1
|
Bouznada K, Saker R, Belaouni HA, Meklat A. Phylogenomic Analysis Supports the Reclassification of Caldicoprobacter faecalis (Winter et al. 1988) Bouanane-Darenfed et al. (2015) as a Later Heterotypic Synonym of Caldicoprobacter oshimai Yokoyama et al. (2010). Curr Microbiol 2024; 81:363. [PMID: 39289205 DOI: 10.1007/s00284-024-03878-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 08/29/2024] [Indexed: 09/19/2024]
Abstract
This study employs genome-based methodologies to explore the taxonomic relationship between Caldicoprobacter faecalis DSM 20678T and Caldicoprobacter oshimai DSM 21659T. The genome-based similarity indices calculations consisting of digital DNA-DNA Hybridization (dDDH), Average Amino Aid Identity (AAI), and Average Nucleotide Identity (ANI) between the genomes of these two type strains yielded percentages of 91.2%, 98.9%, and 99.1%, respectively. These values were above the recommended thresholds of 70% (dDDH) and 95-96% (ANI and AAI) for bacterial species delineation, indicating a shared taxonomic position for C. faecalis and C. oshimai. Furthermore, analysis utilizing the 'Bacterial Pan Genome Analysis' (BPGA) pipeline and constructing a Maximum Likelihood core-genes tree using FastTree2 consistently demonstrated the close relationship between C. faecalis DSM 20678T and C. oshimai DSM 21659T, evident from their clustering in the core-genes phylogenomic tree. Based on these comprehensive findings, we propose the reclassification of C. faecalis as a later heterotypic synonym of C. oshimai.
Collapse
Affiliation(s)
- Khaoula Bouznada
- Laboratoire de Biologie des Systèmes Microbiens (LBSM), Ecole Normale Supérieure Cheikh Mohamed El Bachir El Ibrahimi, BP 92, Kouba, Algiers, Algeria.
| | - Rafika Saker
- Laboratoire de Biologie des Systèmes Microbiens (LBSM), Ecole Normale Supérieure Cheikh Mohamed El Bachir El Ibrahimi, BP 92, Kouba, Algiers, Algeria
| | - Hadj Ahmed Belaouni
- Laboratoire de Biologie des Systèmes Microbiens (LBSM), Ecole Normale Supérieure Cheikh Mohamed El Bachir El Ibrahimi, BP 92, Kouba, Algiers, Algeria
- Agri-Food and Biosciences Institute (AFBI), Newforge Branch, Belfast, Northern Ireland, UK
| | - Atika Meklat
- Laboratoire de Biologie des Systèmes Microbiens (LBSM), Ecole Normale Supérieure Cheikh Mohamed El Bachir El Ibrahimi, BP 92, Kouba, Algiers, Algeria
| |
Collapse
|
2
|
Bouras N, Bakli M, Dif G, Smaoui S, Șmuleac L, Paşcalău R, Menendez E, Nouioui I. The Phylogenomic Characterization of Planotetraspora Species and Their Cellulases for Biotechnological Applications. Genes (Basel) 2024; 15:1202. [PMID: 39336793 PMCID: PMC11431748 DOI: 10.3390/genes15091202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/08/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
This study aims to evaluate the in silico genomic characteristics of five species of the genus Planotetraspora: P. kaengkrachanensis, P. mira, P. phitsanulokensis, P. silvatica, and P. thailandica, with a view to their application in therapeutic research. The 16S rRNA comparison indicated that these species were phylogenetically distinct. Pairwise comparisons of digital DNA-DNA hybridization (dDDH) and OrthoANI values between these studied type strains indicated that dDDH values were below 62.5%, while OrthoANI values were lower than 95.3%, suggesting that the five species represent distinct genomospecies. These results were consistent with the phylogenomic study based on core genes and the pangenome analysis of these five species within the genus Planotetraspora. However, the genome annotation showed some differences between these species, such as variations in the number of subsystem category distributions across whole genomes (ranging between 1979 and 2024). Additionally, the number of CAZYme (Carbohydrate-Active enZYme) genes ranged between 298 and 325, highlighting the potential of these bacteria for therapeutic research applications. The in silico physico-chemical characteristics of cellulases from Planotetraspora species were analyzed. Their 3D structure was modeled, refined, and validated. A molecular docking analysis of this cellulase protein structural model was conducted with cellobiose, cellotetraose, laminaribiose, carboxymethyl cellulose, glucose, and xylose ligand. Our study revealed significant interaction between the Planotetraspora cellulase and cellotetraose substrate, evidenced by stable binding energies. This suggests that this bacterial enzyme holds great potential for utilizing cellotetraose as a substrate in various applications. This study enriches our understanding of the potential applications of Planotetraspora species in therapeutic research.
Collapse
Affiliation(s)
- Noureddine Bouras
- Laboratoire de Valorisation et Conservation des Ecosystèmes Arides (LVCEA), Faculté des Sciences de la Nature et de la Vie et Sciences de la Terre, Université de Ghardaia, B.P. 455, Ghardaïa 47000, Algeria;
- Laboratoire de Biologie des Systèmes Microbiens (LBSM), Ecole Normale Supérieure de Kouba, Algiers 16308, Algeria;
| | - Mahfoud Bakli
- Laboratoire de Valorisation et Conservation des Ecosystèmes Arides (LVCEA), Faculté des Sciences de la Nature et de la Vie et Sciences de la Terre, Université de Ghardaia, B.P. 455, Ghardaïa 47000, Algeria;
| | - Guendouz Dif
- Laboratoire de Biologie des Systèmes Microbiens (LBSM), Ecole Normale Supérieure de Kouba, Algiers 16308, Algeria;
- Département des Sciences Naturelles, École Normale Supérieure de Laghouat, B.P. 4033, Laghouat 03000, Algeria
| | - Slim Smaoui
- Laboratory of Microbial Biotechnology and Engineering Enzymes (LMBEE), Center of Biotechnology of Sfax (CBS), University of Sfax, Road of Sidi Mansour Km 6, P.O. Box 1177, Sfax 3018, Tunisia;
| | - Laura Șmuleac
- Faculty of Agriculture, University of Life Sciences “King Mihai I” from Timişoara, 119 Calea Aradului, 300645 Timişoara, Romania;
| | - Raul Paşcalău
- Faculty of Agriculture, University of Life Sciences “King Mihai I” from Timişoara, 119 Calea Aradului, 300645 Timişoara, Romania;
| | - Esther Menendez
- Departamento de Microbiología y Genética, Instituto de Investigación en Agrobiotecnología (CIALE), Universidad de Salamanca, 37008 Salamanca, Spain;
| | - Imen Nouioui
- Leibniz Institute, DSMZ-German Collection of Microorganisms and Cell Cultures GmbH, 38124 Braunschweig, Germany;
| |
Collapse
|
3
|
Marchetti A, Orlando M, Bombardi L, Fusco S, Mangiagalli M, Lotti M. Evolutionary history and activity towards oligosaccharides and polysaccharides of GH3 glycosidases from an Antarctic marine bacterium. Int J Biol Macromol 2024; 275:133449. [PMID: 38944065 DOI: 10.1016/j.ijbiomac.2024.133449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 05/30/2024] [Accepted: 06/24/2024] [Indexed: 07/01/2024]
Abstract
Glycoside hydrolases (GHs) are pivotal in the hydrolysis of the glycosidic bonds of sugars, which are the main carbon and energy sources. The genome of Marinomonas sp. ef1, an Antarctic bacterium, contains three GHs belonging to family 3. These enzymes have distinct architectures and low sequence identity, suggesting that they originated from separate horizontal gene transfer events. M-GH3_A and M-GH3_B, were found to differ in cold adaptation and substrate specificity. M-GH3_A is a bona fide cold-active enzyme since it retains 20 % activity at 10 °C and exhibits poor long-term thermal stability. On the other hand, M-GH3_B shows mesophilic traits with very low activity at 10 °C (< 5 %) and higher long-term thermal stability. Substrate specificity assays highlight that M-GH3_A is a promiscuous β-glucosidase mainly active on cellobiose and cellotetraose, whereas M-GH3_B is a β-xylosidase active on xylan and arabinoxylan. Structural analysis suggests that such functional differences are due to their differently shaped active sites. The active site of M-GH3_A is wider but has a narrower entrance compared to that of M-GH3_B. Genome-based prediction of metabolic pathways suggests that Marinomonas sp. ef1 can use monosaccharides derived from the GH3-catalyzed hydrolysis of oligosaccharides either as a carbon source or for producing osmolytes.
Collapse
Affiliation(s)
- Alessandro Marchetti
- Department of Biotechnology and Biosciences, University of Milano Bicocca, Piazza della Scienza 2, Milano 20126, Italy
| | - Marco Orlando
- Department of Biotechnology and Biosciences, University of Milano Bicocca, Piazza della Scienza 2, Milano 20126, Italy
| | - Luca Bombardi
- Biochemistry and Industrial Biotechnology (BIB) Laboratory, Department of Biotechnology, University of Verona, Verona, Italy
| | - Salvatore Fusco
- Biochemistry and Industrial Biotechnology (BIB) Laboratory, Department of Biotechnology, University of Verona, Verona, Italy
| | - Marco Mangiagalli
- Department of Biotechnology and Biosciences, University of Milano Bicocca, Piazza della Scienza 2, Milano 20126, Italy.
| | - Marina Lotti
- Department of Biotechnology and Biosciences, University of Milano Bicocca, Piazza della Scienza 2, Milano 20126, Italy
| |
Collapse
|
4
|
Romanenko L, Bystritskaya E, Savicheva Y, Eremeev V, Otstavnykh N, Kurilenko V, Velansky P, Isaeva M. Description and Whole-Genome Sequencing of Mariniflexile litorale sp. nov., Isolated from the Shallow Sediments of the Sea of Japan. Microorganisms 2024; 12:1413. [PMID: 39065181 PMCID: PMC11278836 DOI: 10.3390/microorganisms12071413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/09/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
A Gram-negative, aerobic, rod-shaped, non-motile, yellow-pigmented bacterium, KMM 9835T, was isolated from the sediment sample obtained from the Amur Bay of the Sea of Japan seashore, Russia. Phylogenetic analyses based on the 16S rRNA gene and whole genome sequences positioned the novel strain KMM 9835T in the genus Mariniflexile as a separate line sharing the highest 16S rRNA gene sequence similarities of 96.6% and 96.2% with Mariniflexile soesokkakense RSSK-9T and Mariniflexile fucanivorans SW5T, respectively, and similarity values of <96% to other recognized Mariniflexile species. The average nucleotide identity and digital DNA-DNA hybridization values between strain KMM 9835T and M. soesokkakense KCTC 32427T, Mariniflexile gromovii KCTC 12570T, M. fucanivorans DSM 18792T, and M. maritimum M5A1MT were 83.0%, 82.5%, 83.4%, and 78.3% and 30.7%, 29.6%, 29.5%, and 24.4%, respectively. The genomic DNA GC content of strain KMM 9835T was 32.5 mol%. The dominant menaquinone was MK-6, and the major fatty acids were iso-C15:0, iso-C15:1ω10c, and C15:0. The polar lipids of strain KMM 9835T consisted of phosphatidylethanolamine, two unidentified aminolipids, an unidentified phospholipid, and six unidentified lipids. A pan-genome analysis showed that the KMM 9835T genome encoded 753 singletons. The annotated singletons were more often related to transport protein systems (SusC), transcriptional regulators (AraC, LytTR, LacI), and enzymes (glycosylases). The KMM 9835T genome was highly enriched in CAZyme-encoding genes, the proportion of which reached 7.3%. Moreover, the KMM 9835T genome was characterized by a high abundance of CAZyme gene families (GH43, GH28, PL1, PL10, CE8, and CE12), indicating its potential to catabolize pectin. This may represent part of an adaptation strategy facilitating microbial consumption of plant polymeric substrates in aquatic environments near shorelines and freshwater sources. Based on the combination of phylogenetic and phenotypic characterization, the marine sediment strain KMM 9835T (=KCTC 92792T) represents a novel species of the genus Mariniflexile, for which the name Mariniflexile litorale sp. nov. is proposed.
Collapse
Affiliation(s)
- Lyudmila Romanenko
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, Prospect 100 Let Vladivostoku, 159, Vladivostok 690022, Russia; (E.B.); (Y.S.); (V.E.); (N.O.); (V.K.)
| | - Evgeniya Bystritskaya
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, Prospect 100 Let Vladivostoku, 159, Vladivostok 690022, Russia; (E.B.); (Y.S.); (V.E.); (N.O.); (V.K.)
| | - Yuliya Savicheva
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, Prospect 100 Let Vladivostoku, 159, Vladivostok 690022, Russia; (E.B.); (Y.S.); (V.E.); (N.O.); (V.K.)
| | - Viacheslav Eremeev
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, Prospect 100 Let Vladivostoku, 159, Vladivostok 690022, Russia; (E.B.); (Y.S.); (V.E.); (N.O.); (V.K.)
| | - Nadezhda Otstavnykh
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, Prospect 100 Let Vladivostoku, 159, Vladivostok 690022, Russia; (E.B.); (Y.S.); (V.E.); (N.O.); (V.K.)
| | - Valeriya Kurilenko
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, Prospect 100 Let Vladivostoku, 159, Vladivostok 690022, Russia; (E.B.); (Y.S.); (V.E.); (N.O.); (V.K.)
| | - Peter Velansky
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Palchevskogo Street 17, Vladivostok 690041, Russia;
| | - Marina Isaeva
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, Prospect 100 Let Vladivostoku, 159, Vladivostok 690022, Russia; (E.B.); (Y.S.); (V.E.); (N.O.); (V.K.)
| |
Collapse
|
5
|
Xue Y, Zhou Z, Feng F, Zhao H, Tan S, Li J, Wu S, Ju Z, He S, Ding L. Genomic Analysis of Kitasatospora setae to Explore Its Biosynthetic Potential Regarding Secondary Metabolites. Antibiotics (Basel) 2024; 13:459. [PMID: 38786187 PMCID: PMC11117518 DOI: 10.3390/antibiotics13050459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/14/2024] [Accepted: 05/15/2024] [Indexed: 05/25/2024] Open
Abstract
Actinomycetes have long been recognized as important sources of clinical antibiotics. However, the exploration of rare actinomycetes, despite their potential for producing bioactive molecules, has remained relatively limited compared to the extensively studied Streptomyces genus. The extensive investigation of Streptomyces species and their natural products has led to a diminished probability of discovering novel bioactive compounds from this group. Consequently, our research focus has shifted towards less explored actinomycetes, beyond Streptomyces, with particular emphasis on Kitasatospora setae (K. setae). The genome of K. setae was annotated and analyzed through whole-genome sequencing using multiple bio-informatics tools, revealing an 8.6 Mbp genome with a 74.42% G + C content. AntiSMASH analysis identified 40 putative biosynthetic gene clusters (BGCs), approximately half of which were recessive and unknown. Additionally, metabolomic mining utilizing mass spectrometry demonstrated the potential for this rare actinomycete to generate numerous bioactive compounds such as glycosides and macrolides, with bafilomycin being the major compound produced. Collectively, genomics- and metabolomics-based techniques confirmed K. setae's potential as a bioactive secondary metabolite producer that is worthy of further exploration.
Collapse
Affiliation(s)
- Yutong Xue
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Ningbo University, Ningbo 315211, China; (Y.X.); (F.F.); (H.Z.); (S.T.); (J.L.)
| | - Zhiyan Zhou
- School of Pharmacy, Ningbo University, Ningbo 315211, China;
| | - Fangjian Feng
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Ningbo University, Ningbo 315211, China; (Y.X.); (F.F.); (H.Z.); (S.T.); (J.L.)
| | - Hang Zhao
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Ningbo University, Ningbo 315211, China; (Y.X.); (F.F.); (H.Z.); (S.T.); (J.L.)
| | - Shuangling Tan
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Ningbo University, Ningbo 315211, China; (Y.X.); (F.F.); (H.Z.); (S.T.); (J.L.)
| | - Jinling Li
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Ningbo University, Ningbo 315211, China; (Y.X.); (F.F.); (H.Z.); (S.T.); (J.L.)
| | - Sitong Wu
- School of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China; (S.W.); (Z.J.)
| | - Zhiran Ju
- School of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China; (S.W.); (Z.J.)
| | - Shan He
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Ningbo University, Ningbo 315211, China; (Y.X.); (F.F.); (H.Z.); (S.T.); (J.L.)
- School of Pharmacy, Ningbo University, Ningbo 315211, China;
| | - Lijian Ding
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Ningbo University, Ningbo 315211, China; (Y.X.); (F.F.); (H.Z.); (S.T.); (J.L.)
- School of Pharmacy, Ningbo University, Ningbo 315211, China;
| |
Collapse
|
6
|
Qiu Y, Johnson Z, Gu X, Bohutskyi P, Chen S. Dairy manure acidogenic fermentation at hyperthermophilic temperature enabled superior activity of thermostable hydrolytic enzymes linked to the genus Caldicoprobacter. BIORESOURCE TECHNOLOGY 2024; 391:129978. [PMID: 37944622 DOI: 10.1016/j.biortech.2023.129978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 11/01/2023] [Accepted: 11/01/2023] [Indexed: 11/12/2023]
Abstract
In this study, fermentation experiments were conducted under mesophilic, thermophilic, and hyperthermophilic conditions to investigate adaptation of microbial communities and its effect on extracellular enzyme activities toward degradation of cellulose, hemicellulose and proteins in dairy manure. Hyperthermophilic conditions transformed the microbiome structure and stimulated activity of extracellular proteolytic, cellulolytic, and hemicellulolytic enzymes. Specifically, the activities of protease, cellulose 1,4-β-cellobiosidase, and β-glucosidase secreted by hyperthermophilic microbes were higher by 22%, 47% and 49% compared to those produced by mesophilic and thermophilic communities. Enhanced hydrolytic activity of hyperthermophilic microbes enabled improved feedstock solubilization and production of 39% and 22% more soluble COD than mesophilic and thermophilic microbes, respectively. Connections between hydrolytic function and microbial community structure at various temperatures were assessed using the PICRUSt2 computational tool. Genus Caldicoprobacter was identified as the primary candidate responsible for increased production of thermostable endo-1,4-β-glucanase, β-glucosidase and endo-1,4-β-xylanase, and enhanced hydrolytic performance of hyperthermophilic microbial community.
Collapse
Affiliation(s)
- Yaojing Qiu
- Department of Biological Systems Engineering, Washington State University, Pullman, WA 99164-6120, United States
| | - Zachary Johnson
- Department of Biological Systems Engineering, Washington State University, Pullman, WA 99164-6120, United States; Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, United States
| | - Xiangyu Gu
- State Key laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Pavlo Bohutskyi
- Department of Biological Systems Engineering, Washington State University, Pullman, WA 99164-6120, United States; Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, United States.
| | - Shulin Chen
- Department of Biological Systems Engineering, Washington State University, Pullman, WA 99164-6120, United States.
| |
Collapse
|
7
|
Muhammad N, Avila F, Nedashkovskaya OI, Kim SG. Three novel marine species of the genus Reichenbachiella exhibiting degradation of complex polysaccharides. Front Microbiol 2023; 14:1265676. [PMID: 38156005 PMCID: PMC10752948 DOI: 10.3389/fmicb.2023.1265676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 11/23/2023] [Indexed: 12/30/2023] Open
Abstract
Three novel strains designated ABR2-5T, BKB1-1T, and WSW4-B4T belonging to the genus Reichenbachiella of the phylum Bacteroidota were isolated from algae and mud samples collected in the West Sea, Korea. All three strains were enriched for genes encoding up to 216 carbohydrate-active enzymes (CAZymes), which participate in the degradation of agar, alginate, carrageenan, laminarin, and starch. The 16S rRNA sequence similarities among the three novel isolates were 94.0%-94.7%, and against all three existing species in the genus Reichenbachiella they were 93.6%-97.2%. The genome sizes of the strains ABR2-5T, BKB1-1T, and WSW4-B4T were 5.5, 4.4, and 5.0 Mb, respectively, and the GC content ranged from 41.1%-42.0%. The average nucleotide identity and the digital DNA-DNA hybridization values of each novel strain within the isolates and all existing species in the genus Reichenbachiella were in a range of 69.2%-75.5% and 17.7-18.9%, respectively, supporting the creation of three new species. The three novel strains exhibited a distinctive fatty acid profile characterized by elevated levels of iso-C15:0 (37.7%-47.4%) and C16:1 ω5c (14.4%-22.9%). Specifically, strain ABR2-5T displayed an additional higher proportion of C16:0 (13.0%). The polar lipids were phosphatidylethanolamine, unidentified lipids, aminolipids, and glycolipids. Menaquinone-7 was identified as the respiratory quinone of the isolates. A comparative genome analysis was performed using the KEGG, RAST, antiSMASH, CRISPRCasFinder, dbCAN, and dbCAN-PUL servers and CRISPRcasIdentifier software. The results revealed that the isolates harbored many key genes involved in central metabolism for the synthesis of essential amino acids and vitamins, hydrolytic enzymes, carotenoid pigments, and antimicrobial compounds. The KEGG analysis showed that the three isolates possessed a complete pathway of dissimilatory nitrate reduction to ammonium (DNRA), which is involved in the conservation of bioavailable nitrogen within the ecosystem. Moreover, all the strains possessed genes that participated in the metabolism of heavy metals, including arsenic, copper, cobalt, ferrous, and manganese. All three isolated strains contain the class 2 type II subtype C1 CRISPR-Cas system in their genomes. The distinguished phenotypic, chemotaxonomic, and genomic characteristics led us to propose that the three strains represent three novel species in the genus Reichenbachiella: R. ulvae sp. nov. (ABR2-5T = KCTC 82990T = JCM 35839T), R. agarivorans sp. nov. (BKB1-1T = KCTC 82964T = JCM 35840T), and R. carrageenanivorans sp. nov. (WSW4-B4T = KCTC 82706T = JCM 35841T).
Collapse
Affiliation(s)
- Neak Muhammad
- Biological Resource Center/Korean Collection for Type Cultures (KCTC), Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
- Department of Environmental Biotechnology, KRIBB School of Biotechnology, University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Forbes Avila
- Biological Resource Center/Korean Collection for Type Cultures (KCTC), Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
- Department of Environmental Biotechnology, KRIBB School of Biotechnology, University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Olga I. Nedashkovskaya
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry of the Far-Eastern Branch of the Russian Academy of Sciences, Vladivostok, Russia
| | - Song-Gun Kim
- Biological Resource Center/Korean Collection for Type Cultures (KCTC), Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
- Department of Environmental Biotechnology, KRIBB School of Biotechnology, University of Science and Technology (UST), Daejeon, Republic of Korea
| |
Collapse
|
8
|
Bhattacharjee D, Flores C, Woelfel-Monsivais C, Seekatz AM. Diversity and Prevalence of Clostridium innocuum in the Human Gut Microbiota. mSphere 2023; 8:e0056922. [PMID: 36541771 PMCID: PMC9942572 DOI: 10.1128/msphere.00569-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 11/22/2022] [Indexed: 12/24/2022] Open
Abstract
Clostridia are a polyphyletic group of Gram-positive, spore-forming anaerobes in the Firmicutes phylum that significantly impact metabolism and functioning of the human gastrointestinal tract. Recently, Clostridia were divided into two separate classes, Clostridia and Erysipelotrichia, based on phenotypic and 16S rRNA gene-based differences. While Clostridia include many well-known pathogenic bacteria, Erysipelotrichia remain relatively uncharacterized, particularly regarding their role as a pathogen versus commensal. Despite wide recognition as a commensal, the erysipelotrichial species Clostridium innocuum has recently been associated with various disease states. To further understand the ecological and potential virulent role of C. innocuum, we conducted a genomic comparison across 38 C. innocuum isolates and 194 publicly available genomes. Based on colony morphology, we isolated multiple C. innocuum cultivars from the feces of healthy human volunteers (n = 5). Comparison of the 16S rRNA gene of our isolates against publicly available microbiota data sets in healthy individuals suggests a high prevalence of C. innocuum across the human population (>80%). Analysis of single nucleotide polymorphisms (SNPs) across core genes and average nucleotide identify (ANI) revealed the presence of four clades among all available genomes (n = 232 total). Investigation of carbohydrate and protein utilization pathways, including comparison against the carbohydrate-activating enzyme (CAZyme) database, demonstrated inter- and intraclade differences that were further substantiated in vitro. Collectively, these data indicate genetic variance within the C. innocuum species that may help clarify its role in human disease and health. IMPORTANCE Clostridia are a group of medically important anaerobes as both commensals and pathogens. Recently, a new class of Erysipelotrichia containing a number of reassigned clostridial species has emerged, including Clostridium innocuum. Recent studies have implicated C. innocuum as a potential causative agent of diarrhea in patients from whom Clostridioides difficile could not be isolated. Using genomic and in vitro comparison, this study sought to characterize C. innocuum in the healthy human gut. Our analyses suggest that C. innocuum is a highly prevalent and diverse species, demonstrating clade-specific differences in metabolism and potential virulence. Collectively, this study is the first investigation into a broader description of C. innocuum as a human gut inhabitant.
Collapse
Affiliation(s)
- Disha Bhattacharjee
- Department of Biological Sciences, Clemson University, Clemson, South Carolina, USA
| | - Clara Flores
- Department of Biological Sciences, Clemson University, Clemson, South Carolina, USA
| | | | - Anna M. Seekatz
- Department of Biological Sciences, Clemson University, Clemson, South Carolina, USA
| |
Collapse
|
9
|
Yin QJ, Tang HZ, Zhu FC, Chen XY, Cheng DW, Tang LC, Qi XQ, Li XG. Complete genome sequence and Carbohydrate Active Enzymes (CAZymes) repertoire of Gilvimarinus sp. DA14 isolated from the South China Sea. Mar Genomics 2022; 65:100982. [DOI: 10.1016/j.margen.2022.100982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 08/11/2022] [Indexed: 11/28/2022]
|