1
|
Chen CW, Chen HC, She SC, Lai CT, Chen WJ, Kuo TBJ, Yang CCH. Levilactobacillus brevis SG031 modulates mood-related behaviors and attenuates stress-related sleep disturbance and autonomic dysfunction via gut microbiota modulation in Wistar-Kyoto rats. Life Sci 2024; 351:122804. [PMID: 38852801 DOI: 10.1016/j.lfs.2024.122804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/22/2024] [Accepted: 06/04/2024] [Indexed: 06/11/2024]
Abstract
AIMS The probiotic bacterium Levilactobacillus brevis (L. brevis) has been proposed as a potential solution to manage mood disorders and alleviate stress-related sleep disturbances. However, the underlying mechanisms of its effects have not been fully elucidated. The aim of this study was to explore the impact and potential mechanisms of L. brevis SG031 supplementation on anxiety/depression-like behaviors and stress-induced changes in sleep patterns and sleep-related autonomic function. MAIN METHODS Male Wistar-Kyoto rats were administered low, medium, or high doses of L. brevis SG031 or a vehicle for 4 weeks, followed by behavioral tests to evaluate anxiety and depression. After an additional 2 weeks of SG031 or vehicle administration, a cage-exchange paradigm was performed with 24-hour physiological signal measurements under different stress conditions. Fecal samples were collected to construct a 16S rRNA library and assess fecal short-chain fatty acids (SCFAs). KEY FINDINGS High-dose SG031 administration yielded reduced depression-like responses and enhanced social interaction in behavioral tests. It also exhibited a protective effect against stress-induced sleep disturbance characterized by decreased sleep time, increased awake time, and autonomic dysfunction during sleep. Fecal examination indicated that high-dose SG031 administration exerted beneficial effects on gut health by maintaining the gut microbial abundance, preserving stability of the microbial composition, and enriching the gut with SCFAs, which were associated with improvements in sleep and autonomic function. SIGNIFICANCE These findings collectively underscore the multifaceted potential of SG031 in addressing mental health and stress-related sleep challenges through the modulation of the gut microbiota.
Collapse
Affiliation(s)
- Chieh-Wen Chen
- Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan; Sleep Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan; Department of Health and Leisure Management, Yuanpei University of Medical Technology, Hsinchu, Taiwan
| | - Hung-Chang Chen
- Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan; Sleep Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan; Department of Medical Education, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Sheng-Chieh She
- Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan; Sleep Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chun-Ting Lai
- Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan; Sleep Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Wei-Jen Chen
- College of Management, Chang Jung Christian University, Tainan, Taiwan
| | - Terry B J Kuo
- Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan; Sleep Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan; Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan; Department of Education and Research, Taipei City Hospital, Taipei, Taiwan; Center for Mind and Brain Medicine, Tsaotun Psychiatric Center, Ministry of Health and Welfare, Nantou, Taiwan
| | - Cheryl C H Yang
- Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan; Sleep Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan; Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan; Department of Education and Research, Taipei City Hospital, Taipei, Taiwan.
| |
Collapse
|
2
|
Jung YH, Chae CW, Han HJ. The potential role of gut microbiota-derived metabolites as regulators of metabolic syndrome-associated mitochondrial and endolysosomal dysfunction in Alzheimer's disease. Exp Mol Med 2024; 56:1691-1702. [PMID: 39085351 PMCID: PMC11372123 DOI: 10.1038/s12276-024-01282-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/20/2024] [Accepted: 05/10/2024] [Indexed: 08/02/2024] Open
Abstract
Although the role of gut microbiota (GMB)-derived metabolites in mitochondrial and endolysosomal dysfunction in Alzheimer's disease (AD) under metabolic syndrome remains unclear, deciphering these host-metabolite interactions represents a major public health challenge. Dysfunction of mitochondria and endolysosomal networks (ELNs) plays a crucial role in metabolic syndrome and can exacerbate AD progression, highlighting the need to study their reciprocal regulation for a better understanding of how AD is linked to metabolic syndrome. Concurrently, metabolic disorders are associated with alterations in the composition of the GMB. Recent evidence suggests that changes in the composition of the GMB and its metabolites may be involved in AD pathology. This review highlights the mechanisms of metabolic syndrome-mediated AD development, focusing on the interconnected roles of mitochondrial dysfunction, ELN abnormalities, and changes in the GMB and its metabolites. We also discuss the pathophysiological role of GMB-derived metabolites, including amino acids, fatty acids, other metabolites, and extracellular vesicles, in mediating their effects on mitochondrial and ELN dysfunction. Finally, this review proposes therapeutic strategies for AD by directly modulating mitochondrial and ELN functions through targeting GMB metabolites under metabolic syndrome.
Collapse
Affiliation(s)
- Young Hyun Jung
- Department of Physiology, College of Medicine, Soonchunhyang University, Cheonan, 31151, Korea
| | - Chang Woo Chae
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 FOUR Future Veterinary Medicine Leading Education & Research Center, Seoul National University, Seoul, South Korea
| | - Ho Jae Han
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 FOUR Future Veterinary Medicine Leading Education & Research Center, Seoul National University, Seoul, South Korea.
| |
Collapse
|
3
|
Cataldo PG, Urquiza Martínez MP, Villena J, Kitazawa H, Saavedra L, Hebert EM. Comprehensive characterization of γ-aminobutyric acid (GABA) production by Levilactobacillus brevis CRL 2013: insights from physiology, genomics, and proteomics. Front Microbiol 2024; 15:1408624. [PMID: 38962125 PMCID: PMC11219586 DOI: 10.3389/fmicb.2024.1408624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 06/10/2024] [Indexed: 07/05/2024] Open
Abstract
Introduction Levilactobacillus brevis CRL 2013, a plant-derived lactic acid bacterium (LAB) with immunomodulatory properties, has emerged as an efficient producer of γ-aminobutyric acid (GABA). Notably, not all LAB possess the ability to produce GABA, highlighting the importance of specific genetic and environmental conditions for GABA synthesis. This study aimed to elucidate the intriguing GABA-producing machinery of L. brevis CRL 2013 and support its potential for safe application through comprehensive genome analysis. Methods A comprehensive genome analysis of L. brevis CRL 2013 was performed to identify the presence of antibiotic resistance genes, virulence markers, and genes associated with the glutamate decarboxylase system, which is essential for GABA biosynthesis. Then, an optimized chemically defined culture medium (CDM) was supplemented with monosodium glutamate (MSG) and yeast extract (YE) to analyze their influence on GABA production. Proteomic and transcriptional analyses were conducted to assess changes in protein and gene expression related to GABA production. Results The absence of antibiotic resistance genes and virulence markers in the genome of L. brevis CRL 2013 supports its safety for potential probiotic applications. Genes encoding the glutamate decarboxylase system, including two gad genes (gadA and gadB) and the glutamate antiporter gene (gadC), were identified. The gadB gene is located adjacent to gadC, while gadA resides separately on the chromosome. The transcriptional regulator gadR was found upstream of gadC, with transcriptional analyses demonstrating cotranscription of gadR with gadC. Although MSG supplementation alone did not activate GABA synthesis, the addition of YE significantly enhanced GABA production in the optimized CDM containing glutamate. Proteomic analysis revealed minimal differences between MSG-supplemented and non-supplemented CDM cultures, whereas YE supplementation resulted in significant proteomic changes, including upregulation of GadB. Transcriptional analysis confirmed increased expression of gadB and gadR upon YE supplementation, supporting its role in activating GABA production. Conclusion These findings provide valuable insights into the influence of nutrient composition on GABA production. Furthermore, they unveil the potential of L. brevis CRL 2013 as a safe, nonpathogenic strain with valuable biotechnological traits which can be further leveraged for its probiotic potential in the food industry.
Collapse
Affiliation(s)
- Pablo G. Cataldo
- Centro de Referencia para Lactobacilos (CERELA-CONICET), San Miguel de Tucumán, Argentina
| | | | - Julio Villena
- Centro de Referencia para Lactobacilos (CERELA-CONICET), San Miguel de Tucumán, Argentina
| | - Haruki Kitazawa
- Food and Feed Immunology Group, Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
- Livestock Immunology Unit, International Education and Research Centre for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Lucila Saavedra
- Centro de Referencia para Lactobacilos (CERELA-CONICET), San Miguel de Tucumán, Argentina
| | - Elvira M. Hebert
- Centro de Referencia para Lactobacilos (CERELA-CONICET), San Miguel de Tucumán, Argentina
| |
Collapse
|
4
|
Zoghi S, Sadeghpour Heravi F, Nikniaz Z, Shirmohamadi M, Moaddab SY, Ebrahimzadeh Leylabadlo H. Gut microbiota and childhood malnutrition: Understanding the link and exploring therapeutic interventions. Eng Life Sci 2024; 24:2300070. [PMID: 38708416 PMCID: PMC11065333 DOI: 10.1002/elsc.202300070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 09/12/2023] [Accepted: 09/22/2023] [Indexed: 05/07/2024] Open
Abstract
Childhood malnutrition is a metabolic condition that affects the physical and mental well-being of children and leads to resultant disorders in maturity. The development of childhood malnutrition is influenced by a number of physiological and environmental factors including metabolic stress, infections, diet, genetic variables, and gut microbiota. The imbalanced gut microbiota is one of the main environmental risk factors that significantly influence host physiology and childhood malnutrition progression. In this review, we have evaluated the gut microbiota association with undernutrition and overnutrition in children, and then the quantitative and qualitative significance of gut dysbiosis in order to reveal the impact of gut microbiota modification using probiotics, prebiotics, synbiotics, postbiotics, fecal microbiota transplantation, and engineering biology methods as new therapeutic challenges in the management of disturbed energy homeostasis. Understanding the host-microbiota interaction and the remote regulation of other organs and pathways by gut microbiota can improve the effectiveness of new therapeutic approaches and mitigate the negative consequences of childhood malnutrition.
Collapse
Affiliation(s)
- Sevda Zoghi
- Liver and Gastrointestinal Diseases Research CenterTabriz University of Medical SciencesTabrizIran
| | | | - Zeinab Nikniaz
- Liver and Gastrointestinal Diseases Research CenterTabriz University of Medical SciencesTabrizIran
| | - Masoud Shirmohamadi
- Liver and Gastrointestinal Diseases Research CenterTabriz University of Medical SciencesTabrizIran
| | - Seyed Yaghoub Moaddab
- Liver and Gastrointestinal Diseases Research CenterTabriz University of Medical SciencesTabrizIran
| | | |
Collapse
|
5
|
Patterson E, Tan HTT, Groeger D, Andrews M, Buckley M, Murphy EF, Groeger JA. Bifidobacterium longum 1714 improves sleep quality and aspects of well-being in healthy adults: a randomized, double-blind, placebo-controlled clinical trial. Sci Rep 2024; 14:3725. [PMID: 38355674 PMCID: PMC10866977 DOI: 10.1038/s41598-024-53810-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 02/05/2024] [Indexed: 02/16/2024] Open
Abstract
Stress and sleep are linked with overall well-being. Bifidobacterium longum 1714 has been shown to influence stress responses and modulate neural responses during social stress, and influence sleep quality during examination stress in healthy adults. Here, we explored the ability of this strain to alter sleep quality in adults using subjective and objective measures. Eighty-nine adults (18-45y) with impaired sleep quality assessed with the Pittsburgh Sleep Quality Index (PSQI) and with a global score ≥ 5 were randomized to receive B. longum 1714 or placebo daily for eight weeks. Assessing the effect of the strain on PSQI global score was the primary objective. Secondary objectives assessed sleep quality and well-being subjectively and sleep parameters using actigraphy objectively. While PSQI global score improved in both groups, B. longum 1714 significantly improved the PSQI component of sleep quality (p < 0.05) and daytime dysfunction due to sleepiness (p < 0.05) after 4 weeks and social functioning (p < 0.05) and energy/vitality (p < 0.05) after 8 weeks, compared to placebo. No significant effect on actigraphy measures were observed. The 1714 strain had a mild effect on sleep, demonstrated by a faster improvement in sleep quality at week 4 compared to placebo, although overall improvements after 8 weeks were similar in both groups. B. longum 1714 improved social functioning and increased energy/vitality in line with previous work that showed the strain modulated neural activity which correlated with enhanced vitality/reduced mental fatigue (ClinicalTrials.gov: NCT04167475).
Collapse
Affiliation(s)
| | | | | | - Mark Andrews
- Nottingham Trent University, Nottingham, NG1 4FQ, UK
| | - Martin Buckley
- Mercy University Hospital, University College Cork, Cork, Ireland
| | | | | |
Collapse
|
6
|
Batista P, Rodrigues Penas M, Vila-Real C, Pintado M, Oliveira-Silva P. Kombucha: Challenges for Health and Mental Health. Foods 2023; 12:3378. [PMID: 37761087 PMCID: PMC10530084 DOI: 10.3390/foods12183378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/30/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND Increasing research into probiotics is showing potential benefits for health in general and mental health in particular. Kombucha is a recent beverage and can be considered a probiotic drink, but little is known about its effects on physical and mental health. This product is experiencing growth in the market; however, there are no scientific results to support its potential for physical and mental health. AIM This review article aims to draw attention to this issue and to highlight the lack of studies in this area. KEY FINDINGS AND CONCLUSIONS The lack of legislation for the correct marketing of this product may also constrain clinical studies. However, clinical studies are of utmost importance for an in-depth understanding of the effects of this product on the human body. More research is needed, not only to better understand the impact of Kombucha on the human body, but also to ensure the application of regulatory guidelines for its production and marketing and enable its safe and effective consumption.
Collapse
Affiliation(s)
- Patrícia Batista
- Research Centre for Human Development, Human Neurobehavioural Laboratory, Universidade Católica Portuguesa, Rua de Diogo Botelho, 1327, 4169-005 Porto, Portugal; (M.R.P.); (P.O.-S.)
- CBQF—Centro de Biotecnologia e Química Fina, Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua de Diogo Botelho, 1327, 4169-005 Porto, Portugal; (C.V.-R.); (M.P.)
| | - Maria Rodrigues Penas
- Research Centre for Human Development, Human Neurobehavioural Laboratory, Universidade Católica Portuguesa, Rua de Diogo Botelho, 1327, 4169-005 Porto, Portugal; (M.R.P.); (P.O.-S.)
| | - Catarina Vila-Real
- CBQF—Centro de Biotecnologia e Química Fina, Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua de Diogo Botelho, 1327, 4169-005 Porto, Portugal; (C.V.-R.); (M.P.)
| | - Manuela Pintado
- CBQF—Centro de Biotecnologia e Química Fina, Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua de Diogo Botelho, 1327, 4169-005 Porto, Portugal; (C.V.-R.); (M.P.)
| | - Patrícia Oliveira-Silva
- Research Centre for Human Development, Human Neurobehavioural Laboratory, Universidade Católica Portuguesa, Rua de Diogo Botelho, 1327, 4169-005 Porto, Portugal; (M.R.P.); (P.O.-S.)
| |
Collapse
|
7
|
Development of an oil-sealed anaerobic fermentation process for high production of γ-aminobutyric acid with Lactobacillus brevis isolated by directional colorimetric screening. Biochem Eng J 2023. [DOI: 10.1016/j.bej.2023.108893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
8
|
Li F, Feng Y, Liu H, Kong D, Hsueh CY, Shi X, Wu Q, Li W, Wang J, Zhang Y, Dai C. Gut Microbiome and Metabolome Changes in Mice With Acute Vestibular Deficit. Front Cell Infect Microbiol 2022; 12:821780. [PMID: 35444956 PMCID: PMC9013912 DOI: 10.3389/fcimb.2022.821780] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 02/18/2022] [Indexed: 11/13/2022] Open
Abstract
Vestibular deficit is a very common disorder in clinical practice and is characterized by vertigo, spontaneous nystagmus, and autonomic nervous symptoms, including nausea, vomiting, and sweating. In addition, the comorbidity of vestibular deficit and anxiety has long been an integral component of the medical literature. Previous studies have suggested that the mechanisms underlying this comorbidity involved overlap of vestibular and cerebellar networks. Emerging evidence has shown that the microbiota–gut–brain axis plays a key role in the regulation of affective disorders. Thus, we hypothesized that the gut microbiota may be involved in the comorbidity of vestibular deficit and anxiety. To verify this, we constructed a unilateral labyrinthectomy mouse model to simulate vestibular deficit. Then, 16S rRNA gene sequencing and liquid chromatography–mass spectrometry (LC-MS) were used to analyze the microbiome and metabolome of the cecal samples collected from mice in the unilateral labyrinthectomy, sham surgery, and control groups. Notably, unilateral labyrinthectomy shaped the composition of the mouse gut microbiome, resulting in increased abundance of Lachnospiraceae NK4A136 group, Odoribacter and Roseburia and decreased abundance of Prevotella and Parasutterella at the genus level. Tax4Fun functional prediction indicated a decrease in tryptophan metabolism in mice in the unilateral labyrinthectomy group. Moreover, functional correlation of changes in gut microbes and metabolites between different groups showed that the oleamide level was negatively correlated with Odoribacter abundance (r = -0.89, p = 0.0002). The butyric acid level was positively correlated with Parasutterella abundance (r = 0.85, p = 0.0010). The propanoate level was negatively correlated with Prevotella abundance (r = -0.81, p = 0.0020). The 20-HETE level was positively correlated with Parasutterella abundance (r = 0.84, p = 0.0013). The altered microbes and metabolites were closely related to the pathogenesis of affective disorders. Our results not only offer novel insights into the vestibular deficit comorbid with anxiety but also build an important basis for future research on this etiology.
Collapse
Affiliation(s)
- Feitian Li
- Department of Otology and Skull Base Surgery, Eye, Ear, Nose, and Throat Hospital, Fudan University, Shanghai, China
- Key Laboratory of Hearing Medicine, Ministry of Health, Eye, Ear, Nose, and Throat Hospital, Fudan University, Shanghai, China
| | - Yisi Feng
- Department of Otology and Skull Base Surgery, Eye, Ear, Nose, and Throat Hospital, Fudan University, Shanghai, China
- Key Laboratory of Hearing Medicine, Ministry of Health, Eye, Ear, Nose, and Throat Hospital, Fudan University, Shanghai, China
| | - Hongyan Liu
- Department of Otolaryngology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Dedi Kong
- Department of Otology and Skull Base Surgery, Eye, Ear, Nose, and Throat Hospital, Fudan University, Shanghai, China
- Key Laboratory of Hearing Medicine, Ministry of Health, Eye, Ear, Nose, and Throat Hospital, Fudan University, Shanghai, China
| | - Chi-Yao Hsueh
- Department of Head and Neck Surgery, Eye, Ear, Nose, and Throat Hospital, Fudan University, Shanghai, China
| | - Xunbei Shi
- Department of Otology and Skull Base Surgery, Eye, Ear, Nose, and Throat Hospital, Fudan University, Shanghai, China
- Key Laboratory of Hearing Medicine, Ministry of Health, Eye, Ear, Nose, and Throat Hospital, Fudan University, Shanghai, China
| | - Qianru Wu
- Department of Otology and Skull Base Surgery, Eye, Ear, Nose, and Throat Hospital, Fudan University, Shanghai, China
- Key Laboratory of Hearing Medicine, Ministry of Health, Eye, Ear, Nose, and Throat Hospital, Fudan University, Shanghai, China
| | - Wei Li
- Department of Otology and Skull Base Surgery, Eye, Ear, Nose, and Throat Hospital, Fudan University, Shanghai, China
- Key Laboratory of Hearing Medicine, Ministry of Health, Eye, Ear, Nose, and Throat Hospital, Fudan University, Shanghai, China
| | - Jing Wang
- Department of Otology and Skull Base Surgery, Eye, Ear, Nose, and Throat Hospital, Fudan University, Shanghai, China
- Key Laboratory of Hearing Medicine, Ministry of Health, Eye, Ear, Nose, and Throat Hospital, Fudan University, Shanghai, China
| | - Yibo Zhang
- Department of Otology and Skull Base Surgery, Eye, Ear, Nose, and Throat Hospital, Fudan University, Shanghai, China
- Key Laboratory of Hearing Medicine, Ministry of Health, Eye, Ear, Nose, and Throat Hospital, Fudan University, Shanghai, China
| | - Chunfu Dai
- Department of Otology and Skull Base Surgery, Eye, Ear, Nose, and Throat Hospital, Fudan University, Shanghai, China
- Key Laboratory of Hearing Medicine, Ministry of Health, Eye, Ear, Nose, and Throat Hospital, Fudan University, Shanghai, China
- *Correspondence: Chunfu Dai,
| |
Collapse
|
9
|
Xiao T, Shah NP. Role of cysteine in the improvement of γ-aminobutyric acid production by nonproteolytic Levilactobacillus brevis in coculture with Streptococcus thermophilus. J Dairy Sci 2022; 105:3883-3895. [DOI: 10.3168/jds.2021-21486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 12/27/2021] [Indexed: 11/19/2022]
|
10
|
Shehata HR, Kiefer A, Morovic W, Newmaster SG. Locked Nucleic Acid Hydrolysis Probes for the Specific Identification of Probiotic Strains Bifidobacterium animalis subsp. lactis DSM 15954 and Bi-07™. Front Microbiol 2022; 12:801795. [PMID: 35003031 PMCID: PMC8733699 DOI: 10.3389/fmicb.2021.801795] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 11/25/2021] [Indexed: 11/13/2022] Open
Abstract
Probiotic health benefits are now well-recognized to be strain specific. Probiotic strain characterization and identification is thus important in clinical research and in the probiotic industry. This is becoming especially important with reports of probiotic products failing to meet the declared strain content, potentially compromising their efficacy. Availability of reliable identification methods is essential for strain authentication during discovery, evaluation and commercialization of a probiotic strain. This study aims to develop identification methods for strains Bifidobacterium animalis subsp. lactis DSM 15954 and Bi-07 (Bi-07™) based on real-time PCR, targeting single nucleotide polymorphisms (SNPs). The SNPs were targeted by PCR assays with locked nucleic acid (LNA) probes, which is a novel application in probiotic identification. The assays were then validated following the guidelines for validating qualitative real-time PCR assays. Each assay was evaluated for specificity against 22 non-target strains including closely related Bifidobacterium animalis subsp. lactis strains and were found to achieve 100% true positive and 0% false positive rates. To determine reaction sensitivity and efficiency, three standard curves were established for each strain. Reaction efficiency values were 86, 91, and 90% (R square values > 0.99), and 87, 84, and 86% (R square values > 0.98) for B. animalis subsp. lactis DSM 15954 and Bi-07 assays, respectively. The limit of detection (LOD) was 5.0 picograms and 0.5 picograms of DNA for DSM 15954 and Bi-07 assays, respectively. Each assay was evaluated for accuracy using five samples tested at three different DNA concentrations and both assays proved to be highly repeatable and reproducible. Standard deviation of Cq values between two replicates was always below 1.38 and below 1.68 for DSM 15954 and Bi-07 assays, respectively. The assays proved to be applicable to mono-strain and multi-strain samples as well as for samples in various matrices of foods or dietary supplement ingredients. Overall, the methods demonstrated high specificity, sensitivity, efficiency and precision and broad applicability to sample, matrix and machine types. These methods facilitate strain level identification of the highly monophyletic strains B. animalis subsp. lactis DSM 15954 and Bi-07 to ensure probiotic efficacy and provide a strategy to identify other closely related probiotics organisms.
Collapse
Affiliation(s)
- Hanan R Shehata
- Natural Health Product Research Alliance, College of Biological Science, University of Guelph, Guelph, ON, Canada.,Department of Microbiology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Anthony Kiefer
- IFF Health & Biosciences, International Flavors and Fragrances, Inc., Madison, WI, United States
| | - Wesley Morovic
- IFF Health & Biosciences, International Flavors and Fragrances, Inc., Madison, WI, United States
| | - Steven G Newmaster
- Natural Health Product Research Alliance, College of Biological Science, University of Guelph, Guelph, ON, Canada
| |
Collapse
|