1
|
Li X, Jin Z, Bai Y, Svensson B. Progress in cyclodextrins as important molecules regulating catalytic processes of glycoside hydrolases. Biotechnol Adv 2024; 72:108326. [PMID: 38382582 DOI: 10.1016/j.biotechadv.2024.108326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/14/2024] [Accepted: 02/18/2024] [Indexed: 02/23/2024]
Abstract
Cyclodextrins (CDs) are important starch derivatives and commonly comprise α-, β-, and γ-CDs. Their hydrophilic surface and hydrophobic inner cavity enable regulation of enzyme catalysis through direct or indirect interactions. Clarifying interactions between CDs and enzyme is of great value for enzyme screening, mechanism exploration, regulation of catalysis, and applications. We summarize the interactions between CDs and glycoside hydrolases (GHs) according to two aspects: 1) CD as products, substrates, inhibitors and activators of enzymes, directly affecting the reaction process; 2) CDs indirectly affecting the enzymatic reaction by solubilizing substrates, relieving substrate/product inhibition, increasing recombinant enzyme production and storage stability, isolating and purifying enzymes, and serving as ligands in crystal structure to identify functional amino acid residues. Additionally, CD enzyme mimetics are developed and used as catalysts in traditional artificial enzymes as well as nanozymes, making the application of CDs no longer limited to GHs. This review concerns the regulation of GHs catalysis by CDs, and gives insights into research on interactions between enzymes and ligands.
Collapse
Affiliation(s)
- Xiaoxiao Li
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Zhengyu Jin
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yuxiang Bai
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Birte Svensson
- Enzyme and Protein Chemistry, Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby DK-2800, Denmark
| |
Collapse
|
3
|
Ji H, Liu J, McClements DJ, Bai Y, Li Z, Chen L, Qiu C, Zhan X, Jin Z. Malto-oligosaccharides as critical functional ingredient: a review of their properties, preparation, and versatile applications. Crit Rev Food Sci Nutr 2022; 64:3674-3686. [PMID: 36260087 DOI: 10.1080/10408398.2022.2134291] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Malto-oligosaccharides (MOS) are α-1,4 glycosidic linked linear oligosaccharides of glucose, which have a diverse range of functional applications in the food, pharmaceutical, and other industries. They can be used to modify the physicochemical properties of foods thereby improving their quality attributes, or they can be included as prebiotics to improve their nutritional attributes. The degree of polymerization of MOS can be controlled by using specific enzymes, which means their functionality can be tuned for specific applications. In this article, we review the chemical structure, physicochemical properties, preparation, and functional applications of MOS in the food, health care, and other industries. Besides, we offer an overview for this saccharide from the perspective of prospect functional ingredient, which we feel lacks in the current literature. MOS could be expected to provide a novel promising substitute for functional oligosaccharides.
Collapse
Affiliation(s)
- Hangyan Ji
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province, China
- Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu Province, China
| | - Jialin Liu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | | | - Yuxiang Bai
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province, China
- Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu Province, China
| | - Zhitao Li
- School of Biotechnology, Jiangnan University, Wuxi, Jiangsu Province, China
| | - Long Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province, China
- Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu Province, China
| | - Chao Qiu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province, China
- Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu Province, China
| | - Xiaobei Zhan
- School of Biotechnology, Jiangnan University, Wuxi, Jiangsu Province, China
| | - Zhengyu Jin
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province, China
- Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu Province, China
| |
Collapse
|
4
|
Abdalla M, Jiang B, Hassanin HAM, Zheng L, Chen J. One-pot production of maltoheptaose (DP7) from starch by sequential addition of cyclodextrin glucotransferase and cyclomaltodextrinase. Enzyme Microb Technol 2021; 149:109847. [PMID: 34311884 DOI: 10.1016/j.enzmictec.2021.109847] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/03/2021] [Accepted: 06/06/2021] [Indexed: 10/21/2022]
Abstract
Maltodextrins (dextrins) are glucose chains normally produced by starch hydrolysis. Maltodextrins are characterized by their degree of polymerization (DP), which indicates the average number of glucose units per chain. Maltoheptaose (DP7), also known as amyloheptaose, is one of the maltodextrin mixtures widely used in foods, cosmetics, and pharmaceutical industries. Recently, the enzymatic synthesis of DP7 has attracted considerable attention, owing to its considerable advantages over chemical methods. In this work, we have designed a one-pot cascade reaction bio-synthesis starting from soluble starch to produce a specific degree of polymerization (DP7). The reaction system was catalyzed by cyclodextrin glucotransferase (GaCGT) from Gracilibacillus alcaliphilus SK51.001CGTase (transglycosylation/cyclization reaction) and cyclomaltodextrinase (BsCD) from Bacillus sphaericus E-244CDase (ring-opening reaction). The one-pot cascade reaction exhibited an optimum temperature of 30 °C and pH 7.0, and the addition of Ca2+ enhanced the maltoheptaose production. The optimum enzyme units for the one-pot cascade reaction were 80 U/g of GaCGT and 1 U/g of BsCD. However, the sequential addition of the enzymes exhibited a 5-fold higher conversion rate over simultaneous addition. The one-pot cascade reaction converted 30 g/L of soluble starch to 5.4 g/L of maltoheptaose in 1 h reaction time with a conversion rate of 16 %.
Collapse
Affiliation(s)
- Mohammed Abdalla
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China; International Joint Laboratory of Food Science and Safety, Jiangnan University, Wuxi, Jiangsu, 214122, China; Department of Food Processing, Faculty of Engineering and Technical Studies, University of El Imam El Mahadi, P. O. Box 209, Kosti, Sudan
| | - Bo Jiang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China; International Joint Laboratory of Food Science and Safety, Jiangnan University, Wuxi, Jiangsu, 214122, China.
| | - Hinawi A M Hassanin
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China; International Joint Laboratory of Food Science and Safety, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Luhua Zheng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China; International Joint Laboratory of Food Science and Safety, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Jingjing Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China; International Joint Laboratory of Food Science and Safety, Jiangnan University, Wuxi, Jiangsu, 214122, China
| |
Collapse
|