1
|
Wei S, Xu P, Mao Y, Shi Y, Liu W, Li S, Tu Z, Chen L, Hu M, Wang Y. Differential intestinal effects of water and foodborne exposures of nano-TiO 2 in the mussel Mytilus coruscus under elevated temperature. CHEMOSPHERE 2024; 355:141777. [PMID: 38527634 DOI: 10.1016/j.chemosphere.2024.141777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/21/2024] [Accepted: 03/22/2024] [Indexed: 03/27/2024]
Abstract
With the wide use of nanomaterials in daily life, nano-titanium dioxide (nano-TiO2) presents potential ecological risks to marine ecosystems, which can be exacerbated by ocean warming (OW). However, most previous studies have only centered around waterborne exposure, while there is a scarcity of studies concentrating on the impact of trophic transfer exposure on organisms. We investigated the differences in toxic effects of 100 μg/L nano-TiO2 on mussels via two pathways (waterborne and foodborne) under normal (24 °C) and warming (28 °C) conditions. Single nano-TiO2 exposure (waterborne and foodborne) elevated the superoxide dismutase (SOD) and catalase (CAT) activities as well as the content of glutathione (GSH), indicating activated antioxidatant response in the intestine. However, depressed antioxidant enzymes and accumulated peroxide products (LPO and protein carbonyl content, PCC) demonstrated that warming in combination with nano-TiO2 broke the prooxidant-antioxidant homeostasis of mussels. Our findings also indicated that nano-TiO2 and high temperature exhibited adverse impacts on amylase (AMS), trypsin (PS), and trehalase (THL). Additionally, activated immune function (lysozyme) comes at the cost of energy expenditure of protein (decreased protein concentration). The hydrodynamic diameter of nano-TiO2 at 24 °C (1693-2261 nm) was lower than that at 28 °C (2666-3086 nm). Bioaccumulation results (range from 0.022 to 0.432 μg/g) suggested that foodborne induced higher Ti contents in intestine than waterborne. In general, the combined effects of nano-TiO2 and warming demonstrated a more pronounced extent of interactive effects and severe damage to antioxidant, digestive, and immune parameters in mussel intestine. The toxicological impact of nano-TiO2 was intensified through trophic transfer. The toxic effects of nano-TiO2 are non-negligible and can be exerted together through both water- and foodborne exposure routes, which deserves further investigation.
Collapse
Affiliation(s)
- Shuaishuai Wei
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Peng Xu
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Yiran Mao
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Yuntian Shi
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Wei Liu
- University of Geneva, Faculty of Sciences, Earth and Environment Sciences, Department F.-A. Forel for Environmental and Aquatic Sciences, CH-1211, Geneva, Switzerland
| | - Saishuai Li
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Zhihan Tu
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Liming Chen
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Menghong Hu
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; Marine Biomedical Science and Technology Innovation Platform of Lin-gang Special Area, Shanghai, China
| | - Youji Wang
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China.
| |
Collapse
|
2
|
Peng H, Guo D, Peng H, Guo H, Wang H, Wang Y, Xu B, Gao A, Liu Z, Guo X. The gene AccCyclin H mitigates oxidative stress by influencing trehalose metabolism in Apis cerana cerana. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:225-234. [PMID: 37549225 DOI: 10.1002/jsfa.12900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 06/11/2023] [Accepted: 08/07/2023] [Indexed: 08/09/2023]
Abstract
BACKGROUND Environmental stress can induce oxidative stress in Apis cerana cerana, leading to cellular oxidative damage, reduced vitality, and even death. Currently, owing to an incomplete understanding of the molecular mechanisms by which A. cerana cerana resists oxidative damage, there is no available method to mitigate the risk of this type of damage. Cyclin plays an important role in cell stress resistance. The aim of this study was to explore the in vivo protection of cyclin H against oxidative damage induced by abiotic stress in A. cerana cerana and clarify the mechanism of action. We isolated and identified the AccCyclin H gene in A. cerana cerana and analysed its responses to different exogenous stresses. RESULTS The results showed that different oxidative stressors can induce or inhibit the expression of AccCyclin H. After RNA-interference-mediated AccCyclin H silencing, the activity of antioxidant-related genes and related enzymes was inhibited, and trehalose metabolism was reduced. AccCyclin H gene silencing reduced A. cerana cerana high-temperature tolerance. Exogenous trehalose supplementation enhanced the total antioxidant capacity of A. cerana cerana, reduced the accumulation of oxidants, and improved the viability of A. cerana cerana under high-temperature stress. CONCLUSION Our findings suggest that trehalose can alleviate adverse stress and that AccCyclin H may participate in oxidative stress reactions by regulating trehalose metabolism. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Hongyan Peng
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, PR China
| | - Dezheng Guo
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, PR China
| | - Hongmei Peng
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, PR China
| | - Hengjun Guo
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, PR China
| | - Hongfang Wang
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Shandong Agricultural University, Taian, PR China
| | - Ying Wang
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Shandong Agricultural University, Taian, PR China
| | - Baohua Xu
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Shandong Agricultural University, Taian, PR China
| | - Aiying Gao
- Taian Institute for Food and Drug Control (Taian Fiber Inspection Institute), Taian, PR China
| | - Zhenguo Liu
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Shandong Agricultural University, Taian, PR China
| | - Xingqi Guo
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, PR China
| |
Collapse
|
3
|
Cao J, Xie J, Yu M, Xu T, Zhang H, Chen L, Sun S. The Promoting Mechanism of the Sterile Fermentation Filtrate of Serratia odorifera on Hypsizygus marmoreus by Means of Metabolomics Analysis. Biomolecules 2023; 13:1804. [PMID: 38136674 PMCID: PMC10741993 DOI: 10.3390/biom13121804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/13/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023] Open
Abstract
Hypsizygus marmoreus has become one of the most popular edible mushrooms due to its high nutritional and economic value. Previous researchers found that Serratia odorifera could promote the growth of H. marmoreus by producing and secreting some of its inducers. However, the specific mechanism of action was still unclear. In this study, we found that the exogenous addition of sterile fermentation filtrate (HZSO-1), quorum sensing (QS) signaling molecules, 3-oxo-C6-HSL, cyclo(Pro-Leu), and cyclo(Tyr-Leu) could significantly promote the growth of H. marmoreus, increase the number of clamp junctions, and the diameter of mycelium (p < 0.05). In addition, non-targeted metabolomic analysis revealed that 706 metabolites were detected in the treated group. Of these, 307 metabolites were significantly different (p < 0.05). Compared with the control, 54 and 86 metabolites were significantly increased and decreased in the HZSO-1 group, respectively (p < 0.05). We speculate that the sterile fermentation filtrate of S. odorifera could mediate the carbohydrate and amino acid metabolism of H. marmoreus by influencing the pentose phosphate pathway (PPP) to increase the energy supply for the growth and development of the mycelium. The above results will further reveal the growth-promoting mechanism of S. odorifera on H. marmoreus.
Collapse
Affiliation(s)
- Jixuan Cao
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.C.); (J.X.); (M.Y.); (T.X.); (H.Z.); (L.C.)
| | - Jiacheng Xie
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.C.); (J.X.); (M.Y.); (T.X.); (H.Z.); (L.C.)
| | - Mingming Yu
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.C.); (J.X.); (M.Y.); (T.X.); (H.Z.); (L.C.)
| | - Tao Xu
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.C.); (J.X.); (M.Y.); (T.X.); (H.Z.); (L.C.)
| | - Huangru Zhang
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.C.); (J.X.); (M.Y.); (T.X.); (H.Z.); (L.C.)
| | - Liding Chen
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.C.); (J.X.); (M.Y.); (T.X.); (H.Z.); (L.C.)
| | - Shujing Sun
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.C.); (J.X.); (M.Y.); (T.X.); (H.Z.); (L.C.)
- Gutian Edible Fungi Research Institute, Fujian Agriculture and Forestry University, Ningde 352200, China
| |
Collapse
|
4
|
Lin H, Li P, Ma L, Lai S, Sun S, Hu K, Zhang L. Analysis and modification of central carbon metabolism in Hypsizygus marmoreus for improving mycelial growth performance and fruiting body yield. Front Microbiol 2023; 14:1233512. [PMID: 37560516 PMCID: PMC10407233 DOI: 10.3389/fmicb.2023.1233512] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 07/03/2023] [Indexed: 08/11/2023] Open
Abstract
Hypsizygus marmoreus is one of the main industrially cultivated varieties of edible fungi, with a delicious taste and high nutritional value. However, the long harvest period of 130-150 days greatly limits its large-scale expansion. This study aimed to investigate the effects of central carbon metabolism (CCM) on the mycelial growth performance and fruiting body formation of H. marmoreus. Nine edible fungi with different harvest periods were collected and used to evaluate their intracellular carbon metabolic differences in the CCM, which revealed that the imbalanced distribution of intracellular carbon metabolic levels in the CCM of H. marmoreus might be one of the key factors resulting in a slow mycelial growth rate and a long harvest period. Further analysis by three strategies, including metabolomics, adaptation of different carbon sources, and chemical interference, confirmed that low carbon flux into the pentose phosphate pathway (PPP) limited the supply of raw materials, reduced power, and thus influenced the mycelial growth of H. marmoreus. Furthermore, four transformants with increased expression levels of glucose-6-phosphate dehydrogenase (G6PDH), a key rate-limiting enzyme in the PPP of H. marmoreus, were developed and showed more extracellular soluble protein secretion and higher sugar assimilation rates, as well as improved mycelial growth rates in bottle substrate mixtures. Finally, cultivation experiments indicated that the maturation periods of the fruiting body with ~4-5 days in advance and the maximum fruiting body yield of 574.8 g per bag with an increase of 7.4% were achieved by improving the G6PDH expression level of the PPP in H. marmoreus. This study showed that CCM played an important role in the mycelial growth and development of H. marmoreus, which provided new insights for future advancements in cultivating and breeding edible fungi.
Collapse
Affiliation(s)
- Hui Lin
- Department of Bioengineering, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Institute of Edible Fungi, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, China
| | - Pengfei Li
- Department of Bioengineering, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Lu Ma
- Institute of Edible Fungi, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, China
| | - Shufang Lai
- Fujian Edible Fungus Technology Promotion General Station, Fuzhou, Fujian, China
| | - Shujing Sun
- Department of Bioengineering, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Kaihui Hu
- Department of Bioengineering, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Liaoyuan Zhang
- Department of Bioengineering, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| |
Collapse
|
5
|
Zhang Q, Feng R, Miao R, Lin J, Cao L, Ni Y, Li W, Zhao X. Combined transcriptomics and metabolomics analysis reveals the molecular mechanism of heat tolerance of Le023M, a mutant in Lentinulaedodes. Heliyon 2023; 9:e18360. [PMID: 37519752 PMCID: PMC10372740 DOI: 10.1016/j.heliyon.2023.e18360] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 07/14/2023] [Accepted: 07/14/2023] [Indexed: 08/01/2023] Open
Abstract
Lentinula edodes, one of the most highly regarded edible mushrooms in China, is susceptible to damage from high temperatures. However, a mutant strain derived from L. edodes, known as Le023M, has shown exceptional thermotolerance. Compared to the original strain Le023, Le023M exhibited accelerated mycelial recovery following heat stress. Through RNA-seq analysis, the majority of differentially expressed genes (DEGs) were found to be associated with functions such as "protein refolding", "protein unfolding", "protein folding", and "response to heat", all of which are closely linked to heat shock proteins. Furthermore, qRT-PCR results revealed significant accumulation of heat shock-related genes in Le023M under heat stress. GC-MS analysis indicated elevated levels of trehalose, aspartate, and glutamate in Le023M when subjected to heat stress. The highly expressed genes involved in these metabolic pathways were predominantly found in Le023M. Collectively, these findings highlight the following: (i) the crucial role of heat shock proteins (HSPs) in the thermo-resistant mechanisms of Le023M; (ii) the potential of trehalose accumulation in Le023M to enhance mycelium resistance to heat stress; and (iii) the induction of aspartate and glutamate accumulation in response to heat stress. These results shed light on the molecular mechanisms underlying the thermotolerance of Le023M, providing valuable insights for further understanding and improving heat stress response in L. edodes. The findings also highlight the potential applications of Le023M in the cultivation and production of L. edodes under high-temperature conditions.
Collapse
Affiliation(s)
- Qin Zhang
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, 610299, Sichuan, China
- Chengdu National Agricultural Science and Technology Center, Chengdu, 610299, Sichuan, China
| | - Rencai Feng
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, 610299, Sichuan, China
- Chengdu National Agricultural Science and Technology Center, Chengdu, 610299, Sichuan, China
| | - Renyun Miao
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, 610299, Sichuan, China
- Chengdu National Agricultural Science and Technology Center, Chengdu, 610299, Sichuan, China
| | - Junbin Lin
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, 610299, Sichuan, China
- Chengdu National Agricultural Science and Technology Center, Chengdu, 610299, Sichuan, China
| | - Luping Cao
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, Gansu, China
| | - Yanqing Ni
- College of Food and Biological Engineering, Chengdu University, Chengdu, 610106, Sichuan, China
| | - Wensheng Li
- College of Food and Biological Engineering, Chengdu University, Chengdu, 610106, Sichuan, China
| | - Xu Zhao
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, 610299, Sichuan, China
- Chengdu National Agricultural Science and Technology Center, Chengdu, 610299, Sichuan, China
- Facility Agriculture and Equipment Research Institute, Gansu Academy of Agri-engineering Technology, Wuwei, 733006, Gansu, China
| |
Collapse
|
6
|
Tang D, Quan C, Huang S, Wei F. Integrating LC-MS and HS-GC-MS for the metabolite characterization of the Chinese medicinal plant Platostoma palustre under different processing methods. Front Nutr 2023; 10:1181942. [PMID: 37275652 PMCID: PMC10235517 DOI: 10.3389/fnut.2023.1181942] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 04/18/2023] [Indexed: 06/07/2023] Open
Abstract
Platostoma palustre (or Mesona chinensis Benth) is an important medicinal and edible plant in China and Southeast Asian countries. To study the effects of different processing methods on the quality, nutrition, and flavor of P. palustre, we adopted the LC-MS and HS-GC-MS to compare the influences of tedding (S), sweating (M), and drying (H) on the metabolites and volatile substances of P. palustre. Biochemical determinations revealed that the M treatment could promote the accumulation of the contents of total sugar, soluble sugar, and total pectin compared with the H and S treatments but decrease the total flavonoid contents. LC-MS and HS-GC-MS uncovered 98 differential metabolites and 27 differential volatile substances among the three treatments, respectively. Overall, the M treatment facilitated the stabilization and improvement of the quality of polysaccharides and volatile substances, while the H treatment could promote the level of amino acids in P. palustre. The current study provided a theoretical reference for establishing standardized processing methods and sustaining the quality stability of P. palustre in future.
Collapse
Affiliation(s)
- Danfeng Tang
- Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
- National Traditional Chinese Medicine Inheritance and Innovation Center, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | - Changqian Quan
- Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
- National Traditional Chinese Medicine Inheritance and Innovation Center, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | - Suhua Huang
- College of Pharmacy, Guangxi Medical University, Nanning, China
| | - Fan Wei
- Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
- National Traditional Chinese Medicine Inheritance and Innovation Center, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| |
Collapse
|
7
|
Salicylic Acid Treatment Alleviates the Heat Stress Response by Reducing the Intracellular ROS Level and Increasing the Cytosolic Trehalose Content in Pleurotus ostreatus. Microbiol Spectr 2023; 11:e0311322. [PMID: 36507658 PMCID: PMC9927586 DOI: 10.1128/spectrum.03113-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Pleurotus ostreatus is usually cultivated in horticultural facilities that lack environmental control systems and often suffer heat stress (HS). Salicylic acid (SA) is recognized as a plant defense-related hormone. Here, SA treatment (200 μM) induced fungal resistance to HS of P. ostreatus, with decreased malondialdehyde (MDA) content and HSP expression. Further analysis showed that SA treatment in P. ostreatus increased the cytosolic trehalose content and reduced the intracellular reactive oxygen species (ROS) level. Moreover, H2O2 could restore the MDA content and HSP expression of P. ostreatus treated with SA under HS. In addition, trehalose (25 mM) or CaCl2 (5 mM) treatment induced fungal resistance to HS, and CaCl2 treatment increased the cytosolic trehalose content of P. ostreatus under HS. However, inhibiting Ca2+ levels using Ca2+ inhibitors or mutants reversed the trehalose content induced by SA in P. ostreatus under HS. In addition, inhibiting trehalose biosynthesis using Tps-silenced strains reversed the MDA content and HSP expression of P. ostreatus treated with SA under HS. Taken together, these results indicate that SA treatment alleviates the HS response of P. ostreatus by reducing the intracellular ROS level and increasing the cytosolic trehalose content. IMPORTANCE Heat stress (HS) is a crucial environmental challenge for edible fungi. Salicylic acid (SA), a plant defense-related hormone, plays key roles in plant responses to biotic and abiotic stresses. In this study, we found that SA treatment increased the cytosolic trehalose content and induced fungal resistance to HS in P. ostreatus. Further analysis showed that SA can alleviate the HS of P. ostreatus by reducing the intracellular ROS level and increasing the cytosolic trehalose content. Our results help to understand the mechanism underlying the responses of P. ostreatus to HS. In addition, this research provides new insights for the cultivation of P. ostreatus.
Collapse
|
8
|
Perez R, Aron S. Protective role of trehalose in the Namib desert ant, Ocymyrmex robustior. J Exp Biol 2023; 226:286983. [PMID: 36695637 DOI: 10.1242/jeb.245149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 01/12/2023] [Indexed: 01/26/2023]
Abstract
Over recent decades, increasing attention has been paid to how low-molecular-weight molecules affect thermal tolerance in animals. Although the disaccharide sugar trehalose is known to serve as a thermal protectant in unicellular organisms, nothing is known about its potential role in insects. In this study, we investigated the effect of trehalose on heat tolerance in the Namib desert ant, Ocymyrmex robustior, one of the most thermotolerant animals found in terrestrial ecosystems. First, we tested whether a trehalose-supplemented diet increased worker survival following exposure to heat stress. Second, we assessed the degree of protein damage by comparing protein aggregation levels for trehalose-supplemented workers and control workers. Third, we compared the expression levels of three genes involved in trehalose metabolism. We found that trehalose supplementation significantly enhanced worker heat tolerance, increased metabolic levels of trehalose and reduced protein aggregation under conditions of heat stress. Expression levels of the three genes varied in a manner that was consistent with the maintenance of trehalose in the hemolymph and tissues under conditions of heat stress. Altogether, these results suggest that increased trehalose concentration may help protect Namib desert ant individuals against heat stress. More generally, they highlight the role played by sugar metabolites in boosting tolerance in extremophiles.
Collapse
Affiliation(s)
- Rémy Perez
- Department of Evolutionary Biology & Ecology, Université Libre de Bruxelles, 50 Avenue F. D. Roosevelt, B-1050 Brussels, Belgium
| | - Serge Aron
- Department of Evolutionary Biology & Ecology, Université Libre de Bruxelles, 50 Avenue F. D. Roosevelt, B-1050 Brussels, Belgium
| |
Collapse
|
9
|
Wu N, Xing M, Chen Y, Zhang C, Li Y, Song P, Xu Q, Liu H, Huang H. Improving the productivity of malic acid by alleviating oxidative stress during Aspergillus niger fermentation. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2022; 15:151. [PMID: 36581946 PMCID: PMC9801644 DOI: 10.1186/s13068-022-02250-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 12/15/2022] [Indexed: 12/30/2022]
Abstract
BACKGROUND As an attractive platform chemical, malic acid has been commonly used in the food, feed and pharmaceutical field. Microbial fermentation of biobased sources to produce malic acid has attracted great attention because it is sustainable and environment-friendly. However, most studies mainly focus on improving yield and ignore shortening fermentation time. A long fermentation period means high cost, and hinders the industrial applications of microbial fermentation. Stresses, especially oxidative stress generated during fermentation, inhibit microbial growth and production, and prolong fermentation period. Previous studies have shown that polypeptides could effectively relieve stresses, but the underlying mechanisms were poorly understood. RESULTS In this study, polypeptides (especially elastin peptide) addition improves the productivity of malic acid in A. niger, resulting in shortening of fermentation time from 120 to 108 h. Transcriptome and biochemical analyses demonstrated that both antioxidant enzyme-mediated oxidative stress defense system, such as superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX), and nonenzymatic antioxidant system, such as glutathione, were enhanced in the presence of elastin peptide, suggesting elastin peptide relieving oxidative stresses is involved in many pathways. In order to further investigate the relationship between oxidative stress defense and malic acid productivity, we overexpressed three enzymes (Sod1, CAT, Tps1) related to oxidation resistance in A. niger, respectively, and these resulting strains display varying degree of improvement in malic acid productivity. Especially, the strain overexpressing the Sod1 gene achieved a malate titer of 91.85 ± 2.58 g/L in 96 h, corresponding to a productivity of 0.96 g/L/h, which performs better than elastin peptide addition. CONCLUSIONS Our investigation provides an excellent reference for alleviating the stress of the fungal fermentation process and improving fermentation efficiency.
Collapse
Affiliation(s)
- Na Wu
- grid.260474.30000 0001 0089 5711School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023 China ,grid.260474.30000 0001 0089 5711College of Life Sciences, Nanjing Normal University, Nanjing, 210046 China
| | - Mingyan Xing
- grid.260474.30000 0001 0089 5711School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023 China
| | - Yaru Chen
- grid.260474.30000 0001 0089 5711School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023 China
| | - Chi Zhang
- grid.260474.30000 0001 0089 5711School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023 China
| | - Yingfeng Li
- grid.260474.30000 0001 0089 5711School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023 China ,grid.260474.30000 0001 0089 5711College of Life Sciences, Nanjing Normal University, Nanjing, 210046 China
| | - Ping Song
- grid.260474.30000 0001 0089 5711School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023 China
| | - Qing Xu
- grid.260474.30000 0001 0089 5711School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023 China
| | - Hao Liu
- grid.413109.e0000 0000 9735 6249Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, Tianjin University of Science & Technology, Tianjin, 300457 China
| | - He Huang
- grid.260474.30000 0001 0089 5711School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023 China ,grid.412022.70000 0000 9389 5210College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211800 China
| |
Collapse
|
10
|
Nagabhyru P, Dinkins RD, Schardl CL. Transcriptome analysis of Epichloë strains in tall fescue in response to drought stress. Mycologia 2022; 114:697-712. [PMID: 35671366 DOI: 10.1080/00275514.2022.2060008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Epichloë coenophiala, a systemic fungal symbiont (endophyte) of tall fescue (Lolium arundinaceum), has been documented to confer to this grass better persistence than plants lacking the endophyte, especially under stress conditions such as drought. The response, if any, of the endophyte to imposition of stress on the host plant has not been characterized previously. Therefore, we investigated effects on gene expression by E. coenophiala and a related endophyte when plant-endophyte symbiota were subjected to acute water-deficit stress. Plants harboring different endophyte strains were grown in sand in the greenhouse, then half were deprived of water for 48 h and the other half were watered controls. RNA was isolated from different plant tissues, and mRNA sequencing (RNA-seq) was conducted to identify genes that were differentially expressed comparing stress treatment with control. We compared two different plants harboring the common toxic E. coenophiala strain (CTE) and two non-ergot-alkaloid-producing Epichloë strains in tall fescue pseudostems, and in a second experiment we compared responses of E. coenophiala CTE in plant pseudostem and crown tissues. The endophytes responded to the stress with increased expression of genes involved in oxidative stress response, oxygen radical detoxification, C-compound carbohydrate metabolism, heat shock, and cellular transport pathways. The magnitude of fungal gene responses during stress varied among plant-endophyte symbiota. Responses in pseudostems and crowns involved some common pathways as well as some tissue-specific pathways. The fungal response to water-deficit stress involved gene expression changes in similar pathways that have been documented for plant stress responses, indicating that Epichloë spp. and their host plants either coordinate stress responses or separately activate similar stress response mechanisms that work together for mutual protection.
Collapse
Affiliation(s)
- Padmaja Nagabhyru
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky 40546
| | - Randy D Dinkins
- Forage-Animal Production Research Unit, Agricultural Research Service, United States Department of Agriculture, Lexington, Kentucky 40546
| | | |
Collapse
|
11
|
Salicylic Acid Enhances Heat Stress Resistance of Pleurotus ostreatus (Jacq.) P. Kumm through Metabolic Rearrangement. Antioxidants (Basel) 2022; 11:antiox11050968. [PMID: 35624832 PMCID: PMC9137821 DOI: 10.3390/antiox11050968] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/09/2022] [Accepted: 05/10/2022] [Indexed: 12/04/2022] Open
Abstract
Pleurotus ostreatus (Jacq.) P. Kumm is cultivated worldwide, and its growth is seriously threatened by heat stress. Here, we performed a comprehensive analysis to investigate the influence of the phytohormone salicylic acid (SA) in P. ostreatus under HS. The results showed that the hyphal growth recovery rate and the antioxidant capacity of P. ostreatus increased with exogenous SA application (0.01 mmol/L and 0.05 mmol/L) after HS treatment. Metabolomic and transcriptomic analyses showed that SA application (0.05 mmol/L) weakened central carbon metabolism to allow cells to survive HS efficiently. In addition, SA shifted glycolysis to one-carbon metabolism to produce ROS scavengers (GSH and NADPH) and reduced ROS production by altering mitochondrial metabolism. SA also maintained nucleotide homeostasis, led to membrane lipid remodeling, activated the MAPK pathway, and promoted the synthesis of cell-wall components. This study provides a reference for further study of SA in microorganisms.
Collapse
|
12
|
Traxler L, Shrestha J, Richter M, Krause K, Schäfer T, Kothe E. Metal adaptation and transport in hyphae of the wood-rot fungus Schizophyllum commune. JOURNAL OF HAZARDOUS MATERIALS 2022; 425:127978. [PMID: 34896706 DOI: 10.1016/j.jhazmat.2021.127978] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/27/2021] [Accepted: 11/30/2021] [Indexed: 06/14/2023]
Abstract
Fungi living in heavy metals and radionuclides contaminated environments, namely the Chernobyl Exclusion Zone need to be able to cope with these pollutants. In this study, the wood-rot fungus Schizophyllum commune was investigated for its metal tolerance mechanisms, and for its ability to transport such metals through its hyphae. Effects of temperature and pH on tolerance of Cs, Sr, Cd, and Zn were tested. At concentrations allowing for half-maximal growth, adapted strains were raised. The strontium-adapted strain, S. commune 12-43 Sr, showed transport of specifically Sr over distances on a cm-scale using split plates. The adaptation did not yield changes in cell or colony morphology. Intracellular metal localization was not changed, and gene expression profiles under metal stress growing on soil versus artificial medium showed a higher impact of a structured surface for growth on soil than with different metal concentrations. In the transcriptome, transporter genes were mostly down-regulated, while up-regulation was seen for genes involved in the secretory pathway under metal stress. A comparison of wildtype and adapted strains could confirm lower cellular stress levels leading to lack of glutathione S-transferase up-regulation in the adapted strain. Thus, we could show metal transport as well as specific mechanisms in metal stress avoidance.
Collapse
Affiliation(s)
- Lea Traxler
- Institute of Microbiology, Friedrich Schiller University, Neugasse 25, 07743 Jena, Germany
| | - Jenny Shrestha
- Institute of Microbiology, Friedrich Schiller University, Neugasse 25, 07743 Jena, Germany
| | - Martin Richter
- Institute of Geosciences, Applied Geology, Friedrich Schiller University, Burgweg 11, 07749 Jena, Germany
| | - Katrin Krause
- Institute of Microbiology, Friedrich Schiller University, Neugasse 25, 07743 Jena, Germany
| | - Thorsten Schäfer
- Institute of Geosciences, Applied Geology, Friedrich Schiller University, Burgweg 11, 07749 Jena, Germany
| | - Erika Kothe
- Institute of Microbiology, Friedrich Schiller University, Neugasse 25, 07743 Jena, Germany.
| |
Collapse
|