 Moscow, Russia
| | - Yana Yu. Chernoryzh
- Federal Government Budgetary Institution “National Research Center for Epidemiology and Microbiology Named after Honorary Academician N.F. Gamaleya” of the Ministry of Health of the Russian Federation, 18 Gamaleya St., 123098 Moscow, Russia
| | - Varvara V. Lebedeva
- Federal Government Budgetary Institution “National Research Center for Epidemiology and Microbiology Named after Honorary Academician N.F. Gamaleya” of the Ministry of Health of the Russian Federation, 18 Gamaleya St., 123098 Moscow, Russia
| | - Anton V. Syroeshkin
- Department of Pharmaceutical and Toxicological Chemistry, Medical Institute, RUDN University, 6 Miklukho-Maklaya Street, 117198 Moscow, Russia
| |
Collapse
|
3
|
Parladé E, Sánchez JM, López-Laguna H, Unzueta U, Villaverde A, Vázquez E. Protein features instruct the secretion dynamics from metal-supported synthetic amyloids. Int J Biol Macromol 2023; 250:126164. [PMID: 37549767 DOI: 10.1016/j.ijbiomac.2023.126164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/03/2023] [Accepted: 08/04/2023] [Indexed: 08/09/2023]
Abstract
Hexahistidine-tagged proteins can be clustered by divalent cations into self-containing, dynamic protein depots at the microscale, which under physiological conditions leak functional protein. While such protein granules show promise in clinics as time-sustained drug delivery systems, little is known about how the nature of their components, that is, the protein and the particular cation used as cross-linker, impact on the disintegration of the material and on its secretory performance. By using four model proteins and four different cation formulations to control aggregation, we have here determined a moderate influence of the used cation and a potent impact of some protein properties on the release kinetics and on the final fraction of releasable protein. In particular, the electrostatic charge at the amino terminus and the instability and hydropathicity indexes determine the disintegration profile of the depot. These data offer clues for the fabrication of efficient and fully exploitable secretory granules that being biocompatible and chemically homogenous allow their tailored use as drug delivery platforms in biological systems.
Collapse
Affiliation(s)
- Eloi Parladé
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN, ISCIII), Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain.
| | - Julieta M Sánchez
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN, ISCIII), Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; Departamento de Química, Cátedra de Química Biológica, Facultad de Ciencias Exactas, Físicas y Naturales, ICTA, Universidad Nacional de Córdoba, Av. Vélez Sársfield 1611, Córdoba 5016, Argentina; Instituto de Investigaciones Biológicas y Tecnológicas (IIByT), CONICET-Universidad Nacional de Córdoba, Córdoba 5016, Argentina
| | - Hèctor López-Laguna
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN, ISCIII), Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Ugutz Unzueta
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN, ISCIII), Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Sant Quintí 77-79, 08041 Barcelona, Spain; Josep Carreras Leukaemia Research Institute, 08025 Barcelona, Spain
| | - Antonio Villaverde
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN, ISCIII), Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Esther Vázquez
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN, ISCIII), Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain.
| |
Collapse
|
4
|
Naemi AA, Salmanian AH, Noormohammadi Z, Amani J. A novel EGFR-specific recombinant ricin-panitumumab (scFv) immunotoxin against breast and colorectal cancer cell lines; in silico and in vitro analyses. Eur J Pharmacol 2023; 955:175894. [PMID: 37429519 DOI: 10.1016/j.ejphar.2023.175894] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 06/24/2023] [Accepted: 06/28/2023] [Indexed: 07/12/2023]
Abstract
The Epidermal Growth Factor Receptor (EGFR) has been of high importance as it is over expressed in a wide diversity of epithelial cancers, promoting cell proliferation and survival pathways. Recombinant immunotoxins (ITs) have emerged as a promising targeted therapy for cancer treatment. In this study, we aimed to investigate the antitumor activity of a novel recombinant immunotoxin designed against EGFR. Using an in silico approach, we confirmed the stability of the RTA-scFv fusion protein. The immunotoxin was successfully cloned and expressed in the pET32a vector, and the purified protein was analyzed by electrophoresis and western blotting. In vitro evaluations were conducted to assess the biological activities of the recombinant proteins (RTA-scFv, RTA, scFv). The novel immunotoxin demonstrated significant anti-proliferative and pro-apoptotic effects against cancer cell lines. The MTT cytotoxicity assay revealed a decrease in cell viability in the treated cancer cell lines. Additionally, Annexin V/Propidium iodide staining followed by flow cytometry analysis showed a significant induction of apoptosis in the cancer cell lines, with half maximal inhibitory concentration (IC50) values of 81.71 nM for MDA-MB-468 and 145.2 nM for HCT116 cells (P < 0.05). Furthermore, the EGFR-specific immunotoxin exhibited non-allergenic properties. The recombinant protein demonstrated high affinity binding to EGFR. Overall, this study presents a promising strategy for the development of recombinant immunotoxins as potential candidates for the treatment of EGFR-expressing cancers.
Collapse
Affiliation(s)
- Azam Almolok Naemi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| | - Ali Hatef Salmanian
- Department of Agricultural Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran.
| | - Zahra Noormohammadi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| | - Jafar Amani
- Department of Molecular Biology, Green Gene Company, Tehran, Iran.
| |
Collapse
|
5
|
Lipničanová S, Legerská B, Chmelová D, Ondrejovič M, Miertuš S. Optimization of an Inclusion Body-Based Production of the Influenza Virus Neuraminidase in Escherichia coli. Biomolecules 2022; 12:331. [PMID: 35204831 PMCID: PMC8869668 DOI: 10.3390/biom12020331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/11/2022] [Accepted: 02/17/2022] [Indexed: 11/30/2022] Open
Abstract
Neuraminidase (NA), as an important protein of influenza virus, represents a promising target for the development of new antiviral agents for the treatment and prevention of influenza A and B. Bacterial host strain Escherichia coli BL21 (DE3)pLysS containing the NA gene of the H1N1 influenza virus produced this overexpressed enzyme in the insoluble fraction of cells in the form of inclusion bodies. The aim of this work was to investigate the effect of independent variables (propagation time, isopropyl β-d-1-thiogalactopyranoside (IPTG) concentration and expression time) on NA accumulation in inclusion bodies and to optimize these conditions by response surface methodology (RSM). The maximum yield of NA (112.97 ± 2.82 U/g) was achieved under optimal conditions, namely, a propagation time of 7.72 h, IPTG concentration of 1.82 mM and gene expression time of 7.35 h. This study demonstrated that bacterially expressed NA was enzymatically active.
Collapse
Affiliation(s)
- Sabina Lipničanová
- Department of Biotechnology, Faculty of Natural Sciences, University of SS. Cyril and Methodius, J. Herdu 2, SK-91701 Trnava, Slovakia; (S.L.); (B.L.); (D.C.); (S.M.)
| | - Barbora Legerská
- Department of Biotechnology, Faculty of Natural Sciences, University of SS. Cyril and Methodius, J. Herdu 2, SK-91701 Trnava, Slovakia; (S.L.); (B.L.); (D.C.); (S.M.)
| | - Daniela Chmelová
- Department of Biotechnology, Faculty of Natural Sciences, University of SS. Cyril and Methodius, J. Herdu 2, SK-91701 Trnava, Slovakia; (S.L.); (B.L.); (D.C.); (S.M.)
| | - Miroslav Ondrejovič
- Department of Biotechnology, Faculty of Natural Sciences, University of SS. Cyril and Methodius, J. Herdu 2, SK-91701 Trnava, Slovakia; (S.L.); (B.L.); (D.C.); (S.M.)
- International Centre for Applied Research and Sustainable Technology n.o., Jamnického 19, SK-84101 Bratislava, Slovakia
| | - Stanislav Miertuš
- Department of Biotechnology, Faculty of Natural Sciences, University of SS. Cyril and Methodius, J. Herdu 2, SK-91701 Trnava, Slovakia; (S.L.); (B.L.); (D.C.); (S.M.)
- International Centre for Applied Research and Sustainable Technology n.o., Jamnického 19, SK-84101 Bratislava, Slovakia
| |
Collapse
|
6
|
Bhatwa A, Wang W, Hassan YI, Abraham N, Li XZ, Zhou T. Challenges Associated With the Formation of Recombinant Protein Inclusion Bodies in Escherichia coli and Strategies to Address Them for Industrial Applications. Front Bioeng Biotechnol 2021; 9:630551. [PMID: 33644021 PMCID: PMC7902521 DOI: 10.3389/fbioe.2021.630551] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 01/20/2021] [Indexed: 12/12/2022] Open
Abstract
Recombinant proteins are becoming increasingly important for industrial applications, where Escherichia coli is the most widely used bacterial host for their production. However, the formation of inclusion bodies is a frequently encountered challenge for producing soluble and functional recombinant proteins. To overcome this hurdle, different strategies have been developed through adjusting growth conditions, engineering host strains of E. coli, altering expression vectors, and modifying the proteins of interest. These approaches will be comprehensively highlighted with some of the new developments in this review. Additionally, the unique features of protein inclusion bodies, the mechanism and influencing factors of their formation, and their potential advantages will also be discussed.
Collapse
Affiliation(s)
- Arshpreet Bhatwa
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, ON, Canada
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| | - Weijun Wang
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, ON, Canada
| | - Yousef I. Hassan
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, ON, Canada
| | - Nadine Abraham
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, ON, Canada
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - Xiu-Zhen Li
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, ON, Canada
| | - Ting Zhou
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, ON, Canada
| |
Collapse
|