1
|
Mathieu Y, Cleveland ME, Brumer H. Active-Site Engineering Switches Carbohydrate Regiospecificity in a Fungal Copper Radical Oxidase. ACS Catal 2022; 12:10264-10275. [PMID: 36033369 PMCID: PMC9397409 DOI: 10.1021/acscatal.2c01956] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/15/2022] [Indexed: 11/30/2022]
Abstract
Copper radical oxidases (CROs) from Auxiliary Activity Family 5, Subfamily 2 (AA5_2), are organic cofactor-free biocatalysts for the selective oxidation of alcohols to the corresponding aldehydes. AA5_2 CROs comprise canonical galactose-6-oxidases as well as the more recently discovered general alcohol oxidases and aryl alcohol oxidases. Guided by primary and tertiary protein structural analyses, we targeted a distinct extended loop in the active site of a Colletotrichum graminicola aryl alcohol oxidase (CgrAAO) to explore its effect on catalysis in the broader context of AA5_2. Deletion of this loop, which is bracketed by a conserved disulfide bridge, significantly reduced the inherent activity of the enzyme toward extended galacto-oligosaccharides, as anticipated from molecular modeling. Unexpectedly, kinetic and product analysis on a range of monosaccharides and disaccharides revealed that an altered carbohydrate specificity in CgrAAO-Δloop was accompanied by a complete change in regiospecificity from C-6 to C-1 oxidation, thereby generating aldonic acids. C-1 regiospecificity is unprecedented in AA5 enzymes and is classically associated with flavin-dependent carbohydrate oxidases of Auxiliary Activity Family 3. Thus, this work further highlights the catalytic adaptability of the unique mononuclear copper radical active site and provides a basis for the design of improved biocatalysts for diverse potential applications.
Collapse
Affiliation(s)
- Yann Mathieu
- Michael
Smith Laboratories, University of British
Columbia, 2185 East Mall, Vancouver, British Columbia V6T 1Z4, Canada
- BioProducts
Institute, University of British Columbia, 2385 East Mall, Vancouver, British Columbia V6T 1Z4, Canada
| | - Maria E. Cleveland
- Michael
Smith Laboratories, University of British
Columbia, 2185 East Mall, Vancouver, British Columbia V6T 1Z4, Canada
- Department
of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
- BioProducts
Institute, University of British Columbia, 2385 East Mall, Vancouver, British Columbia V6T 1Z4, Canada
| | - Harry Brumer
- Michael
Smith Laboratories, University of British
Columbia, 2185 East Mall, Vancouver, British Columbia V6T 1Z4, Canada
- Department
of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
- BioProducts
Institute, University of British Columbia, 2385 East Mall, Vancouver, British Columbia V6T 1Z4, Canada
- Department
of Biochemistry and Molecular Biology, University
of British Columbia, 2350 Health Sciences Mall, Vancouver, British Columbia V6T 1Z3, Canada
- Department
of Botany, University of British Columbia, 3200 University Boulevard, Vancouver, British Columbia V6T 1Z4, Canada
| |
Collapse
|
2
|
Sayed M, Gaber Y, Junghus F, Martín EV, Pyo S, Hatti‐Kaul R. Oxidation of 5-hydroxymethylfurfural with a novel aryl alcohol oxidase from Mycobacterium sp. MS1601. Microb Biotechnol 2022; 15:2176-2190. [PMID: 35349220 PMCID: PMC9328741 DOI: 10.1111/1751-7915.14052] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 03/06/2022] [Accepted: 03/08/2022] [Indexed: 11/30/2022] Open
Abstract
Bio-based 5-hydroxymethylfurfural (HMF) serves as an important platform for several chemicals, among which 2,5-furan dicarboxylic acid (FDCA) has attracted considerable interest as a monomer for the production of polyethylene furanoate (PEF), a potential alternative for fossil-based polyethylene terephthalate (PET). This study is based on the HMF oxidizing activity shown by Mycobacterium sp. MS 1601 cells and investigation of the enzyme catalysing the oxidation. The Mycobacterium whole cells oxidized the HMF to FDCA (60% yield) and hydroxymethyl furan carboxylic acid (HMFCA). A gene encoding a novel bacterial aryl alcohol oxidase, hereinafter MycspAAO, was identified in the genome and was cloned and expressed in Escherichia coli Bl21 (DE3). The purified MycspAAO displayed activity against several alcohols and aldehydes; 3,5 dimethoxy benzyl alcohol (veratryl alcohol) was the best substrate among those tested followed by HMF. 5-Hydroxymethylfurfural was converted to 5-formyl-2-furoic acid (FFCA) via diformyl furan (DFF) with optimal activity at pH 8 and 30-40°C. FDCA formation was observed during long reaction time with low HMF concentration. Mutagenesis of several amino acids shaping the active site and evaluation of the variants showed Y444F to have around 3-fold higher kcat /Km and ~1.7-fold lower Km with HMF.
Collapse
Affiliation(s)
- Mahmoud Sayed
- Division of BiotechnologyDepartment of ChemistryCenter for Chemistry and Chemical EngineeringLund UniversityLundSE‐22100Sweden
- Department of Botany and MicrobiologyFaculty of ScienceSouth Valley UniversityQena83523Egypt
| | - Yasser Gaber
- Department of Microbiology and ImmunologyFaculty of PharmacyBeni‐Suef UniversityBeni‐Suef62511Egypt
- Department of Pharmaceutics and Pharmaceutical TechnologyFaculty of PharmacyMutah UniversityAl‐Karak61710Jordan
| | - Fredrik Junghus
- Division of BiotechnologyDepartment of ChemistryCenter for Chemistry and Chemical EngineeringLund UniversityLundSE‐22100Sweden
| | - Eric Valdés Martín
- Division of BiotechnologyDepartment of ChemistryCenter for Chemistry and Chemical EngineeringLund UniversityLundSE‐22100Sweden
- Present address:
Department of ChemicalBiological and Environmental EngineeringUniversitat Autonoma BarcelonaBellaterraSpain
| | - Sang‐Hyun Pyo
- Division of BiotechnologyDepartment of ChemistryCenter for Chemistry and Chemical EngineeringLund UniversityLundSE‐22100Sweden
| | - Rajni Hatti‐Kaul
- Division of BiotechnologyDepartment of ChemistryCenter for Chemistry and Chemical EngineeringLund UniversityLundSE‐22100Sweden
| |
Collapse
|
3
|
Totaro G, Sisti L, Marchese P, Colonna M, Romano A, Gioia C, Vannini M, Celli A. Current Advances in the Sustainable Conversion of 5-Hydroxymethylfurfural into 2,5-Furandicarboxylic Acid. CHEMSUSCHEM 2022; 15:e202200501. [PMID: 35438242 PMCID: PMC9400982 DOI: 10.1002/cssc.202200501] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/15/2022] [Indexed: 06/14/2023]
Abstract
2,5-Furandicarboxylic acid (FDCA) is currently considered one of the most relevant bio-sourced building blocks, representing a fully sustainable competitor for terephthalic acid as well as the main component in green polymers such as poly(ethylene 2,5-furandicarboxylate) (PEF). The oxidation of biobased 5-hydroxymethylfurfural (HMF) represents the most straightforward approach to obtain FDCA, thus attracting the attention of both academia and industries, as testified by Avantium with the creation of a new plant expected to produce 5000 tons per year. Several approaches allow the oxidation of HMF to FDCA. Metal-mediated homogeneous and heterogeneous catalysis, metal-free catalysis, electrochemical approaches, light-mediated procedures, as well as biocatalytic processes share the target to achieve FDCA in high yield and mild conditions. This Review aims to give an up-to-date overview of the current developments in the main synthetic pathways to obtain FDCA from HMF, with a specific focus on process sustainability.
Collapse
Affiliation(s)
- Grazia Totaro
- Department of CivilChemical Environmental and Materials EngineeringUniversity of BolognaVia Terracini 2840131BolognaItaly
| | - Laura Sisti
- Department of CivilChemical Environmental and Materials EngineeringUniversity of BolognaVia Terracini 2840131BolognaItaly
| | - Paola Marchese
- Department of CivilChemical Environmental and Materials EngineeringUniversity of BolognaVia Terracini 2840131BolognaItaly
| | - Martino Colonna
- Department of CivilChemical Environmental and Materials EngineeringUniversity of BolognaVia Terracini 2840131BolognaItaly
| | - Angela Romano
- Department of CivilChemical Environmental and Materials EngineeringUniversity of BolognaVia Terracini 2840131BolognaItaly
| | - Claudio Gioia
- Department of CivilChemical Environmental and Materials EngineeringUniversity of BolognaVia Terracini 2840131BolognaItaly
| | - Micaela Vannini
- Department of CivilChemical Environmental and Materials EngineeringUniversity of BolognaVia Terracini 2840131BolognaItaly
| | - Annamaria Celli
- Department of CivilChemical Environmental and Materials EngineeringUniversity of BolognaVia Terracini 2840131BolognaItaly
| |
Collapse
|
4
|
Jankowski N, Koschorreck K, Urlacher VB. Aryl‐Alcohol‐Oxidase‐Mediated Synthesis of Piperonal and Other Valuable Aldehydes. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200381] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Nina Jankowski
- Institute of Biochemistry Heinrich-Heine University Düsseldorf Universitätsstraße 1 40225 Düsseldorf Germany
| | - Katja Koschorreck
- Institute of Biochemistry Heinrich-Heine University Düsseldorf Universitätsstraße 1 40225 Düsseldorf Germany
| | - Vlada B. Urlacher
- Institute of Biochemistry Heinrich-Heine University Düsseldorf Universitätsstraße 1 40225 Düsseldorf Germany
| |
Collapse
|