1
|
Germann SM, Holtz M, Jensen MK, Acevedo-Rocha CG. Debottlenecking cytochrome P450-dependent metabolic pathways for the biosynthesis of commercial natural products. Nat Prod Rep 2024; 41:1846-1857. [PMID: 39552440 DOI: 10.1039/d4np00027g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Covering: 2016 to the end of 2024This highlight article aims to provide a perspective on the challenges that novel biotechnological processes face in the biomanufacturing of natural products (NPs) whose biosynthesis pathways rely on cytochrome P450 monooxygenases. This enzyme superfamily is one of the most versatile in the biosynthesis of a plethora of NPs finding use across the food, nutrition, medicine, chemical and cosmetics industries. These enzymes often exhibit excellent regio- and stereoselectivity, but they can suffer from low activity and instability, which are serious issues impairing the development of high performing bioprocesses. We start with a brief introduction to industrial biotechnology and the importance of looking for alternative means for producing NPs independently from unsustainable fossil fuels or plant extractions. We then discuss the challenges and implemented solutions during the development of commercial NP processes focusing on the P450-dependent steps primarily in yeast cell factories. Our main focus is to highlight the challenges often encountered when utilizing P450-dependent NP pathways, and how protein engineering can be used for debottlenecking them. Finally, we briefly touch upon the importance of artificial intelligence and machine learning for guiding engineering efforts.
Collapse
Affiliation(s)
| | - Maxence Holtz
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark.
| | | | - Carlos G Acevedo-Rocha
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark.
| |
Collapse
|
2
|
Li J, Liu X, Zhu X, Liu J, Zhang L, Ahmed N, Qi J, Chen B, Tang D, Yu J, Fan Z, Jiang H. Biochemical synthesis of taxanes from mevalonate. Synth Syst Biotechnol 2024; 9:694-700. [PMID: 38868609 PMCID: PMC11166602 DOI: 10.1016/j.synbio.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/22/2024] [Accepted: 05/06/2024] [Indexed: 06/14/2024] Open
Abstract
Taxanes are kinds of diterpenoids with important bioactivities, such as paclitaxel (taxol®) is an excellent natural broad-spectrum anticancer drug. Attempts to biosynthesize taxanes have made with limited success, mainly due to the bottleneck of the low efficiency catalytic elements. In this study, we developed an artificial synthetic system to produce taxanes from mevalonate (MVA) by coupling biological and chemical methods, which comprises in vitro multi-enzyme catalytic module, chemical catalytic module and yeast cell catalytic module. Through optimizing in vitro multienzyme catalytic system, the yield of taxadiene was increased to 946.7 mg/L from MVA within 8 h and the productivity was 14.2-fold higher than microbial fermentation. By incorporating palladium catalysis, the conversion rate of Taxa-4(20),11(12)-dien-5α-yl acetate (T5α-AC) reached 48 %, effectively addressing the product promiscuity and the low yield rate of T5αOH. Finally, we optimized the expression of T10βOH in yeast resulting in the biosynthesis of Taxa-4(20),11(12)-dien-5α-acetoxy-10β-ol(T5α-AC-10β-ol) at a production of 15.8 mg/L, which displayed more than 2000-fold higher than that produced by co-culture fermentation strategy. These technologies offered a promising new approach for efficient synthesis of taxanes.
Collapse
Affiliation(s)
- Jing Li
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China
| | - Xiaonan Liu
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaoxi Zhu
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiayu Liu
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China
| | - Lei Zhang
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China
| | - Nida Ahmed
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jian Qi
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bihuan Chen
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China
| | - Daliang Tang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Jinsheng Yu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Zhijin Fan
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Huifeng Jiang
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China
| |
Collapse
|
3
|
Escrich A, Jonguitud-Borrego N, Malcı K, Sanchez-Muñoz R, Palazon J, Rios-Solis L, Moyano E. A novel step towards the heterologous biosynthesis of paclitaxel: Characterization of T1βOH taxane hydroxylase. Metab Eng 2024; 85:201-212. [PMID: 39197725 DOI: 10.1016/j.ymben.2024.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/25/2024] [Accepted: 08/21/2024] [Indexed: 09/01/2024]
Abstract
In the quest for innovative cancer therapeutics, paclitaxel remains a cornerstone in clinical oncology. However, its complex biosynthetic pathway, particularly the intricate oxygenation steps, has remained a puzzle in the decades following the characterization of the last taxane hydroxylase. The high divergence and promiscuity of enzymes involved have posed significant challenges. In this study, we adopted an innovative approach, combining in silico methods and functional gene analysis, to shed light on this elusive pathway. Our molecular docking investigations using a library of potential ligands uncovered TB574 as a potential missing enzyme in the paclitaxel biosynthetic pathway, demonstrating auspicious interactions. Complementary in vivo assays utilizing engineered S. cerevisiae strains as novel microbial cell factory consortia not only validated TB574's critical role in forging the elusive paclitaxel intermediate, T5αAc-1β,10β-diol, but also achieved the biosynthesis of paclitaxel precursors at an unprecedented yield including T5αAc-1β,10β-diol with approximately 40 mg/L. This achievement is highly promising, offering a new direction for further exploration of a novel metabolic engineering approaches using microbial consortia. In conclusion, our study not only furthers study the roles of previously uncharacterized enzymes in paclitaxel biosynthesis but also forges a path for pioneering advancements in the complete understanding of paclitaxel biosynthesis and its heterologous production. The characterization of T1βOH underscores a significant leap forward for future advancements in paclitaxel production using heterologous systems to improve cancer treatment and pharmaceutical production, thereby holding immense promise for enhancing the efficacy of cancer therapies and the efficiency of pharmaceutical manufacturing.
Collapse
Affiliation(s)
- Ainoa Escrich
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Nestor Jonguitud-Borrego
- Institute for Bioengineering, School of Engineering, The University of Edinburgh, Edinburgh, EH9 3BF, United Kingdom
| | - Koray Malcı
- Institute for Bioengineering, School of Engineering, The University of Edinburgh, Edinburgh, EH9 3BF, United Kingdom
| | - Raul Sanchez-Muñoz
- Laboratory of Functional Plant Biology, Department of Biology, Ghent University, Ghent, Belgium
| | - Javier Palazon
- Department of Biology, Healthcare and the Environment, Faculty of Pharmacy and Food Science, Universitat de Barcelona, Barcelona, Spain
| | - Leonardo Rios-Solis
- Institute for Bioengineering, School of Engineering, The University of Edinburgh, Edinburgh, EH9 3BF, United Kingdom; Department of Biochemical Engineering, The Advanced Centre for Biochemical Engineering, University College London, London, WC1E 6EB, United Kingdom.
| | - Elisabeth Moyano
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain.
| |
Collapse
|
4
|
Nowrouzi B, Torres-Montero P, Kerkhoven EJ, Martínez JL, Rios-Solis L. Rewiring Saccharomyces cerevisiae metabolism for optimised Taxol® precursors production. Metab Eng Commun 2024; 18:e00229. [PMID: 38098801 PMCID: PMC10716015 DOI: 10.1016/j.mec.2023.e00229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/09/2023] [Accepted: 11/04/2023] [Indexed: 12/17/2023] Open
Abstract
Saccharomyces cerevisiae has been conveniently used to produce Taxol® anticancer drug early precursors. However, the harmful impact of oxidative stress by the first cytochrome P450-reductase enzymes (CYP725A4-POR) of Taxol® pathway has hampered sufficient progress in yeast. Here, we evolved an oxidative stress-resistant yeast strain with three-fold higher titre of their substrate, taxadiene. The performance of the evolved and parent strains were then evaluated in galactose-limited chemostats before and under the oxidative stress by an oxidising agent. The interaction of evolution and oxidative stress was comprehensively evaluated through transcriptomics and metabolite profiles integration in yeast enzyme-constrained genome scale model. Overall, the evolved strain showed improved respiration, reduced overflow metabolites production and oxidative stress re-induction tolerance. The cross-protection mechanism also potentially contributed to better heme, flavin and NADPH availability, essential for CYP725A4 and POR optimal activity in yeast. The results imply that the evolved strain is a robust cell factory for future efforts towards Taxol© production.
Collapse
Affiliation(s)
- Behnaz Nowrouzi
- Institute for Bioengineering, School of Engineering, The University of Edinburgh, Edinburgh, EH9 3BF, United Kingdom
- Centre for Engineering Biology, The University of Edinburgh, Edinburgh, EH9 3BD, United Kingdom
- Department of Life Sciences, Chalmers University of Technology, Kemivägen 10, SE-412 96, Gothenburg, Sweden
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads Building 223, Kgs. Lyngby, 2800, Denmark
| | - Pablo Torres-Montero
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads Building 223, Kgs. Lyngby, 2800, Denmark
| | - Eduard J. Kerkhoven
- Department of Life Sciences, Chalmers University of Technology, Kemivägen 10, SE-412 96, Gothenburg, Sweden
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
- SciLifeLab, Chalmers University of Technology, SE-412 96, Gothenburg, Sweden
| | - José L. Martínez
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads Building 223, Kgs. Lyngby, 2800, Denmark
| | - Leonardo Rios-Solis
- Institute for Bioengineering, School of Engineering, The University of Edinburgh, Edinburgh, EH9 3BF, United Kingdom
- Centre for Engineering Biology, The University of Edinburgh, Edinburgh, EH9 3BD, United Kingdom
- School of Natural and Environmental Sciences, Molecular Biology and Biotechnology Division, Newcastle University, Newcastle upon Tyne, NE1 7RU, United Kingdom
- Department of Biochemical Engineering, The Advanced Centre for Biochemical Engineering, University College London, Gower Street, London, WC1E 6BT, United Kingdom
| |
Collapse
|
5
|
Liu JCT, De La Peña R, Tocol C, Sattely ES. Reconstitution of early paclitaxel biosynthetic network. Nat Commun 2024; 15:1419. [PMID: 38360800 PMCID: PMC10869802 DOI: 10.1038/s41467-024-45574-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 01/25/2024] [Indexed: 02/17/2024] Open
Abstract
Paclitaxel is an anticancer therapeutic produced by the yew tree. Over the last two decades, a significant bottleneck in the reconstitution of early paclitaxel biosynthesis has been the propensity of heterologously expressed pathway cytochromes P450, including taxadiene 5α-hydroxylase (T5αH), to form multiple products. Here, we structurally characterize four new products of T5αH, many of which appear to be over-oxidation of the primary mono-oxidized products. By tuning the promoter strength for T5αH expression in Nicotiana plants, we observe decreased levels of these proposed byproducts with a concomitant increase in the accumulation of taxadien-5α-ol, the paclitaxel precursor, by three-fold. This enables the reconstitution of a six step biosynthetic pathway, which we further show may function as a metabolic network. Our result demonstrates that six previously characterized Taxus genes can coordinatively produce key paclitaxel intermediates and serves as a crucial platform for the discovery of the remaining biosynthetic genes.
Collapse
Affiliation(s)
| | - Ricardo De La Peña
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
| | - Christian Tocol
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
| | - Elizabeth S Sattely
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA.
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA.
| |
Collapse
|
6
|
Galindo-Rodriguez GR, Santoyo-Garcia JH, Rios-Solis L, Dimartino S. In situ recovery of taxadiene using solid adsorption in cultivations with Saccharomyces cerevisiae. Prep Biochem Biotechnol 2024; 54:86-94. [PMID: 37162336 DOI: 10.1080/10826068.2023.2207204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
In this study, an engineered strain of Saccharomyces cerevisiae was used to produce taxadiene, a precursor in the biosynthetic pathway of the anticancer drug paclitaxel. Taxadiene was recovered in situ with the polymeric adsorbent Diaion © HP-20. Here we tested two bioreactor configurations and adsorbent concentrations to maximize the production and recovery of taxadiene. An external recovery configuration (ERC) was performed with the integration of an expanded bed adsorption column, whereas the internal recovery configuration (IRC) consisted in dispersed beads inside the bioreactor vessel. Taxadiene titers recovered in IRC were higher to ERC by 3.4 and 3.5 fold by using 3% and 12% (w/v) adsorbent concentration respectively. On the other hand, cell growth kinetics were faster in ERC which represents an advantage in productivity (mg of taxadiene/L*h). High resin bead concentration (12% w/v) improved the partition of taxadiene onto the beads up to 98%. This result represents an advantage over previous studies using a 3% resin concentration where the partition of taxadiene on the beads was around 50%. This work highlights the potential of in situ product recovery to improve product partition, reduce processing steps and promote cell growth. Nevertheless, a careful design of bioreactor configuration and process conditions is critical.
Collapse
Affiliation(s)
| | - Jorge H Santoyo-Garcia
- Institute for Bioengineering, School of Engineering, The University of Edinburgh, Edinburgh, UK
- Centre for Synthetic and Systems Biology (SynthSys), The University of Edinburgh, Edinburgh, UK
| | - Leonardo Rios-Solis
- Institute for Bioengineering, School of Engineering, The University of Edinburgh, Edinburgh, UK
- Centre for Synthetic and Systems Biology (SynthSys), The University of Edinburgh, Edinburgh, UK
| | - Simone Dimartino
- Institute for Bioengineering, School of Engineering, The University of Edinburgh, Edinburgh, UK
| |
Collapse
|
7
|
Zhang MF, Xie WL, Chen C, Li CX, Xu JH. Computational redesign of taxane-10β-hydroxylase for de novo biosynthesis of a key paclitaxel intermediate. Appl Microbiol Biotechnol 2023; 107:7105-7117. [PMID: 37736790 DOI: 10.1007/s00253-023-12784-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/27/2023] [Accepted: 09/07/2023] [Indexed: 09/23/2023]
Abstract
Paclitaxel (Taxol®) is the most popular anticancer diterpenoid predominantly present in Taxus. The core skeleton of paclitaxel is highly modified, but researches on the cytochrome P450s involved in post-modification process remain exceedingly limited. Herein, the taxane-10β-hydroxylase (T10βH) from Taxus cuspidata, which is the third post-modification enzyme that catalyzes the conversion of taxadiene-5α-yl-acetate (T5OAc) to taxadiene-5α-yl-acetoxy-10β-ol (T10OH), was investigated in Escherichia coli by combining computation-assisted protein engineering and metabolic engineering. The variant of T10βH, M3 (I75F/L226K/S345V), exhibited a remarkable 9.5-fold increase in protein expression, accompanied by respective 1.3-fold and 2.1-fold improvements in turnover frequency (TOF) and total turnover number (TTN). Upon integration into the engineered strain, the variant M3 resulted in a substantial enhancement in T10OH production from 0.97 to 2.23 mg/L. Ultimately, the titer of T10OH reached 3.89 mg/L by fed-batch culture in a 5-L bioreactor, representing the highest level reported so far for the microbial de novo synthesis of this key paclitaxel intermediate. This study can serve as a valuable reference for further investigation of other P450s associated with the artificial biosynthesis of paclitaxel and other terpenoids. KEY POINTS: • The T10βH from T. cuspidata was expressed and engineered in E. coli unprecedentedly. • The expression and activity of T10βH were improved through protein engineering. • De novo biosynthesis of T10OH was achieved in E. coli with a titer of 3.89 mg/L.
Collapse
Affiliation(s)
- Mei-Fang Zhang
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Wen-Liang Xie
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Cheng Chen
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Chun-Xiu Li
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Jian-He Xu
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology, Shanghai, 200237, People's Republic of China.
| |
Collapse
|
8
|
Li C, Qi Y, Sun Z, Jiang M, Li C. Way to efficient microbial paclitaxel mass production. Synth Syst Biotechnol 2023; 8:673-681. [PMID: 37954482 PMCID: PMC10632112 DOI: 10.1016/j.synbio.2023.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/28/2023] [Accepted: 10/11/2023] [Indexed: 11/14/2023] Open
Abstract
The microbial synthesis of paclitaxel is attractive for its short-cycle, cost-effectiveness, and sustainability. However, low paclitaxel productivity, depleted capacity during subculture and storage, and unclear biosynthesis mechanisms restrain industrial microbial synthesis. Along with the isolation of various paclitaxel-producing microorganisms and the development of versatile molecular tools, tremendous promises for microbial paclitaxel synthesis have become increasingly prominent. In this review, we summarize the progress of microbial synthesis of paclitaxel in recent years, focusing on paclitaxel-producing endophytes and representative engineering microorganism hosts that were used as chassis for paclitaxel precursor synthesis. Numerous wide-type microbes can manufacture paclitaxel, and fermentation process optimization and strain improvement can greatly enhance the productivity. Engineered microbes can efficiently synthesize precursors of paclitaxel by introducing exogenous synthetic pathway. Mining paclitaxel synthetic pathways and genetic manipulation of endophytes will accelerate the construction of microbial cell factories, indefinitely contributing to paclitaxel mass production by microbes. This review emphasizes the potential and provides solutions for efficient microbial paclitaxel mass production.
Collapse
Affiliation(s)
- Chenyue Li
- School of Biological Engineering, Henan University of Technology, Zhengzhou, 450001, China
| | - Yanli Qi
- School of Biological Engineering, Henan University of Technology, Zhengzhou, 450001, China
| | - Zhongke Sun
- School of Biological Engineering, Henan University of Technology, Zhengzhou, 450001, China
- Nanyang Institute of Medical Plant Technology and Industry, Nanyang, 473005, China
| | - Mengwan Jiang
- School of Artificial Intelligence and Big Data, Henan University of Technology, Zhengzhou, 450001, China
| | - Chengwei Li
- School of Biological Engineering, Henan University of Technology, Zhengzhou, 450001, China
| |
Collapse
|
9
|
Malcı K, Santibáñez R, Jonguitud-Borrego N, Santoyo-Garcia JH, Kerkhoven EJ, Rios-Solis L. Improved production of Taxol ® precursors in S. cerevisiae using combinatorial in silico design and metabolic engineering. Microb Cell Fact 2023; 22:243. [PMID: 38031061 PMCID: PMC10687855 DOI: 10.1186/s12934-023-02251-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 11/14/2023] [Indexed: 12/01/2023] Open
Abstract
BACKGROUND Integrated metabolic engineering approaches that combine system and synthetic biology tools enable the efficient design of microbial cell factories for synthesizing high-value products. In this study, we utilized in silico design algorithms on the yeast genome-scale model to predict genomic modifications that could enhance the production of early-step Taxol® in engineered Saccharomyces cerevisiae cells. RESULTS Using constraint-based reconstruction and analysis (COBRA) methods, we narrowed down the solution set of genomic modification candidates. We screened 17 genomic modifications, including nine gene deletions and eight gene overexpressions, through wet-lab studies to determine their impact on taxadiene production, the first metabolite in the Taxol® biosynthetic pathway. Under different cultivation conditions, most single genomic modifications resulted in increased taxadiene production. The strain named KM32, which contained four overexpressed genes (ILV2, TRR1, ADE13, and ECM31) involved in branched-chain amino acid biosynthesis, the thioredoxin system, de novo purine synthesis, and the pantothenate pathway, respectively, exhibited the best performance. KM32 achieved a 50% increase in taxadiene production, reaching 215 mg/L. Furthermore, KM32 produced the highest reported yields of taxa-4(20),11-dien-5α-ol (T5α-ol) at 43.65 mg/L and taxa-4(20),11-dien-5-α-yl acetate (T5αAc) at 26.2 mg/L among early-step Taxol® metabolites in S. cerevisiae. CONCLUSIONS This study highlights the effectiveness of computational and integrated approaches in identifying promising genomic modifications that can enhance the performance of yeast cell factories. By employing in silico design algorithms and wet-lab screening, we successfully improved taxadiene production in engineered S. cerevisiae strains. The best-performing strain, KM32, achieved substantial increases in taxadiene as well as production of T5α-ol and T5αAc. These findings emphasize the importance of using systematic and integrated strategies to develop efficient yeast cell factories, providing potential implications for the industrial production of high-value isoprenoids like Taxol®.
Collapse
Affiliation(s)
- Koray Malcı
- Institute for Bioengineering, School of Engineering, University of Edinburgh, King's Buildings, Edinburgh, EH9 3BF, UK.
- Centre for Engineering Biology, University of Edinburgh, King's Buildings, Edinburgh, EH9 3BF, UK.
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK.
| | - Rodrigo Santibáñez
- Department of Pediatrics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0760, USA
| | - Nestor Jonguitud-Borrego
- Institute for Bioengineering, School of Engineering, University of Edinburgh, King's Buildings, Edinburgh, EH9 3BF, UK
- Centre for Engineering Biology, University of Edinburgh, King's Buildings, Edinburgh, EH9 3BF, UK
| | - Jorge H Santoyo-Garcia
- Institute for Bioengineering, School of Engineering, University of Edinburgh, King's Buildings, Edinburgh, EH9 3BF, UK
- Centre for Engineering Biology, University of Edinburgh, King's Buildings, Edinburgh, EH9 3BF, UK
| | - Eduard J Kerkhoven
- Department of Life Sciences, Chalmers University of Technology, Kemivägen 10, SE-412 96, Gothenburg, Sweden
- SciLifeLab, Chalmers University of Technology, SE-412 96, Gothenburg, Sweden
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kgs, Lyngby, Denmark
| | - Leonardo Rios-Solis
- Institute for Bioengineering, School of Engineering, University of Edinburgh, King's Buildings, Edinburgh, EH9 3BF, UK.
- Centre for Engineering Biology, University of Edinburgh, King's Buildings, Edinburgh, EH9 3BF, UK.
- School of Natural and Environmental Sciences, Molecular Biology and Biotechnology Division, Newcastle University, Newcastle Upon Tyne, NE1 7RU, UK.
- Department of Biochemical Engineering, The Advanced Centre for Biochemical Engineering, University College London, Gower Street, London, WC1E 6BT, UK.
| |
Collapse
|
10
|
Santoyo-Garcia JH, Valdivia-Cabrera M, Ochoa-Villarreal M, Casasola-Zamora S, Ripoll M, Escrich A, Moyano E, Betancor L, Halliday KJ, Loake GJ, Rios-Solis L. Increased paclitaxel recovery from Taxus baccata vascular stem cells using novel in situ product recovery approaches. BIORESOUR BIOPROCESS 2023; 10:68. [PMID: 38647629 PMCID: PMC10991628 DOI: 10.1186/s40643-023-00687-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 09/16/2023] [Indexed: 04/25/2024] Open
Abstract
In this study, several approaches were tested to optimise the production and recovery of the widely used anticancer drug Taxol® (paclitaxel) from culturable vascular stem cells (VSCs) of Taxus baccata, which is currently used as a successful cell line for paclitaxel production. An in situ product recovery (ISPR) technique was employed, which involved combining three commercial macro-porous resin beads (HP-20, XAD7HP and HP-2MG) with batch and semi-continuous cultivations of the T. baccata VSCs after adding methyl jasmonate (Me-JA) as an elicitor. The optimal resin combination resulted in 234 ± 23 mg of paclitaxel per kg of fresh-weight cells, indicating a 13-fold improved yield compared to the control (with no resins) in batch cultivation. This resin treatment was further studied to evaluate the resins' removal capacity of reactive oxygen species (ROS), which can cause poor cell growth or reduce product synthesis. It was observed that the ISPR cultivations had fourfold less intracellular ROS concentration than that of the control; thus, a reduced ROS concentration established by the resin contributed to increased paclitaxel yield, contrary to previous studies. These paclitaxel yields are the highest reported to date using VSCs, and this scalable production method could be applied for a diverse range of similar compounds utilising plant cell culture.
Collapse
Affiliation(s)
- Jorge H Santoyo-Garcia
- Institute for Bioengineering, School of Engineering, University of Edinburgh, King's Buildings, Edinburgh, EH9 3FB, UK.
- Centre for Engineering Biology, University of Edinburgh, King's Buildings, Edinburgh, EH9 3BF, UK.
| | - Marissa Valdivia-Cabrera
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, King's Buildings, Edinburgh, EH9 3BF, UK
| | - Marisol Ochoa-Villarreal
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, King's Buildings, Edinburgh, EH9 3BF, UK
| | | | - Magdalena Ripoll
- Laboratorio de Biotecnología, Universidad ORT Uruguay, Mercedes 1237, 11100, Montevideo, Uruguay
- Graduate Program in Chemistry, Facultad de Química, Universidad de la República, Montevideo, Uruguay
| | - Ainoa Escrich
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, 08003, Barcelona, Spain
| | - Elisabeth Moyano
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, 08003, Barcelona, Spain
| | - Lorena Betancor
- Laboratorio de Biotecnología, Universidad ORT Uruguay, Mercedes 1237, 11100, Montevideo, Uruguay
| | - Karen J Halliday
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, King's Buildings, Edinburgh, EH9 3BF, UK
| | - Gary J Loake
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, King's Buildings, Edinburgh, EH9 3BF, UK
- Green Bioactives, Douglas House, Pentland Science Park, Midlothian, EH16 0PL, UK
| | - Leonardo Rios-Solis
- Institute for Bioengineering, School of Engineering, University of Edinburgh, King's Buildings, Edinburgh, EH9 3FB, UK.
- Centre for Engineering Biology, University of Edinburgh, King's Buildings, Edinburgh, EH9 3BF, UK.
- School of Natural and Environmental Sciences, Molecular Biology and Biotechnology Division, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK.
- Department of Biochemical Engineering, The Advanced Centre for Biochemical Engineering, University College London, Gower Street, London, WC1E 6BT, UK.
| |
Collapse
|
11
|
Chun-Ting Liu J, De La Pena R, Tocol C, Sattely ES. Reconstitution of Early Paclitaxel Biosynthetic Network. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.27.559859. [PMID: 37808792 PMCID: PMC10557666 DOI: 10.1101/2023.09.27.559859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Paclitaxel is an anticancer therapeutic produced by the yew tree. Over the last two decades, a significant bottleneck in the reconstitution of early paclitaxel biosynthesis has been the propensity of heterologously expressed pathway cytochromes P450, including taxadiene 5α-hydroxylase (T5αH), to form multiple products. This diverts metabolic flux away from the paclitaxel precursor, taxadien-5α-ol, thus previous attempts of reconstitution have not yielded sufficient material for characterization, regardless of the heterologous host. Here, we structurally characterized four new products of T5αH, many of which appear to be over-oxidation of the primary mono-oxidized products. By tuning the promoter strength for T5αH expression, levels of these proposed byproducts decrease with a concomitant increase in the accumulation of taxadien-5α-ol by four-fold. This engineered system enabled the reconstitution of a six step biosynthetic pathway to produce isolatable 5α,10β-diacetoxy-taxadien-13α-ol. Furthermore, we showed that this pathway may function as a metabolic network rather than a linear pathway. The engineering of the paclitaxel biosynthetic network demonstrates that Taxus genes can coordinatively function for the biosynthetic production of key early stage paclitaxel intermediates and serves as a crucial platform for the discovery of the remaining biosynthetic genes.
Collapse
Affiliation(s)
- Jack Chun-Ting Liu
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Ricardo De La Pena
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Christian Tocol
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Elizabeth S Sattely
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
- Howard Hughes Medical Institute, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
12
|
Santoyo‐Garcia JH, Walls LE, Valdivia‐Cabrera M, Malcı K, Jonguitud‐Borrego N, Halliday KJ, Rios‐Solis L. The synergetic effect from the combination of different adsorption resins in batch and semi-continuous cultivations of S. Cerevisiae cell factories to produce acetylated Taxanes precursors of the anticancer drug Taxol. Biotechnol Bioeng 2023; 120:2160-2174. [PMID: 37428616 PMCID: PMC10952759 DOI: 10.1002/bit.28487] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 06/17/2023] [Accepted: 06/22/2023] [Indexed: 07/12/2023]
Abstract
In situ product recovery is an efficient way to intensify bioprocesses as it can perform adsorption of the desired natural products in the cultivation. However, it is common to use only one adsorbent (liquid or solid) to perform the product recovery. For this study, the use of an in situ product recovery method with three combined commercial resins (HP-20, XAD7HP, and HP-2MG) with different chemical properties was performed. A new yeast strain of Saccharomyces cerevisiae was engineered using CRISPR Cas9 (strain EJ2) to deliver heterologous expression of oxygenated acetylated taxanes that are precursors of the anticancer drug Taxol ® (paclitaxel). Microscale cultivations using a definitive screening design (DSD) were set to get the best resin combinations and concentrations to retrieve high taxane titers. Once the best resin treatment was selected by the DSD, semi-continuous cultivation in high throughput microscale was performed to increase the total taxanes yield up to 783 ± 33 mg/L. The best T5α-yl Acetate yield obtained was up to 95 ± 4 mg/L, the highest titer of this compound ever reported by a heterologous expression. It was also observed that by using a combination of the resins in the cultivation, 8 additional uncharacterized taxanes were found in the gas chromatograms compared to the dodecane overlay method. Lastly, the cell-waste reactive oxygen species concentrations from the yeast were 1.5-fold lower in the resin's treatment compared to the control with no adsorbent aid. The possible future implications of this method could be critical for bioprocess intensification, allowing the transition to a semi-continuous flow bioprocess. Further, this new methodology broadens the use of different organisms for natural product synthesis/discovery benefiting from clear bioprocess intensification advantages.
Collapse
Affiliation(s)
- Jorge H. Santoyo‐Garcia
- Institute for BioengineeringUniversity of EdinburghEdinburghUK
- Centre for Engineering BiologyUniversity of EdinburghEdinburghUK
| | - Laura E. Walls
- Institute for BioengineeringUniversity of EdinburghEdinburghUK
- Centre for Engineering BiologyUniversity of EdinburghEdinburghUK
| | - Marissa Valdivia‐Cabrera
- Institute of Molecular Plant SciencesSchool of Biological Sciences, University of EdinburghEdinburgh
| | - Koray Malcı
- Institute for BioengineeringUniversity of EdinburghEdinburghUK
- Centre for Engineering BiologyUniversity of EdinburghEdinburghUK
- Present address:
Koray MalcıDepartment of Bioengineering, Imperial College LondonLondonUK
| | - Nestor Jonguitud‐Borrego
- Institute for BioengineeringUniversity of EdinburghEdinburghUK
- Centre for Engineering BiologyUniversity of EdinburghEdinburghUK
| | - Karen J. Halliday
- Institute of Molecular Plant SciencesSchool of Biological Sciences, University of EdinburghEdinburgh
| | - Leonardo Rios‐Solis
- Institute for BioengineeringUniversity of EdinburghEdinburghUK
- Centre for Engineering BiologyUniversity of EdinburghEdinburghUK
- Division of Molecular Biology and BiotechnologySchool of Natural and Environmental Sciences, Newcastle UniversityNewcastle upon TyneUK
- Department of Biochemical Engineering, The Advanced Centre for Biochemical EngineeringUniversity College LondonLondonUnited Kingdom
| |
Collapse
|