1
|
Wu X, Meng X, Xiao Y, Yang H, Zhang Z, Zhu D. Energy Metabolism Enhance Perylenequinone Biosynthesis in Shiraia sp. Slf14 through Promoting Mitochondrial ROS Accumulation. Int J Mol Sci 2024; 25:10113. [PMID: 39337596 PMCID: PMC11432641 DOI: 10.3390/ijms251810113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/16/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
Perylenequinones (PQs) are important natural compounds that have been extensively utilized in recent years as agents for antimicrobial, anticancer, and antiviral photodynamic therapies. In this study, we investigated the molecular mechanisms regulating PQ biosynthesis by comparing Shiraia sp. Slf14 with its low PQ titer mutant, Slf14(w). The results indicated that the strain Slf14 exhibited a higher PQ yield, a more vigorous energy metabolism, and a more pronounced oxidation state compared to Slf14(w). Transcriptome analysis consistently revealed that the differences in gene expression between Slf14 and Slf14(w) are primarily associated with genes involved in redox processes and energy metabolism. Additionally, reactive oxygen species (ROS) were shown to play a crucial role in promoting PQ synthesis, as evidenced by the application of ROS-related inhibitors and promoters. Further results demonstrated that mitochondria are significant sources of ROS, which effectively regulate PQ biosynthesis in Shiraia sp. Slf14. In summary, this research revealed a noteworthy finding: the higher energy metabolism of the strain Slf14 is associated with increased intracellular ROS accumulation, which in turn triggers the activation and expression of gene clusters responsible for PQ synthesis.
Collapse
Affiliation(s)
- Xueyi Wu
- College of Life Sciences, Jiangxi Normal University, Nanchang 330022, China; (X.W.); (X.M.); (H.Y.)
- Key Laboratory of Natural Microbial Medicine Research of Jiangxi Province, Jiangxi Science and Technology Normal University, Nanchang 330013, China;
- Key Laboratory of Microbial Resources and Metabolism of Nanchang City, Jiangxi Science and Technology Normal University, Nanchang 330013, China
| | - Xuan Meng
- College of Life Sciences, Jiangxi Normal University, Nanchang 330022, China; (X.W.); (X.M.); (H.Y.)
| | - Yiwen Xiao
- Key Laboratory of Natural Microbial Medicine Research of Jiangxi Province, Jiangxi Science and Technology Normal University, Nanchang 330013, China;
- Key Laboratory of Microbial Resources and Metabolism of Nanchang City, Jiangxi Science and Technology Normal University, Nanchang 330013, China
| | - Huilin Yang
- College of Life Sciences, Jiangxi Normal University, Nanchang 330022, China; (X.W.); (X.M.); (H.Y.)
| | - Zhibin Zhang
- College of Life Sciences, Jiangxi Normal University, Nanchang 330022, China; (X.W.); (X.M.); (H.Y.)
| | - Du Zhu
- College of Life Sciences, Jiangxi Normal University, Nanchang 330022, China; (X.W.); (X.M.); (H.Y.)
- Key Laboratory of Natural Microbial Medicine Research of Jiangxi Province, Jiangxi Science and Technology Normal University, Nanchang 330013, China;
- Key Laboratory of Microbial Resources and Metabolism of Nanchang City, Jiangxi Science and Technology Normal University, Nanchang 330013, China
| |
Collapse
|
2
|
Liu Y, Han X, Dai Y, Chen Z. bZIP transcription factor FabR: Redox-dependent mechanism controlling docosahexaenoic acid biosynthesis and H 2O 2 stress response in Schizochytrium sp. Free Radic Biol Med 2024; 210:246-257. [PMID: 38042223 DOI: 10.1016/j.freeradbiomed.2023.11.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/20/2023] [Accepted: 11/26/2023] [Indexed: 12/04/2023]
Abstract
Schizochytrium sp. is an important industrial strain for commercial production of docosahexaenoic acid (DHA), which plays essential physiological roles in infant development and human health. The regulatory network for DHA biosynthesis and lipid accumulation in Schizochytrium remains poorly understood. FabR (fatty acid biosynthesis repressor), a basic leucine zipper (bZIP) transcription factor, was transcriptionally downregulated under low-nitrogen condition. Deletion of fabR gene (mutant ΔfabR) increased production of total lipids and DHA by 30.1% and 46.5%, respectively. ΔfabR displayed H2O2 stress resistance higher than that of parental strain or complementation strain CfabR. FabR bound specifically to 7-bp pseudo-palindromic sequence 5'-ATTSAAT-3' in upstream regions and repressed transcription of fatty acid biosynthesis genes (acl, fas, pfa) and antioxidant defense genes (cat, sod1, sod2, gpx). DNA binding activity of FabR was regulated in a redox-dependent manner. Under oxidative condition, FabR forms intermolecular disulfide bonds between two Cys46 residues of dimers; its DNA binding activity is thereby lost, and the transcription of its target genes is enhanced through derepression. Our findings clarify the redox-dependent mechanism that modulates FabR activity governing lipid and DHA biosynthesis and H2O2 stress response in Schizochytrium.
Collapse
Affiliation(s)
- Yana Liu
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Xiao Han
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Yujie Dai
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Zhi Chen
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
3
|
Gil-Durán C, Palma D, Marcano Y, Palacios JL, Martínez C, Rojas-Aedo JF, Levicán G, Vaca I, Chávez R. CRISPR/Cas9-Mediated Disruption of the pcz1 Gene and Its Impact on Growth, Development, and Penicillin Production in Penicillium rubens. J Fungi (Basel) 2023; 9:1010. [PMID: 37888266 PMCID: PMC10607824 DOI: 10.3390/jof9101010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/02/2023] [Accepted: 10/11/2023] [Indexed: 10/28/2023] Open
Abstract
Penicillium rubens is a filamentous fungus of great biotechnological importance due to its role as an industrial producer of the antibiotic penicillin. However, despite its significance, our understanding of the regulatory mechanisms governing biological processes in this fungus is still limited. In fungi, zinc finger proteins containing a Zn(II)2Cys6 domain are particularly interesting regulators. Although the P. rubens genome harbors many genes encoding proteins with this domain, only two of them have been investigated thus far. In this study, we employed CRISPR-Cas9 technology to disrupt the pcz1 gene, which encodes a Zn(II)2Cys6 protein in P. rubens. The disruption of pcz1 resulted in a decrease in the production of penicillin in P. rubens. This decrease in penicillin production was accompanied by the downregulation of the expression of pcbAB, pcbC and penDE genes, which form the biosynthetic gene cluster responsible for penicillin production. Moreover, the disruption of pcz1 also impacts on asexual development, leading to decreased growth and conidiation, as well as enhanced conidial germination. Collectively, our results indicate that pcz1 acts as a positive regulator of penicillin production, growth, and conidiation, while functioning as a negative regulator of conidial germination in P. rubens. To the best of our knowledge, this is the first report involving a gene encoding a Zn(II)2Cys6 protein in the regulation of penicillin biosynthesis in P. rubens.
Collapse
Affiliation(s)
- Carlos Gil-Durán
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile (USACH), Santiago 9170022, Chile; (C.G.-D.); (Y.M.); (J.F.R.-A.); (G.L.)
| | - Diego Palma
- Departamento de Química, Facultad de Ciencias, Universidad de Chile, Santiago 7800003, Chile;
| | - Yudethzi Marcano
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile (USACH), Santiago 9170022, Chile; (C.G.-D.); (Y.M.); (J.F.R.-A.); (G.L.)
| | - José-Luis Palacios
- Centro de Estudios en Ciencia y Tecnología de los Alimentos (CECTA), Universidad de Santiago de Chile (USACH), Santiago 9170022, Chile; (J.-L.P.); (C.M.)
| | - Claudio Martínez
- Centro de Estudios en Ciencia y Tecnología de los Alimentos (CECTA), Universidad de Santiago de Chile (USACH), Santiago 9170022, Chile; (J.-L.P.); (C.M.)
- Departamento de Ciencia y Tecnología de los Alimentos, Facultad Tecnológica, Universidad de Santiago de Chile (USACH), Santiago 9170022, Chile
| | - Juan F. Rojas-Aedo
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile (USACH), Santiago 9170022, Chile; (C.G.-D.); (Y.M.); (J.F.R.-A.); (G.L.)
| | - Gloria Levicán
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile (USACH), Santiago 9170022, Chile; (C.G.-D.); (Y.M.); (J.F.R.-A.); (G.L.)
| | - Inmaculada Vaca
- Departamento de Química, Facultad de Ciencias, Universidad de Chile, Santiago 7800003, Chile;
| | - Renato Chávez
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile (USACH), Santiago 9170022, Chile; (C.G.-D.); (Y.M.); (J.F.R.-A.); (G.L.)
| |
Collapse
|
4
|
Zhuo R, Chen Y, Xing M, Zhang Z, Tian S, Li B. Ena Proteins Respond to PacC-Mediated pH Signaling Pathway and Play a Crucial Role in Patulin Biosynthesis. J Fungi (Basel) 2023; 9:806. [PMID: 37623577 PMCID: PMC10455529 DOI: 10.3390/jof9080806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/28/2023] [Accepted: 07/28/2023] [Indexed: 08/26/2023] Open
Abstract
Penicillium expansum is a main producer of patulin that causes severe postharvest decay and food safety issues in the fruit industry. Development, pathogenicity, and patulin production of P. expansum are strongly influenced by the PacC-pH signaling pathway. Global transcription factor PacC regulates various fungal biological processes through a complicated molecular network. In the present study, three Ena family genes (PeEnas), PeEnaA, PeEnaB, and PeEnaC, as important downstream targets of PePacC, were identified in P. expansum. Deletion of PeEnaA, PeEnaB, and PeEnaC showed little effect on mycelial growth under alkaline or high salinity conditions, but double and triple deletion of these genes impaired the virulence of P. expansum on apple fruit. Notably, patulin biosynthesis of P. expansum was distinctly inhibited in the deletion mutants of PeEnas. PeEnas regulated expressions of the patulin gene cluster, AP1, CreA, Sge1, and Hog1 at the transcriptional level and played roles in maintaining membrane potential. Overexpression of PeEnaC in ΔPePacC restored the patulin production defect of ΔPePacC. Our results indicated that, as downstream targets of PePacC, the PeEna family proteins play a crucial role in patulin biosynthesis in P. expansum.
Collapse
Affiliation(s)
- Ruiling Zhuo
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yong Chen
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| | - Mengyang Xing
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhanquan Zhang
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| | - Shiping Tian
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Boqiang Li
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
- Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture, Beijing 100093, China
| |
Collapse
|
5
|
Wei S, Hu C, Zhang Y, Lv Y, Zhang S, Zhai H, Hu Y. AnAzf1 acts as a positive regulator of ochratoxin A biosynthesis in Aspergillus niger. Appl Microbiol Biotechnol 2023; 107:2501-2514. [PMID: 36809388 DOI: 10.1007/s00253-023-12404-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/18/2023] [Accepted: 01/20/2023] [Indexed: 02/23/2023]
Abstract
Aspergillus niger produces genotoxic and carcinogenic ochratoxin A (OTA) that severely threatens human and animal health. Transcription factor Azf1 is essential in regulating fungal cell development and primary metabolism. However, its effect and mechanism on secondary metabolism are unclear. Here, we characterized and deleted a Azf1 homolog gene, An15g00120 (AnAzf1), in A. niger, which completely blocked OTA production, and repressed the OTA cluster genes, p450, nrps, hal, and bzip at the transcriptional level. The results indicated that AnAzf1 was a positive regulator of OTA biosynthesis. Transcriptome sequencing results showed that the AnAzf1 deletion significantly upregulated antioxidant genes and downregulated oxidative phosphorylation genes. Enzymes involved in reactive oxygen species (ROS) scavenging, including catalase (CAT) and peroxidase (POD) were increased, and the corresponding ROS levels were decreased. Upregulation of genes (cat, catA, hog1, and gfd) in the MAPK pathway and downregulation of genes in iron homeostasis were associated with decreased ROS levels, linking the altered MAPK pathway and iron homeostasis to lower ROS levels caused by AnAzf1 deletion. Additionally, enzymes including complex I (NADH-ubiquinone oxidoreductase), and complex V (ATP synthase), as well as ATP levels, were significantly decreased, indicating impaired oxidative phosphorylation caused by the AnAzf1-deletion. During lower ROS levels and impaired oxidative phosphorylation, OTA was not produced in ∆AnAzf1. Together, these results strongly suggested that AnAzf1 deletion blocked OTA production in A. niger by a synergistic interference of ROS accumulation and oxidative phosphorylation. KEY POINTS: • AnAzf1 positively regulated OTA biosynthesis in A. niger. • Deletion of AnAzf1 decreased ROS levels and impaired oxidative phosphorylation. • An altered MAPK pathway and iron homeostasis were associated with lower ROS levels.
Collapse
Affiliation(s)
- Shan Wei
- College of Bioengineering, Henan University of Technology, Zhengzhou, 450001, People's Republic of China
- Henan Provincial Key Laboratory of Biological Processing and Nutritional Function of Wheat, Zhengzhou, 450001, People's Republic of China
| | - Chaojiang Hu
- College of Bioengineering, Henan University of Technology, Zhengzhou, 450001, People's Republic of China
- Henan Provincial Key Laboratory of Biological Processing and Nutritional Function of Wheat, Zhengzhou, 450001, People's Republic of China
| | - Yige Zhang
- College of Bioengineering, Henan University of Technology, Zhengzhou, 450001, People's Republic of China
- Henan Provincial Key Laboratory of Biological Processing and Nutritional Function of Wheat, Zhengzhou, 450001, People's Republic of China
| | - Yangyong Lv
- College of Bioengineering, Henan University of Technology, Zhengzhou, 450001, People's Republic of China
- Henan Provincial Key Laboratory of Biological Processing and Nutritional Function of Wheat, Zhengzhou, 450001, People's Republic of China
| | - Shuaibing Zhang
- College of Bioengineering, Henan University of Technology, Zhengzhou, 450001, People's Republic of China
- Henan Provincial Key Laboratory of Biological Processing and Nutritional Function of Wheat, Zhengzhou, 450001, People's Republic of China
| | - Huanchen Zhai
- College of Bioengineering, Henan University of Technology, Zhengzhou, 450001, People's Republic of China
- Henan Provincial Key Laboratory of Biological Processing and Nutritional Function of Wheat, Zhengzhou, 450001, People's Republic of China
| | - Yuansen Hu
- College of Bioengineering, Henan University of Technology, Zhengzhou, 450001, People's Republic of China.
- Henan Provincial Key Laboratory of Biological Processing and Nutritional Function of Wheat, Zhengzhou, 450001, People's Republic of China.
| |
Collapse
|
6
|
Pérez-Sánchez A, Mejía A, Miranda-Labra RU, Barrios-González J. Role of AtYap1 in the reactive oxygen species regulation of lovastatin production in Aspergillus terreus. Appl Microbiol Biotechnol 2023; 107:1439-1451. [PMID: 36683058 DOI: 10.1007/s00253-023-12382-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 01/04/2023] [Accepted: 01/07/2023] [Indexed: 01/24/2023]
Abstract
Lovastatin has great medical and economic importance, and its production in Aspergillus terreus is positively regulated at transcriptional level, by reactive oxygen species (ROS) generated during idiophase. To investigate the role of the transcription factor Yap1 in the regulation of lovastatin biosynthesis by ROS, an orthologue of yap1 was identified in A. terreus TUB F-514 and knocked down (silenced) by RNAi. Results confirmed that the selected knockdown strain (Siyap1) showed decreased yap1 expression in both culture systems (submerged and solid-state fermentation). Transformants showed higher sensitivity to oxidative stress. Interestingly, knockdown mutant showed higher ROS levels in idiophase and an important increase in lovastatin production in submerged and solid-state fermentations: 60 and 70% increase, respectively. Furthermore, sporulation also increased by 600%. This suggested that AtYap1 was functioning as a negative regulator of the biosynthetic genes, and that lack of AtYap1 in the mutants would be derepressing these genes and could explain increased production. However, we have shown that lovastatin production is proportional to ROS levels, so ROS increase in the mutants alone could also be the cause of production increase. In this work, when ROS levels were decreased with antioxidant, to the levels shown by the parental strain, the lovastatin production and kinetics were similar to the ones of the parental strain. This means that AtYap1 does not regulate lovastatin biosynthetic genes, and that production increase observed in the knockdown strain was an indirect effect caused by ROS increase. This conclusion is compared with studies on other secondary metabolites produced by other fungal species. KEY POINTS: • ROS regulates lovastatin biosynthesis at transcriptional level, in solid-state, and in submerged fermentations. • ATyap1 knockdown mutants showed important lovastatin production increases (60 and 70%) and higher ROS levels. • When ROS were decreased in the silenced mutant to the parental strain's level, lovastatin kinetics were identical to the parental strain's.
Collapse
Affiliation(s)
- Ailed Pérez-Sánchez
- Departamento de Biotecnología, Universidad Autónoma Metropolitana - Iztapalapa, Av. San Rafael Atlixco No. 186, Col. Leyes de Reforma, Iztapalapa, 09340, Ciudad de México, México
| | - Armando Mejía
- Departamento de Biotecnología, Universidad Autónoma Metropolitana - Iztapalapa, Av. San Rafael Atlixco No. 186, Col. Leyes de Reforma, Iztapalapa, 09340, Ciudad de México, México
| | - Roxana Uri Miranda-Labra
- Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana - Iztapalapa, Av. San Rafael Atlixco No. 186, Col. Leyes de Reforma, Iztapalapa, 09340, Ciudad de México, México
| | - Javier Barrios-González
- Departamento de Biotecnología, Universidad Autónoma Metropolitana - Iztapalapa, Av. San Rafael Atlixco No. 186, Col. Leyes de Reforma, Iztapalapa, 09340, Ciudad de México, México.
| |
Collapse
|
7
|
Cephalosporin C biosynthesis and fermentation in Acremonium chrysogenum. Appl Microbiol Biotechnol 2022; 106:6413-6426. [DOI: 10.1007/s00253-022-12181-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 09/06/2022] [Accepted: 09/08/2022] [Indexed: 11/25/2022]
|
8
|
Zhao K, Liu L, Huang S. Genome-Wide Identification and Functional Analysis of the bZIP Transcription Factor Family in Rice Bakanae Disease Pathogen, Fusarium fujikuroi. Int J Mol Sci 2022; 23:ijms23126658. [PMID: 35743103 PMCID: PMC9223689 DOI: 10.3390/ijms23126658] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/07/2022] [Accepted: 06/11/2022] [Indexed: 12/10/2022] Open
Abstract
Fungal basic leucine zipper (bZIP) proteins play a vital role in biological processes such as growth, biotic/abiotic stress responses, nutrient utilization, and invasion. In this study, genome-wide identification of bZIP genes in the fungus Fusarium fujikuroi, the pathogen of bakanae disease, was carried out. Forty-four genes encoding bZIP transcription factors (TFs) from the genome of F. fujikuroi (FfbZIP) were identified and functionally characterized. Structures, domains, and phylogenetic relationships of the sequences were analyzed by bioinformatic approaches. Based on the phylogenetic relationships with the FfbZIP proteins of eight other fungi, the bZIP genes can be divided into six groups (A–F). The additional conserved motifs have been identified and their possible functions were predicted. To analyze functions of the bZIP genes, 11 FfbZIPs were selected according to different motifs they contained and were knocked out by genetic recombination. Results of the characteristic studies revealed that these FfbZIPs were involved in oxygen stress, osmotic stress, cell wall selection pressure, cellulose utilization, cell wall penetration, and pathogenicity. In conclusion, this study enhanced understandings of the evolution and regulatory mechanism of the FfbZIPs in fungal growth, abiotic/biotic stress resistance, and pathogenicity, which could be the reference for other fungal bZIP studies.
Collapse
|